TweetFollow Us on Twitter


Volume Number: 14 (1998)
Issue Number: 10
Column Tag: Tools Of The Trade

URandomLib: The Ultimate Macintosh Random-Number Generator

by Michael McLaughlin, McLean, VA

Include this class in your projects and never have to worry about random numbers again

The Value of Nothing

Try to think of nothing. It's difficult. Sensory data alone tend to bias our thoughts and the brain tries to perceive patterns in this stream even when there is nothing there.

Random numbers are the software analogue of nothing, the sound of no hands clapping. They are used primarily as input, either by themselves or in conjunction with other data.

The unique value of random input is that it is completely neutral. Patterns of any kind, discernable in the output, could not have come from such input and must, instead, be attributed to whatever additional systems are present. Typically, it is the behavior of these systems that is of interest and a random input stream is a way of exercising the software without telling it what to do.

Small wonder, then, that the generation of "random" numbers has always been, and continues to be, a perennial topic in computer science. Applications range from the trivial (e.g., games) to the deadly serious (e.g., Monte Carlo simulations of nuclear reactors). In the latter case, the quality of the random numbers is very important. This is one time when "rolling-your-own" is definitely not recommended.

Of course, any algorithm purporting to produce random numbers cannot really do so. At best, the output will be pseudo-random, meaning only that there are no detectable patterns in it. Tests for such patterns are an active area of research and can be quite sophisticated. Our goals here are more modest and we shall focus on creating random numbers, not testing them.

The utility class, URandomLib, that is described in this article is a complete pseudo-random number generator (PRNG), implemented as a library. URandomLib makes the creation of random numbers about as trivial as one could wish, while assuring unsurpassed quality and execution speed.

The speed comes from the fact the low-level function responsible for the random stream is coded in optimized assembly language. The quality of the output comes from having a world-class algorithm which produces numbers that are very random.

How Random Are They?

They are so random that you can use any of the individual bits just as you would the entire output value of ordinary generators. This is unusual and most PRNGs come with dire warnings against breaking up a random binary word into separate pieces. As we shall see, URandomLib does so with impunity and even uses this as an additional mechanism to decrease execution time.

All PRNGs generate new random numbers using the previous one(s) as input, but there are many different algorithms. The most common, by far, are the multiplicative congruential generators. With these algorithms, each random integer, X, comes from the formula

X[i+1] = (a*X[i]) % m

where a and m are (unsigned long) constants.

However, just any old a and m will not do. If you simply make them up, your random numbers will not be very random.

Randomness is one of the two necessary features of any PRNG. The other is a long period, the length of the random sequence before the numbers start repeating themselves. Speed is a third feature, not absolutely necessary but highly desirable.

When you pick inferior values for a and m, you can get bad results. Once upon a time, there was a famous PRNG known as RANDU. Almost everybody used it. RANDU was a multiplicative congruential generator with a = 65539 and m = 2147483648. The value of m (= 0x80000000) was chosen because it makes the modulo operation very easy, especially in assembly language where you can do whatever you like. The value of a (= 0x10003) was reportedly chosen because its binary representation has only three 1-bits, making multiplication unusually fast. Today, RANDU is used only as an example of how not to construct a PRNG. We shall see why later, when we compare it to URandomLib.

The generator algorithm in URandomLib is known as "Ultra." It is a strenuously tested compound generator. In this case, the output from the first generator is XORed with the output of an independent generator which, all by itself, is quite a good PRNG.

The first PRNG in Ultra is a subtract-with-borrow (SWB) generator which works as follows: [See Marsaglia and Zaman, in Further Reading, for details.]

Let b = 232 and m = b37 - b24 - 1, a prime number. If X[0] ... X[36] are 37 integers in the closed interval [0, b-1], not all zero or b-1, and c the carry (or borrow) bit from the previous operation, then the sequence constructed using the recursion

X[n] = (X[n-24] - X[n-37] - c) % b

has a period of m-1, about 10356. There is a lot more theory involved, as well as tricky implementation details, and it is not obvious that the sequence so generated will appear random, but it does. After passing through the second generator, the final output is even more random, and the period increased to about 10366.


