TweetFollow Us on Twitter


Volume Number: 14 (1998)
Issue Number: 10
Column Tag: Tools Of The Trade

URandomLib: The Ultimate Macintosh Random-Number Generator

by Michael McLaughlin, McLean, VA

Include this class in your projects and never have to worry about random numbers again

The Value of Nothing

Try to think of nothing. It's difficult. Sensory data alone tend to bias our thoughts and the brain tries to perceive patterns in this stream even when there is nothing there.

Random numbers are the software analogue of nothing, the sound of no hands clapping. They are used primarily as input, either by themselves or in conjunction with other data.

The unique value of random input is that it is completely neutral. Patterns of any kind, discernable in the output, could not have come from such input and must, instead, be attributed to whatever additional systems are present. Typically, it is the behavior of these systems that is of interest and a random input stream is a way of exercising the software without telling it what to do.

Small wonder, then, that the generation of "random" numbers has always been, and continues to be, a perennial topic in computer science. Applications range from the trivial (e.g., games) to the deadly serious (e.g., Monte Carlo simulations of nuclear reactors). In the latter case, the quality of the random numbers is very important. This is one time when "rolling-your-own" is definitely not recommended.

Of course, any algorithm purporting to produce random numbers cannot really do so. At best, the output will be pseudo-random, meaning only that there are no detectable patterns in it. Tests for such patterns are an active area of research and can be quite sophisticated. Our goals here are more modest and we shall focus on creating random numbers, not testing them.

The utility class, URandomLib, that is described in this article is a complete pseudo-random number generator (PRNG), implemented as a library. URandomLib makes the creation of random numbers about as trivial as one could wish, while assuring unsurpassed quality and execution speed.

The speed comes from the fact the low-level function responsible for the random stream is coded in optimized assembly language. The quality of the output comes from having a world-class algorithm which produces numbers that are very random.

How Random Are They?

They are so random that you can use any of the individual bits just as you would the entire output value of ordinary generators. This is unusual and most PRNGs come with dire warnings against breaking up a random binary word into separate pieces. As we shall see, URandomLib does so with impunity and even uses this as an additional mechanism to decrease execution time.

All PRNGs generate new random numbers using the previous one(s) as input, but there are many different algorithms. The most common, by far, are the multiplicative congruential generators. With these algorithms, each random integer, X, comes from the formula

X[i+1] = (a*X[i]) % m

where a and m are (unsigned long) constants.

However, just any old a and m will not do. If you simply make them up, your random numbers will not be very random.

Randomness is one of the two necessary features of any PRNG. The other is a long period, the length of the random sequence before the numbers start repeating themselves. Speed is a third feature, not absolutely necessary but highly desirable.

When you pick inferior values for a and m, you can get bad results. Once upon a time, there was a famous PRNG known as RANDU. Almost everybody used it. RANDU was a multiplicative congruential generator with a = 65539 and m = 2147483648. The value of m (= 0x80000000) was chosen because it makes the modulo operation very easy, especially in assembly language where you can do whatever you like. The value of a (= 0x10003) was reportedly chosen because its binary representation has only three 1-bits, making multiplication unusually fast. Today, RANDU is used only as an example of how not to construct a PRNG. We shall see why later, when we compare it to URandomLib.

The generator algorithm in URandomLib is known as "Ultra." It is a strenuously tested compound generator. In this case, the output from the first generator is XORed with the output of an independent generator which, all by itself, is quite a good PRNG.

The first PRNG in Ultra is a subtract-with-borrow (SWB) generator which works as follows: [See Marsaglia and Zaman, in Further Reading, for details.]

Let b = 232 and m = b37 - b24 - 1, a prime number. If X[0] ... X[36] are 37 integers in the closed interval [0, b-1], not all zero or b-1, and c the carry (or borrow) bit from the previous operation, then the sequence constructed using the recursion

X[n] = (X[n-24] - X[n-37] - c) % b

has a period of m-1, about 10356. There is a lot more theory involved, as well as tricky implementation details, and it is not obvious that the sequence so generated will appear random, but it does. After passing through the second generator, the final output is even more random, and the period increased to about 10366.


The class URandomLib is not intended to be instantiated by the user. In fact, the library will not work properly if you declare objects of this class. Instead, by including URandomLib.cp in your project, and URandomLib.h in the modules that reference it, there will be a single, global object, PRNG. The constructor for PRNG will be called prior to main() and the destructor called after main() exits. Consequently, the library will behave like a system resource and its functionality will be available at all times.

There are 17 functions available in URandomLib (see Listings 1 and 2). The multiplicity of return types allows the generator to extract, from the random array, only the number of bytes actually necessary to produce the desired result. This minimizes the frequency of Refill() calls, which further increases the speed of URandomLib. The functionality, and random output, of this library may be summarized as follows:

This call is necessary only if you wish to start with known seeds. The default constructor initializes PRNG automatically, with random seeds. Both seeds must be greater than zero, else random seeds will be used. Initialize() also calls SaveStart().
In order to reproduce a sequence of random numbers exactly, it is necessary to restore the PRNG to a previous state. SaveStart() and RecallStart() perform this function. If a filename is passed with SaveStart, the state will also be saved to a file. The filename is an optional parameter to RecallStart().
There are seven integer formats available, ranging from UShort7() to ULong32().
UBoolean() returns true or false, using up only one random bit in the process.
There are four random uniform functions, two returning float precision and two double precision. (Usually, floats are cast to doubles.) Uniform_0_1() returns a U(0, 1) float; Uniform_m1_1() returns a U(-1, 1) float. In both cases, the return value has full precision no matter how small it is. Also, neither function ever returns zero or one. With the double-precision counterparts, DUniform_0_1() and DUniform_m1_1(), a zero value is an extremely remote possibility.
Normal(float mu, float sigma) returns a true normal (gaussian) variate, with mean = mu and standard deviation = sigma. Sigma must be greater than zero (not checked).
Expo(float lambda) returns an exponential variate, with mean = standard deviation = lambda. Lambda must be greater than zero (not checked).

Note that URandomLib usually returns floats, not doubles. This is done for speed (floats can fit into a register; doubles typically cannot). However, this is not much of a sacrifice since double-precision random quantities are rarely necessary. To get type double, the output of URandomLib can always be cast. For the same reason, the scale parameters of Normal and Expo are not checked.

Now it is time to see what we get for our money!

Pop Quiz

The program URandomLibTest (see Listing 3) exercises all of the functions of URandomLib, using known seeds. This provides a check for proper implementation. Most of this program was coded in C to illustrate that mixing C and C++ is straightforward.

In addition, a comparison with RANDU is carried out, testing the randomness of individual bits. This is done via CoinFlipTest, a simulation in which ten coins are flipped repeatedly in an attempt to reproduce the theoretical outcome, given by the tenth row of Pascal's Triangle, viz.,

1 10 45 120 210 252 210 120 45 10 1

The kth row of Pascal's Triangle gives the relative frequencies for the number of Heads [0-k] in a random trial using k coins. The sum along any row is 2k (here, 1024). Therefore, in this simulation, any integer multiple of 1024 trials will give integral expected frequencies, making this little quiz easy to grade.

The grade will be determined using the famous ChiSquare test. The ChiSquare statistic is computed as follows:

where o[k] and e[k] are the observed and expected frequencies for bin k, resp., and where the summation includes all frequency bins.

The nice thing about the ChiSquare statistic is that it is very easy to assess the difference between theory (expectation) and experiment. In this case, there are ten degrees-of-freedom, df, and the improbability of a given ChiSquare value is a known function of df. For instance, there is only a 5-percent chance of ChiSquare(10) > 18.3 if the results of this simulation are truly random. Additional critical points can be found in Listing 3.

Needless to say, URandomLib passes the CoinFlip test with flying colors whereas most other generators, including RANDU, do not. Check it out! It should be noted that this simulation is not a particularly difficult quiz for a PRNG. For examples of more stringent tests, read the classic discussion by Knuth (see Further Reading) and examine the Diehard test suite at

As indicated above, the development of PRNGs is a continuing area of research and URandomLib is clearly not the final word on the subject. Nevertheless, you will find it very hard to beat.

Listing 1: URandomLib.h

#pragma once

#ifndef __TYPES__   
#include <Types.h>   // to define Boolean

class URandomLib {
    ~URandomLib() {};

   long ULong32();         // U[-2147483648, 2147483647]
   long ULong31();         // U[0, 2147483647]

   short UShort16();       // U[-32768, 32767]
   short UShort15();       // U[0,32767]

   short UShort8();        // (short) U[-128, 127]
   short UShort8u();       // (short) U[0, 255]
   short UShort7();        // (short) U[0, 127]

   Boolean UBoolean();     // true or false

   float Uniform_0_1();    // U(0,1) with >= 25-bit mantissa
   float Uniform_m1_1();   // U(-1,1), but excluding zero

   double DUniform_0_1();  // U[0,1) with <= 63-bit mantissa
   double DUniform_m1_1(); // U(-1,1) with <= 63-bit mantissa

   float Normal(float mu, float sigma);  // Normal(mean, std. dev. > 0)
   float Expo(float lambda);             // Exponential(lambda > 0)