The class URandomLib is not intended to be instantiated by the user. In fact, the library will not work properly if you declare objects of this class. Instead, by including URandomLib.cp in your project, and URandomLib.h in the modules that reference it, there will be a single, global object, PRNG. The constructor for PRNG will be called prior to main() and the destructor called after main() exits. Consequently, the library will behave like a system resource and its functionality will be available at all times.

There are 17 functions available in URandomLib (see Listings 1 and 2). The multiplicity of return types allows the generator to extract, from the random array, only the number of bytes actually necessary to produce the desired result. This minimizes the frequency of Refill() calls, which further increases the speed of URandomLib. The functionality, and random output, of this library may be summarized as follows:

This call is necessary only if you wish to start with known seeds. The default constructor initializes PRNG automatically, with random seeds. Both seeds must be greater than zero, else random seeds will be used. Initialize() also calls SaveStart().
In order to reproduce a sequence of random numbers exactly, it is necessary to restore the PRNG to a previous state. SaveStart() and RecallStart() perform this function. If a filename is passed with SaveStart, the state will also be saved to a file. The filename is an optional parameter to RecallStart().
There are seven integer formats available, ranging from UShort7() to ULong32().
UBoolean() returns true or false, using up only one random bit in the process.
There are four random uniform functions, two returning float precision and two double precision. (Usually, floats are cast to doubles.) Uniform_0_1() returns a U(0, 1) float; Uniform_m1_1() returns a U(-1, 1) float. In both cases, the return value has full precision no matter how small it is. Also, neither function ever returns zero or one. With the double-precision counterparts, DUniform_0_1() and DUniform_m1_1(), a zero value is an extremely remote possibility.
Normal(float mu, float sigma) returns a true normal (gaussian) variate, with mean = mu and standard deviation = sigma. Sigma must be greater than zero (not checked).
Expo(float lambda) returns an exponential variate, with mean = standard deviation = lambda. Lambda must be greater than zero (not checked).

Note that URandomLib usually returns floats, not doubles. This is done for speed (floats can fit into a register; doubles typically cannot). However, this is not much of a sacrifice since double-precision random quantities are rarely necessary. To get type double, the output of URandomLib can always be cast. For the same reason, the scale parameters of Normal and Expo are not checked.

Now it is time to see what we get for our money!

Pop Quiz

The program URandomLibTest (see Listing 3) exercises all of the functions of URandomLib, using known seeds. This provides a check for proper implementation. Most of this program was coded in C to illustrate that mixing C and C++ is straightforward.

In addition, a comparison with RANDU is carried out, testing the randomness of individual bits. This is done via CoinFlipTest, a simulation in which ten coins are flipped repeatedly in an attempt to reproduce the theoretical outcome, given by the tenth row of Pascal's Triangle, viz.,

1 10 45 120 210 252 210 120 45 10 1

The kth row of Pascal's Triangle gives the relative frequencies for the number of Heads [0-k] in a random trial using k coins. The sum along any row is 2k (here, 1024). Therefore, in this simulation, any integer multiple of 1024 trials will give integral expected frequencies, making this little quiz easy to grade.

The grade will be determined using the famous ChiSquare test. The ChiSquare statistic is computed as follows:

where o[k] and e[k] are the observed and expected frequencies for bin k, resp., and where the summation includes all frequency bins.

The nice thing about the ChiSquare statistic is that it is very easy to assess the difference between theory (expectation) and experiment. In this case, there are ten degrees-of-freedom, df, and the improbability of a given ChiSquare value is a known function of df. For instance, there is only a 5-percent chance of ChiSquare(10) > 18.3 if the results of this simulation are truly random. Additional critical points can be found in Listing 3.

Needless to say, URandomLib passes the CoinFlip test with flying colors whereas most other generators, including RANDU, do not. Check it out! It should be noted that this simulation is not a particularly difficult quiz for a PRNG. For examples of more stringent tests, read the classic discussion by Knuth (see Further Reading) and examine the Diehard test suite at

As indicated above, the development of PRNGs is a continuing area of research and URandomLib is clearly not the final word on the subject. Nevertheless, you will find it very hard to beat.

Listing 1: URandomLib.h

#pragma once

#ifndef __TYPES__   
#include <Types.h>   // to define Boolean

class URandomLib {
    ~URandomLib() {};

   long ULong32();         // U[-2147483648, 2147483647]
   long ULong31();         // U[0, 2147483647]

   short UShort16();       // U[-32768, 32767]
   short UShort15();       // U[0,32767]

   short UShort8();        // (short) U[-128, 127]
   short UShort8u();       // (short) U[0, 255]
   short UShort7();        // (short) U[0, 127]

   Boolean UBoolean();     // true or false

   float Uniform_0_1();    // U(0,1) with >= 25-bit mantissa
   float Uniform_m1_1();   // U(-1,1), but excluding zero

   double DUniform_0_1();  // U[0,1) with <= 63-bit mantissa
   double DUniform_m1_1(); // U(-1,1) with <= 63-bit mantissa

   float Normal(float mu, float sigma);  // Normal(mean, std. dev. > 0)
   float Expo(float lambda);             // Exponential(lambda > 0)

   Boolean SaveStart(char *pathname = nil);
   Boolean RecallStart(char *pathname = nil);
   void      Initialize(unsigned long seed1 = 0,
                   unsigned long seed2 = 0);

   void      Refill();   // low-level core routine

   struct {
      double               gauss;
      unsigned long   FSR[37], SWB[37], brw, seed1, seed2;
      long                  bits;
      short               byt, bit;
      char                  *ptr;
   }   Ultra_Remember;      // to restart PRNG from a known beginning

   double               Ultra_2n63, Ultra_2n31, Ultra_2n7,
                        Ultra_gauss;     // remaining gaussian variate
   unsigned long        Ultra_seed2;
   long                 Ultra_bits;      // bits for UBoolean
   short                Ultra_bit;       // # bits left in bits

static URandomLib   PRNG;

Listing 2: URandomLib.cp

#include <stdio.h>
#include <OSUtils.h>          // for GetDateTime()
#include <math.h>

#include "URandomLib.h"

unsigned long   Ultra_FSR[37],      // final random numbers
                     Ultra_SWB[37], // subtract-with-borrow output
                     Ultra_brw,     // either borrow(68K) or ~borrow(PPC)
short               Ultra_byt;      // # bytes left in FSR[37]
char                  *Ultra_ptr;   // running pointer to FSR[37]

Constructor, Destructor
URandomLib is initialized with random seeds, based on the system clock. There is a stub destructor.


URandomLib::~URandomLib() {};

This is the core of URandomLib. It refills Ultra_SWB[37] via a subtract-with-borrow PRNG, then superimposes a multiplicative congruential PRNG to produce Ultra_FSR[37], which supplies all of the random bytes.