   Boolean SaveStart(char *pathname = nil);
   Boolean RecallStart(char *pathname = nil);
   void      Initialize(unsigned long seed1 = 0,
                   unsigned long seed2 = 0);

   void      Refill();   // low-level core routine

   struct {
      double               gauss;
      unsigned long   FSR[37], SWB[37], brw, seed1, seed2;
      long                  bits;
      short               byt, bit;
      char                  *ptr;
   }   Ultra_Remember;      // to restart PRNG from a known beginning

   double               Ultra_2n63, Ultra_2n31, Ultra_2n7,
                        Ultra_gauss;     // remaining gaussian variate
   unsigned long        Ultra_seed2;
   long                 Ultra_bits;      // bits for UBoolean
   short                Ultra_bit;       // # bits left in bits

static URandomLib   PRNG;

Listing 2: URandomLib.cp

#include <stdio.h>
#include <OSUtils.h>          // for GetDateTime()
#include <math.h>

#include "URandomLib.h"

unsigned long   Ultra_FSR[37],      // final random numbers
                     Ultra_SWB[37], // subtract-with-borrow output
                     Ultra_brw,     // either borrow(68K) or ~borrow(PPC)
short               Ultra_byt;      // # bytes left in FSR[37]
char                  *Ultra_ptr;   // running pointer to FSR[37]

Constructor, Destructor
URandomLib is initialized with random seeds, based on the system clock. There is a stub destructor.


URandomLib::~URandomLib() {};

This is the core of URandomLib. It refills Ultra_SWB[37] via a subtract-with-borrow PRNG, then superimposes a multiplicative congruential PRNG to produce Ultra_FSR[37], which supplies all of the random bytes.

#if defined(powerc)
asm void URandomLib::Refill()
      lwz      r3,Ultra_brw      // fetch global addresses from TOC
      lwz      r6,Ultra_SWB
      lwz      r4,0(r3)          // ~borrow
      la         r7,48(r6)       // &Ultra_SWB[12]
      sub      r5,r5,r5          // clear entire word
      mr         r8,r5           // counter
      li         r5,1
      sraw      r4,r4,r5         // restore XER|CA
      li         r8,24
      mtctr   r8
      la         r4,-4(r6)
UR1:   lwzu      r9,4(r7)
      lwz      r10,4(r4)
      subfe   r9,r10,r9          // r9 -= r10
      stwu      r9,4(r4)
      bdnz+   UR1
      mr         r7,r6           // &Ultra_SWB
      li         r8,13
      mtctr   r8
      la         r7,-4(r6)
UR2:   lwzu      r9,4(r7)
      lwz      r10,4(r4)
      subfe   r9,r10,r9          // r9 -= r10
      stwu      r9,4(r4)
      bdnz+   UR2
      lwz      r4,0(r3)          // ~borrow again
      addme   r4,r5              // r5 = 1
      neg      r4,r4
      stw      r4,0(r3)          // new ~borrow
      la         r6,-4(r6)       // &SWB[-1]
      lwz      r7,Ultra_FSR
      lwz      r5,Ultra_ptr
      lwz      r4,Ultra_seed1
      stw      r7,0(r5)          // reset running pointer to FSR
      la         r7,-4(r7)       // overlay congruential PRNG
      lis      r10,1             // r10 = 69069
      addi      r10,r10,3533
      lwz      r5,0(r4)          // Ultra_seed1
      li         r8,37
      mtctr   r8
UR3:   lwzu      r9,4(r6)        // SWB
      mullw   r5,r5,r10          // Ultra_seed1 *= 69069
      xor      r9,r9,r5
      stwu      r9,4(r7)            
      bdnz+   UR3
      stw      r5,0(r4)          // save Ultra_seed1 for next time
      lwz      r7,Ultra_byt
      li         r5,148          // 4*37 bytes
      sth      r5,0(r7)          // reinitialize
asm void URandomLib::Refill()
      machine   68020

      MOVE.L   A2,-(SP)          // not scratch
      LEA      Ultra_SWB,A2      // &Ultra_SWB[0]
      LEA      52(A2),A1         // &Ultra_SWB[13]
      MOVEQ   #0,D0              // restore extend bit
      SUB.L   Ultra_brw,D0
      MOVEQ   #23,D2             // 24 of these
UR1:   MOVE.L   (A1)+,D0
      MOVE.L   (A2),D1
      SUBX.L   D1,D0
      MOVE.L   D0,(A2)+
      DBRA      D2,UR1
      LEA      Ultra_SWB,A1
      MOVEQ   #12,D2             // 13 of these
UR2:   MOVE.L   (A1)+,D0
      MOVE.L   (A2),D1
      SUBX.L   D1,D0             // subtract-with-borrow
      MOVE.L   D0,(A2)+
      DBRA      D2,UR2
      MOVEQ   #0,D0
      MOVE.L   D0,D1
      ADDX      D1,D0            // get borrow bit
      MOVE.L   D0,Ultra_brw      //   and save it
      LEA      Ultra_SWB,A1
      LEA      Ultra_FSR,A2
      MOVE.L   A2,Ultra_ptr      // reinitialize running pointer
      MOVE.L   Ultra_seed1,D0
      MOVE.L   #69069,D1         // overlay congruential PRNG
      MOVEQ   #36,D2             // 37 of these
UR3:   MOVE.L   (A1)+,(A2)
      MULU.L   D1,D0
      EOR.L   D0,(A2)+
      DBRA      D2,UR3
      MOVE.L   D0,Ultra_seed1    // save global for next time
      MOVE      #148,Ultra_byt   // 4*37 bytes left
      MOVE.L   (SP)+,A2          // restore A2

ULong32() returns a four-byte integer, ~U[-2147483648, 2147483647]. It may, of course, be cast to unsigned long.

long URandomLib::ULong32()
   register long   result;
   if (Ultra_byt < 4) Refill();
   result = *((long *) Ultra_ptr);
   Ultra_ptr += 4; Ultra_byt -= 4;
   return result;

ULong31() returns a four-byte integer, ~U[0, 2147483647].

long URandomLib::ULong31()
   register long   result;
   if (Ultra_byt < 4) Refill();
   result = *((long *) Ultra_ptr);
   Ultra_ptr += 4; Ultra_byt -= 4;
   return result & 0x7FFFFFFF;

UShort16() returns a two-byte integer, ~U[-32768, 32767].

short URandomLib::UShort16()
   register short   result;
   if (Ultra_byt < 2) Refill();
   result = *((short *) Ultra_ptr);
   Ultra_ptr += 2; Ultra_byt -= 2;
   return result;

UShort15() returns a two-byte integer, ~U[0, 32767].

short URandomLib::UShort15()
   register short   result;
   if (Ultra_byt < 2) Refill();
   result = *((short *) Ultra_ptr);
   Ultra_ptr += 2; Ultra_byt -= 2;
   return result & 0x7FFF;

UShort8() returns a two-byte integer, ~U[-128, 127]. It gets a random byte and casts it to short. This operation extends the sign bit. Consequently, you may NOT cast this function to unsigned short/long (see UShort8u() below).

short URandomLib::UShort8()
   register short   result;
   if (Ultra_byt < 1) Refill();
   result = (short) *Ultra_ptr;
   Ultra_ptr += 1; Ultra_byt -= 1;
   return result;

UShort8u() returns a two-byte integer, ~U[0, 255]. It proceeds as in UShort8() but clears the high byte instead of extending the sign bit.

short URandomLib::UShort8u()
   register short   result;
   if (Ultra_byt < 1) Refill();
   result = (short) *Ultra_ptr;
   Ultra_ptr += 1; Ultra_byt -= 1;
   return result & 0xFF;

UShort7() returns a two-byte integer, ~U[0, 127].

short URandomLib::UShort7()
   register short   result;
   if (Ultra_byt < 1) Refill();
   result = (short) (*Ultra_ptr & 0x7F);
   Ultra_ptr += 1; Ultra_byt -= 1;
   return result;

UBoolean() returns true or false. It calls ULong32() and returns the bits one at a time.

Boolean URandomLib::UBoolean()
   register Boolean   result;
   if (Ultra_bit <= 0) {
      Ultra_bits = ULong32();
      Ultra_bit = 32;
   result = (Ultra_bits < 0) ? true : false;
   Ultra_bits += Ultra_bits;   // shift left by one
   return result;

Uniform_0_1() returns a four-byte float, ~U(0, 1), with >= 25 bits of precision. This precision is achieved by continually testing the leading byte, b, of the mantissa. If b == 0, it is replaced with a new random byte and the decimal point readjusted. This simultaneously ensures that Uniform_0_1() never returns zero.

float URandomLib::Uniform_0_1()
   register double      fac = Ultra_2n31;
   register long      along;
   register short      extra;
   along = ULong31();
   if (along >= 0x01000000) return (float)(fac*along);
   for (extra=0;!extra;) {      // will not be an infinite loop
       extra = UShort7();
       fac *= Ultra_2n7;
   along |= (((long)extra) << 24);
   return (float)(fac*along);

Uniform_m1_1() returns a four-byte float, ~U(-1, 1), with the same features as described above for Uniform_0_1().

float URandomLib::Uniform_m1_1()
   register double    fac = Ultra_2n31;
   register long      along, limit = 0x01000000;
   register short     extra;
   if ((along = ULong32()) >= limit)
      return (float)(fac*along);
   else if (-along >= limit)
      return (float)(fac*along);
   for (extra=0;!extra;) {
       extra = UShort7();
       fac *= Ultra_2n7;
   if (along >= 0) {
      along |= (((long)extra) << 24);
      return (float)(fac*along);
   along = -along;
   along |= (((long)extra) << 24);
   return (float)(-fac*along);