#if defined(powerc)
asm void URandomLib::Refill()
      lwz      r3,Ultra_brw      // fetch global addresses from TOC
      lwz      r6,Ultra_SWB
      lwz      r4,0(r3)          // ~borrow
      la         r7,48(r6)       // &Ultra_SWB[12]
      sub      r5,r5,r5          // clear entire word
      mr         r8,r5           // counter
      li         r5,1
      sraw      r4,r4,r5         // restore XER|CA
      li         r8,24
      mtctr   r8
      la         r4,-4(r6)
UR1:   lwzu      r9,4(r7)
      lwz      r10,4(r4)
      subfe   r9,r10,r9          // r9 -= r10
      stwu      r9,4(r4)
      bdnz+   UR1
      mr         r7,r6           // &Ultra_SWB
      li         r8,13
      mtctr   r8
      la         r7,-4(r6)
UR2:   lwzu      r9,4(r7)
      lwz      r10,4(r4)
      subfe   r9,r10,r9          // r9 -= r10
      stwu      r9,4(r4)
      bdnz+   UR2
      lwz      r4,0(r3)          // ~borrow again
      addme   r4,r5              // r5 = 1
      neg      r4,r4
      stw      r4,0(r3)          // new ~borrow
      la         r6,-4(r6)       // &SWB[-1]
      lwz      r7,Ultra_FSR
      lwz      r5,Ultra_ptr
      lwz      r4,Ultra_seed1
      stw      r7,0(r5)          // reset running pointer to FSR
      la         r7,-4(r7)       // overlay congruential PRNG
      lis      r10,1             // r10 = 69069
      addi      r10,r10,3533
      lwz      r5,0(r4)          // Ultra_seed1
      li         r8,37
      mtctr   r8
UR3:   lwzu      r9,4(r6)        // SWB
      mullw   r5,r5,r10          // Ultra_seed1 *= 69069
      xor      r9,r9,r5
      stwu      r9,4(r7)            
      bdnz+   UR3
      stw      r5,0(r4)          // save Ultra_seed1 for next time
      lwz      r7,Ultra_byt
      li         r5,148          // 4*37 bytes
      sth      r5,0(r7)          // reinitialize
asm void URandomLib::Refill()
      machine   68020

      MOVE.L   A2,-(SP)          // not scratch
      LEA      Ultra_SWB,A2      // &Ultra_SWB[0]
      LEA      52(A2),A1         // &Ultra_SWB[13]
      MOVEQ   #0,D0              // restore extend bit
      SUB.L   Ultra_brw,D0
      MOVEQ   #23,D2             // 24 of these
UR1:   MOVE.L   (A1)+,D0
      MOVE.L   (A2),D1
      SUBX.L   D1,D0
      MOVE.L   D0,(A2)+
      DBRA      D2,UR1
      LEA      Ultra_SWB,A1
      MOVEQ   #12,D2             // 13 of these
UR2:   MOVE.L   (A1)+,D0
      MOVE.L   (A2),D1
      SUBX.L   D1,D0             // subtract-with-borrow
      MOVE.L   D0,(A2)+
      DBRA      D2,UR2
      MOVEQ   #0,D0
      MOVE.L   D0,D1
      ADDX      D1,D0            // get borrow bit
      MOVE.L   D0,Ultra_brw      //   and save it
      LEA      Ultra_SWB,A1
      LEA      Ultra_FSR,A2
      MOVE.L   A2,Ultra_ptr      // reinitialize running pointer
      MOVE.L   Ultra_seed1,D0
      MOVE.L   #69069,D1         // overlay congruential PRNG
      MOVEQ   #36,D2             // 37 of these
UR3:   MOVE.L   (A1)+,(A2)
      MULU.L   D1,D0
      EOR.L   D0,(A2)+
      DBRA      D2,UR3
      MOVE.L   D0,Ultra_seed1    // save global for next time
      MOVE      #148,Ultra_byt   // 4*37 bytes left
      MOVE.L   (SP)+,A2          // restore A2

ULong32() returns a four-byte integer, ~U[-2147483648, 2147483647]. It may, of course, be cast to unsigned long.

long URandomLib::ULong32()
   register long   result;
   if (Ultra_byt < 4) Refill();
   result = *((long *) Ultra_ptr);
   Ultra_ptr += 4; Ultra_byt -= 4;
   return result;

ULong31() returns a four-byte integer, ~U[0, 2147483647].

long URandomLib::ULong31()
   register long   result;
   if (Ultra_byt < 4) Refill();
   result = *((long *) Ultra_ptr);
   Ultra_ptr += 4; Ultra_byt -= 4;
   return result & 0x7FFFFFFF;

UShort16() returns a two-byte integer, ~U[-32768, 32767].

short URandomLib::UShort16()
   register short   result;
   if (Ultra_byt < 2) Refill();
   result = *((short *) Ultra_ptr);
   Ultra_ptr += 2; Ultra_byt -= 2;
   return result;