DUniform_0_1, DUniform_m1_1
DUniform_0_1() and DUniform_m1_1() return double-precision U[0,1) and U(-1,1). In both cases, zero IS a remote possibility. These functions are intended for those occasions when seven significant figures are not enough. If you need TYPE double, but not double PRECISION, then it is much faster to use Uniform_0_1() or Uniform_m1_1() and cast - implicitly or explicitly.

double URandomLib::DUniform_0_1()
   return ULong31()*Ultra_2n31 +
            ((unsigned long) ULong32())*Ultra_2n63;

double URandomLib::DUniform_m1_1()
   return ULong32()*Ultra_2n31 +
            ((unsigned long) ULong32())*Ultra_2n63;

Normal() returns a four-byte float, ~Normal(mu, sigma), where mu and sigma are the mean and standard deviation, resp., of the parent population. The normal variates returned are exact, not approximate. Normal() uses Uniform_m1_1() so there is no possibility of a result exactly equal to mu. Note that mu and sigma must also be floats, not doubles.

float URandomLib::Normal(float mu, float sigma)
   register double      fac, rsq, v1, v2;

   if ((v1 = Ultra_gauss) != 0.0) {      // Is there one left?
      Ultra_gauss = 0.0;
      return (float)(sigma*v1 + mu);
   do {
      v1 = Uniform_m1_1();
      v2 = Uniform_m1_1();
      rsq = v1*v1 + v2*v2;
   } while (rsq >= 1.0);
   fac = sqrt(-2.0*log(rsq)/rsq);
   Ultra_gauss = fac*v2;                 // Save the first N(0,1) as double
   return (float)(sigma*fac*v1 + mu);    // and return the second

Expo() returns a four-byte float, ~Exponential(lambda). The parameter, lambda, is both the mean and standard deviation of the parent population. It must be a float greater than zero.

float URandomLib::Expo(float lambda)
   return (float)(-lambda*log(Uniform_0_1()));

SaveStart, RecallStart
SaveStart() and RecallStart() save and restore, resp., the complete state of URandomLib. Call SaveStart() at the point where it may be necessary to recall a sequence of random numbers exactly. To recover the sequence later, call RecallStart(). To terminate a program and still recover a random sequence, save Ultra_Remember to a file and read it back upon restart.

Boolean URandomLib::SaveStart(char *pathname)
   Ultra_Remember.gauss = Ultra_gauss;
   Ultra_Remember.bits = Ultra_bits;
   Ultra_Remember.seed1 = Ultra_seed1;
   Ultra_Remember.seed2 = Ultra_seed2;
   Ultra_Remember.brw = Ultra_brw;
   Ultra_Remember.byt = Ultra_byt;
   Ultra_Remember.bit = Ultra_bit;
   Ultra_Remember.ptr = Ultra_ptr;
   for (int i = 0;i < 37;i++) {
      Ultra_Remember.FSR[i] = Ultra_FSR[i];
      Ultra_Remember.SWB[i] = Ultra_SWB[i];
   if (pathname != nil) {
      FILE   *outfile;
      if ((outfile = fopen(pathname, "w")) != nil) {
         fwrite((void *) &Ultra_Remember,
                  sizeof(Ultra_Remember), 1L, outfile);
      else return false;
   return true;

Boolean URandomLib::RecallStart(char *pathname)
   if (pathname != nil) {
      FILE   *infile;
      if ((infile = fopen(pathname, "r")) != nil) {
         fread((void *) &Ultra_Remember,
                  sizeof(Ultra_Remember), 1L, infile);
      else return false;

   Ultra_gauss = Ultra_Remember.gauss;
   Ultra_bits = Ultra_Remember.bits;
   Ultra_seed1 = Ultra_Remember.seed1;
   Ultra_seed2 = Ultra_Remember.seed2;
   Ultra_brw = Ultra_Remember.brw;
   Ultra_byt = Ultra_Remember.byt;
   Ultra_bit = Ultra_Remember.bit;
   Ultra_ptr = Ultra_Remember.ptr;
   for (int i = 0;i < 37;i++) {
      Ultra_FSR[i] = Ultra_Remember.FSR[i];
      Ultra_SWB[i] = Ultra_Remember.SWB[i];

   return true;

Initialize() computes a few global constants, initializes others, and fills in the initial Ultra_SWB array using the supplied seeds. It terminates by calling SaveStart() so that you may recover the whole sequence of random numbers by calling RecallStart().