UShort15() returns a two-byte integer, ~U[0, 32767].

short URandomLib::UShort15()
   register short   result;
   if (Ultra_byt < 2) Refill();
   result = *((short *) Ultra_ptr);
   Ultra_ptr += 2; Ultra_byt -= 2;
   return result & 0x7FFF;

UShort8() returns a two-byte integer, ~U[-128, 127]. It gets a random byte and casts it to short. This operation extends the sign bit. Consequently, you may NOT cast this function to unsigned short/long (see UShort8u() below).

short URandomLib::UShort8()
   register short   result;
   if (Ultra_byt < 1) Refill();
   result = (short) *Ultra_ptr;
   Ultra_ptr += 1; Ultra_byt -= 1;
   return result;

UShort8u() returns a two-byte integer, ~U[0, 255]. It proceeds as in UShort8() but clears the high byte instead of extending the sign bit.

short URandomLib::UShort8u()
   register short   result;
   if (Ultra_byt < 1) Refill();
   result = (short) *Ultra_ptr;
   Ultra_ptr += 1; Ultra_byt -= 1;
   return result & 0xFF;

UShort7() returns a two-byte integer, ~U[0, 127].

short URandomLib::UShort7()
   register short   result;
   if (Ultra_byt < 1) Refill();
   result = (short) (*Ultra_ptr & 0x7F);
   Ultra_ptr += 1; Ultra_byt -= 1;
   return result;

UBoolean() returns true or false. It calls ULong32() and returns the bits one at a time.

Boolean URandomLib::UBoolean()
   register Boolean   result;
   if (Ultra_bit <= 0) {
      Ultra_bits = ULong32();
      Ultra_bit = 32;
   result = (Ultra_bits < 0) ? true : false;
   Ultra_bits += Ultra_bits;   // shift left by one
   return result;

Uniform_0_1() returns a four-byte float, ~U(0, 1), with >= 25 bits of precision. This precision is achieved by continually testing the leading byte, b, of the mantissa. If b == 0, it is replaced with a new random byte and the decimal point readjusted. This simultaneously ensures that Uniform_0_1() never returns zero.

float URandomLib::Uniform_0_1()
   register double      fac = Ultra_2n31;
   register long      along;
   register short      extra;
   along = ULong31();
   if (along >= 0x01000000) return (float)(fac*along);
   for (extra=0;!extra;) {      // will not be an infinite loop
       extra = UShort7();
       fac *= Ultra_2n7;
   along |= (((long)extra) << 24);
   return (float)(fac*along);

Uniform_m1_1() returns a four-byte float, ~U(-1, 1), with the same features as described above for Uniform_0_1().

float URandomLib::Uniform_m1_1()
   register double    fac = Ultra_2n31;
   register long      along, limit = 0x01000000;
   register short     extra;
   if ((along = ULong32()) >= limit)
      return (float)(fac*along);
   else if (-along >= limit)
      return (float)(fac*along);
   for (extra=0;!extra;) {
       extra = UShort7();
       fac *= Ultra_2n7;
   if (along >= 0) {
      along |= (((long)extra) << 24);
      return (float)(fac*along);
   along = -along;
   along |= (((long)extra) << 24);
   return (float)(-fac*along);

DUniform_0_1, DUniform_m1_1
DUniform_0_1() and DUniform_m1_1() return double-precision U[0,1) and U(-1,1). In both cases, zero IS a remote possibility. These functions are intended for those occasions when seven significant figures are not enough. If you need TYPE double, but not double PRECISION, then it is much faster to use Uniform_0_1() or Uniform_m1_1() and cast - implicitly or explicitly.

double URandomLib::DUniform_0_1()
   return ULong31()*Ultra_2n31 +
            ((unsigned long) ULong32())*Ultra_2n63;

double URandomLib::DUniform_m1_1()
   return ULong32()*Ultra_2n31 +
            ((unsigned long) ULong32())*Ultra_2n63;

Normal() returns a four-byte float, ~Normal(mu, sigma), where mu and sigma are the mean and standard deviation, resp., of the parent population. The normal variates returned are exact, not approximate. Normal() uses Uniform_m1_1() so there is no possibility of a result exactly equal to mu. Note that mu and sigma must also be floats, not doubles.

float URandomLib::Normal(float mu, float sigma)
   register double      fac, rsq, v1, v2;

   if ((v1 = Ultra_gauss) != 0.0) {      // Is there one left?
      Ultra_gauss = 0.0;
      return (float)(sigma*v1 + mu);
   do {
      v1 = Uniform_m1_1();
      v2 = Uniform_m1_1();
      rsq = v1*v1 + v2*v2;
   } while (rsq >= 1.0);
   fac = sqrt(-2.0*log(rsq)/rsq);
   Ultra_gauss = fac*v2;                 // Save the first N(0,1) as double
   return (float)(sigma*fac*v1 + mu);    // and return the second

Expo() returns a four-byte float, ~Exponential(lambda). The parameter, lambda, is both the mean and standard deviation of the parent population. It must be a float greater than zero.

float URandomLib::Expo(float lambda)
   return (float)(-lambda*log(Uniform_0_1()));

SaveStart, RecallStart
SaveStart() and RecallStart() save and restore, resp., the complete state of URandomLib. Call SaveStart() at the point where it may be necessary to recall a sequence of random numbers exactly. To recover the sequence later, call RecallStart(). To terminate a program and still recover a random sequence, save Ultra_Remember to a file and read it back upon restart.

Boolean URandomLib::SaveStart(char *pathname)
   Ultra_Remember.gauss = Ultra_gauss;
   Ultra_Remember.bits = Ultra_bits;
   Ultra_Remember.seed1 = Ultra_seed1;
   Ultra_Remember.seed2 = Ultra_seed2;
   Ultra_Remember.brw = Ultra_brw;
   Ultra_Remember.byt = Ultra_byt;
   Ultra_Remember.bit = Ultra_bit;
   Ultra_Remember.ptr = Ultra_ptr;
   for (int i = 0;i < 37;i++) {
      Ultra_Remember.FSR[i] = Ultra_FSR[i];
      Ultra_Remember.SWB[i] = Ultra_SWB[i];
   if (pathname != nil) {
      FILE   *outfile;
      if ((outfile = fopen(pathname, "w")) != nil) {
         fwrite((void *) &Ultra_Remember,
                  sizeof(Ultra_Remember), 1L, outfile);
      else return false;
   return true;

Boolean URandomLib::RecallStart(char *pathname)
   if (pathname != nil) {
      FILE   *infile;
      if ((infile = fopen(pathname, "r")) != nil) {
         fread((void *) &Ultra_Remember,
                  sizeof(Ultra_Remember), 1L, infile);
      else return false;

   Ultra_gauss = Ultra_Remember.gauss;
   Ultra_bits = Ultra_Remember.bits;
   Ultra_seed1 = Ultra_Remember.seed1;
   Ultra_seed2 = Ultra_Remember.seed2;
   Ultra_brw = Ultra_Remember.brw;
   Ultra_byt = Ultra_Remember.byt;
   Ultra_bit = Ultra_Remember.bit;
   Ultra_ptr = Ultra_Remember.ptr;
   for (int i = 0;i < 37;i++) {
      Ultra_FSR[i] = Ultra_Remember.FSR[i];
      Ultra_SWB[i] = Ultra_Remember.SWB[i];

   return true;

Initialize() computes a few global constants, initializes others, and fills in the initial Ultra_SWB array using the supplied seeds. It terminates by calling SaveStart() so that you may recover the whole sequence of random numbers by calling RecallStart().