void URandomLib::Initialize(unsigned long seed1,
                            unsigned long seed2)
#if defined(powerc)
#define   ULTRABRW      0xFFFFFFFF
#define   ULTRABRW      0x00000000

   unsigned long   tempbits, ul, upper, lower;
   if ((seed1 == 0) || (seed2 == 0)) {   // random initialization
      upper = (seed1 & 0xFFFF0000) >> 16;
      lower = seed1 & 0xFFFF;
      seed2 = upper*lower;               // might overflow
   Ultra_seed1 = seed1; Ultra_seed2 = seed2;
    for (int i = 0;i < 37;i++) {
      tempbits = 0;
      for (int j = 32;j > 0;j&#151;) {
         Ultra_seed1 *= 69069;
         Ultra_seed2 ^= (Ultra_seed2 >> 15);
         Ultra_seed2 ^= (Ultra_seed2 << 17);
         ul = Ultra_seed1 ^ Ultra_seed2;
         tempbits = (tempbits >> 1) | (0x80000000 & ul);
      Ultra_SWB[i] = tempbits;
   Ultra_2n31 = ((2.0/65536)/65536);
   Ultra_2n63 = 0.5*Ultra_2n31*Ultra_2n31;
   Ultra_2n7 = 1.0/128;
   Ultra_gauss = 0.0;
   Ultra_byt = Ultra_bit = 0;
   Ultra_brw = ULTRABRW;                 // no borrow yet

Listing 3: URandomLibTest.cp

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "URandomLib.h"

/* Prototypes */
Boolean RANDU_Boolean();
void CoinFlipTest(int rpt, Boolean URLib);
double ChiSquare(long result[], int df);
double ExerciseAll();
void main();

long      RANDU_Seed, Expectation[11],
         Theory[11] = {1,10,45,120,210,252,210,120,45,10,1};

CoinFlipTest () attempts to reproduce an integer multiple (rpt) of the tenth row of Pascal's Triangle by flipping ten coins at a time.

void CoinFlipTest(int rpt, Boolean URLib)
   double   ans;
   long      i, PascalRow10[11];
   int       coin, Heads;
   static double crit[10] = 
   static double conf[10] = 

   for (i = 0;i <= 10;i++)
      PascalRow10[i] = 0;
   if (URLib) {      // use URandomLib
      for (i = 1;i <= rpt*1024;i++) {
         Heads = 0;
         for (coin = 1;coin <= 10;coin++)
            if (PRNG.UBoolean()) ++Heads;
   else {               // use RANDU
      for (i = 1;i <= rpt*1024;i++) {
         Heads = 0;
         for (coin = 1;coin <= 10;coin++)
            if (RANDU_Boolean()) ++Heads;
   for (i = 0;i <= 10;i++)
      printf("%ld ", PascalRow10[i]);
   ans = ChiSquare(PascalRow10, 10);
   printf("ChiSquare = %f ==> ", ans);
   if (ans < crit[0])
      printf("Result is suspiciously good!\n\n");
   else if (ans > crit[1]) {
      int k;
      for (k = 1;(k <= 8) && (ans > crit[k+1]);) ++k;
      printf("Randomness is rejected with more than %f%% 
                  confidence.\n\n", conf[k]);
   else printf("Randomness is accepted.\n\n");

Compute the ChiSquare statistic for df degrees-of-freedom. The expected value = df.

double ChiSquare(long result[], int df)
   double   diff, chisq = 0.0;

   for (int i = 0;i <= df;i++) {
      diff = result[i] - Expectation[i];
      chisq += (diff*diff)/Expectation[i];
   return chisq;

RANDU_Boolean() gets bits in much the same fashion as URandomLib.

Boolean RANDU_Boolean()
   Boolean   result;
   static unsigned long   a = 65539,      // RANDU constants
                                 m = 2147483648;
   static long theBits;
   static int bits_left = 0;
   if (bits_left <= 0) {
      theBits = RANDU_Seed =
                     (a*RANDU_Seed) % m;  // RANDU
      theBits += theBits;                 // initial sign bit always zero
      bits_left = 31;
   result = (theBits < 0) ? true : false;
   theBits += theBits;                    // shift left by one
   return result;

ExerciseAll () tests all of the functions in URandomLib.

double ExerciseAll()
   double   total = 0.0;
   float      mean, sigma;
   short      k;
   for (long i = 0;i < 50000;i++) {
      k = PRNG.UShort7() & 15;
      switch (k) {
         case 0:
            total += (double)PRNG.ULong32();
         case 1:
            total += (double)PRNG.ULong31();
         case 2:
            total -= (double)PRNG.ULong31();
         case 3:
            total += (double)PRNG.UShort16();
         case 4:
            total += (double)PRNG.UShort15();
         case 5:
            total -= (double)PRNG.UShort15();
         case 6:
            total += (double)PRNG.UShort8();
         case 7:
            total += (double)PRNG.UShort8u();
         case 8:
            total += (double)PRNG.UShort7();
         case 9:
            total += (double)PRNG.UBoolean();
         case 10:
            total += (double)PRNG.Uniform_0_1();
         case 11:
            total += (double)PRNG.Uniform_m1_1();
         case 12:
            total += (double)PRNG.DUniform_0_1();
         case 13:
            total += (double)PRNG.DUniform_m1_1();
         case 14:
            mean = PRNG.Uniform_m1_1();
            sigma = PRNG.Uniform_0_1();
            total += (double)PRNG.Normal(mean, sigma);
         case 15:
            total += (double)PRNG.Expo(PRNG.Uniform_0_1());
   return total;

Carry out CoinFlipTest and ExerciseAll.

void main()
   int   Nrepeats;
   // initialize RANDU
   RANDU_Seed = PRNG.ULong32();      // PRNG is automatically initialized
   // test individual "random" bits
   printf("Coin-flip test:\n\n");
   printf("Enter the number of repetitions.\n");
   scanf("%d", &Nrepeats);
   printf("Expected frequencies:\n");
   for (int i = 0;i <= 10;i++) {
      Expectation[i] = Nrepeats*Theory[i];
      printf("%ld ", Expectation[i]);
   printf("Using URandomLib...\n");
   CoinFlipTest(Nrepeats, true);      // use URandomLib
   printf("Using RANDU...\n");
   CoinFlipTest(Nrepeats, false);     // use RANDU
   // test all of the functions in URandomLib
   printf("Exercise all functions: 
               (you should get 1.381345e+11, twice)\n\n");
   PRNG.Initialize(12345678, 87654321);
   PRNG.SaveStart("UltraTemp.dat");   // save initial state to file
   printf("%e\n", ExerciseAll());
   PRNG.RecallStart("UltraTemp.dat"); // initial state from file
   printf("%e\n", ExerciseAll());

Bibliography and References

  • Marsaglia, George and Arif Zaman. "A New Class of Random Number Generators", Annals of Applied Probability, vol. 1 No. 3 (1991), pp. 462-480.
  • Knuth, Donald E. The Art of Computer Programming, 2nd ed., vol. 2, Chap. 3, Addison-Wesley, 1981.

Michael McLaughlin,, a former chemistry professor and Peace Corps volunteer, currently does R&D for future Air Traffic Control systems. He has been programming computers since 1965 but has long since forsaken Fortran, PLI, and Lisp in favor of C++ and assembly.


Community Search:
MacTech Search:

Software Updates via MacUpdate

Bookends 12.6.0 - Reference management a...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Access the power of Bookends directly from Mellel, Nisus Writer Pro, or MS Word (... Read more
Apple iBooks Author 2.4 - Create and pub...
Apple iBooks Author helps you create and publish amazing Multi-Touch books for iPad. Now anyone can create stunning iBooks textbooks, cookbooks, history books, picture books, and more for iPad. All... Read more
Web Snapper 3.3.9 - Capture entire Web p...
Web Snapper lets you capture Web pages exactly as they appear in your browser. You can send them to a file as images or vector-based, multi-page PDFs. It captures the whole Web page - eliminating the... Read more
Tunnelblick 3.6beta10 - GUI for OpenVPN...
Tunnelblick is a free, open source graphic user interface for OpenVPN on OS X. It provides easy control of OpenVPN client and/or server connections. It comes as a ready-to-use application with all... Read more
EtreCheck 2.5.1 - For troubleshooting yo...
EtreCheck is a simple little app to display the important details of your system configuration and allow you to copy that information to the Clipboard. It is meant to be used with Apple Support... Read more
Paragraphs 1.0.4 - Writing tool just for...
Paragraphs is an app just for writers. It was built for one thing and one thing only: writing. It gives you everything you need to create brilliant prose and does away with the rest. Everything in... Read more
Things 2.8 - Elegant personal task manag...
Things is a task management solution that helps to organize your tasks in an elegant and intuitive way. Things combines powerful features with simplicity through the use of tags and its intelligent... Read more
Coda 2.5.12 - One-window Web development...
Coda is a powerful Web editor that puts everything in one place. An editor. Terminal. CSS. Files. With Coda 2, we went beyond expectations. With loads of new, much-requested features, a few surprises... Read more
PCalc 4.3 - Full-featured scientific cal...
PCalc is a full-featured, scriptable scientific calculator with support for hexadecimal, octal, and binary calculations, as well as an RPN mode, programmable functions, and an extensive set of unit... Read more
DiskMaker X 5.0 - Make a bootable OS X i...
DiskMaker X (was Lion DiskMaker) helps you to build a bootable drive from the official OS X installer app (the one you download from the Mac App Store). It detects the OS X Install program with... Read more

Camel Up (Games)
Camel Up 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: | Read more »
The Martian: Bring Him Home (Games)
The Martian: Bring Him Home 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Based on the best selling novel and critically acclaimed film, THE MARTIAN tells the story of Astronaut Mark... | Read more »
This Week at 148Apps: September 21-30, 2...
Leap Into Fall With 148Apps How do you know what apps are worth your time and money? Just look to the review team at 148Apps. We sort through the chaos and find the apps you're looking for. The ones we love become Editor’s Choice, standing out above... | Read more »
Tweetbot 4 for Twitter (Social Networki...
Tweetbot 4 for Twitter 4.0 Device: iOS Universal Category: Social Networking Price: $4.99, Version: 4.0 (iTunes) Description: *** 50% off for a limited time. *** | Read more »
Mori (Games)
Mori 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Stop, rewind and unwind with Mori. Time is always running, take a moment to take control. Mori is an action puzzle game about infinitely... | Read more »
100 Years' War (Games)
100 Years' War 1.0 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0 (iTunes) Description: | Read more »
Tower in the Sky (Games)
Tower in the Sky 0.0.60 Device: iOS Universal Category: Games Price: $1.99, Version: 0.0.60 (iTunes) Description: | Read more »
hocus. (Games)
hocus. 1.0.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0.0 (iTunes) Description: New, polished, mind-bending, minimal puzzle game with dozens of levels and extra-ordinary design Features:- Beautifully crafted... | Read more »
Mos Speedrun 2 (Games)
Mos Speedrun 2 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Mos is back, in her biggest and most exciting adventure ever! Wall-jump to victory through 30 mysterious, action packed levels... | Read more »
3D Touch could be a game-changer, but it...
Were you one of the lucky/financially secure enough ones to buy a new iPhone 6s or iPhone 6s Plus over the weekend? Yup, me too (I’m not convinced I was either of those two things, but let’s go with lucky for now), so I thought I’d delve into just... | Read more »

Price Scanner via

12-inch MacBooks in stock for up to $120 off,...
Adorama has 12″ Retina MacBooks in stock for up to $120 off MSRP including free shipping plus NY & NJ sales tax only. For a limited time, Adorama will include a free Apple USB-C to USB Adapter,... Read more
15-inch 2.2GHz Retina MacBook Pro on sale for... has the 15″ 2.2GHz Retina MacBook Pro on sale for $1799 including free shipping. Their price is $200 off MSRP, and it’s the lowest price available for this model (except for Apple’s $1699... Read more
iPhone 6s and 6s Plus Feature Improved Durabi...
Upgraded components in the new iPhone 6s Plus cost $16 more than the components in the earlier iPhone 6 Plus according to a preliminary estimate from IHS Inc. The bill of materials (BOM) for an... Read more
13-inch Retina MacBook Pros on sale for up to...
Adorama has 13″ Retina MacBook Pros on sale for up to $130 off MSRP. Shipping is free, and Adorama charges sales tax for NY & NJ residents only: - 13″ 2.7GHz/128GB Retina MacBook Pro: $1199.99 $... Read more
Apple refurbished 2014 13-inch Retina MacBook...
Apple has Certified Refurbished 2014 13″ 2.6GHz/128GB SSD Retina MacBook Pros available $979, $320 off original MSRP. An Apple one-year warranty is included, and shipping is free: - 13″ 2.6GHz/128GB... Read more
iOS 9 Reflections Ten Days In – The ‘Book Mys...
I’ve never been much of an early adopter by philosophy or temperament, although I did buy the iPad Air 2 I’m typing this column on last fall only about a month after Apple unveiled it. However, my... Read more
Apple refurbished Time Capsules available for...
Apple has certified refurbished Time Capsules available for $120 off MSRP. Apple’s one-year warranty is included with each Time Capsule, and shipping is free: - 2TB Time Capsule: $179, $120 off - 3TB... Read more
OS X El Capitan Available as a Free Update To...
OS X El Capitan, the latest major release of Apple’s desktop operating system, is available today, September 30 as a free update for Mac users. “People love using their Macs, and one of the biggest... Read more
15-inch Retina MacBook Pros on sale for $150-...
B&H Photo has 2015 15″ Retina MacBook Pros on sale for up to $200 off MSRP including free shipping plus NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1815 $184 off - 15″ 2.5GHz Retina... Read more
Updated For iOS 9, InterConneX Lets You Store...
InterConneX version 1.2 is now a 64-bit app that’s completely compatible with iOS 9. InterConneX is a file storage, file management, and file sharing app for the iPhone or iPad that now takes... Read more

Jobs Board

*Apple* Systems Engineer (Mclean, VA and NYC...
Title: Apple Systems Engineer (Mclean, VA and NYC)Location: United States-New York-New York-NYC 200 Park Avenue (22005)Other Locations: United Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, you're Read more
*Apple* Retail - Multiple Customer Support P...
Job Description:Customer SupportSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the Read more
*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
SW QA Engineer - *Apple* TV - Apple (United...
**Job Summary** The Apple TV team is looking for experienced Quality Assurance Engineers with a passion for delivering first in class home entertainment solutions. **Key Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.