void URandomLib::Initialize(unsigned long seed1,
                            unsigned long seed2)
#if defined(powerc)
#define   ULTRABRW      0xFFFFFFFF
#define   ULTRABRW      0x00000000

   unsigned long   tempbits, ul, upper, lower;
   if ((seed1 == 0) || (seed2 == 0)) {   // random initialization
      upper = (seed1 & 0xFFFF0000) >> 16;
      lower = seed1 & 0xFFFF;
      seed2 = upper*lower;               // might overflow
   Ultra_seed1 = seed1; Ultra_seed2 = seed2;
    for (int i = 0;i < 37;i++) {
      tempbits = 0;
      for (int j = 32;j > 0;j&#151;) {
         Ultra_seed1 *= 69069;
         Ultra_seed2 ^= (Ultra_seed2 >> 15);
         Ultra_seed2 ^= (Ultra_seed2 << 17);
         ul = Ultra_seed1 ^ Ultra_seed2;
         tempbits = (tempbits >> 1) | (0x80000000 & ul);
      Ultra_SWB[i] = tempbits;
   Ultra_2n31 = ((2.0/65536)/65536);
   Ultra_2n63 = 0.5*Ultra_2n31*Ultra_2n31;
   Ultra_2n7 = 1.0/128;
   Ultra_gauss = 0.0;
   Ultra_byt = Ultra_bit = 0;
   Ultra_brw = ULTRABRW;                 // no borrow yet

Listing 3: URandomLibTest.cp

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "URandomLib.h"

/* Prototypes */
Boolean RANDU_Boolean();
void CoinFlipTest(int rpt, Boolean URLib);
double ChiSquare(long result[], int df);
double ExerciseAll();
void main();

long      RANDU_Seed, Expectation[11],
         Theory[11] = {1,10,45,120,210,252,210,120,45,10,1};

CoinFlipTest () attempts to reproduce an integer multiple (rpt) of the tenth row of Pascal's Triangle by flipping ten coins at a time.

void CoinFlipTest(int rpt, Boolean URLib)
   double   ans;
   long      i, PascalRow10[11];
   int       coin, Heads;
   static double crit[10] = 
   static double conf[10] = 

   for (i = 0;i <= 10;i++)
      PascalRow10[i] = 0;
   if (URLib) {      // use URandomLib
      for (i = 1;i <= rpt*1024;i++) {
         Heads = 0;
         for (coin = 1;coin <= 10;coin++)
            if (PRNG.UBoolean()) ++Heads;
   else {               // use RANDU
      for (i = 1;i <= rpt*1024;i++) {
         Heads = 0;
         for (coin = 1;coin <= 10;coin++)
            if (RANDU_Boolean()) ++Heads;
   for (i = 0;i <= 10;i++)
      printf("%ld ", PascalRow10[i]);
   ans = ChiSquare(PascalRow10, 10);
   printf("ChiSquare = %f ==> ", ans);
   if (ans < crit[0])
      printf("Result is suspiciously good!\n\n");
   else if (ans > crit[1]) {
      int k;
      for (k = 1;(k <= 8) && (ans > crit[k+1]);) ++k;
      printf("Randomness is rejected with more than %f%% 
                  confidence.\n\n", conf[k]);
   else printf("Randomness is accepted.\n\n");

Compute the ChiSquare statistic for df degrees-of-freedom. The expected value = df.

double ChiSquare(long result[], int df)
   double   diff, chisq = 0.0;

   for (int i = 0;i <= df;i++) {
      diff = result[i] - Expectation[i];
      chisq += (diff*diff)/Expectation[i];
   return chisq;

RANDU_Boolean() gets bits in much the same fashion as URandomLib.

Boolean RANDU_Boolean()
   Boolean   result;
   static unsigned long   a = 65539,      // RANDU constants
                                 m = 2147483648;
   static long theBits;
   static int bits_left = 0;
   if (bits_left <= 0) {
      theBits = RANDU_Seed =
                     (a*RANDU_Seed) % m;  // RANDU
      theBits += theBits;                 // initial sign bit always zero
      bits_left = 31;
   result = (theBits < 0) ? true : false;
   theBits += theBits;                    // shift left by one
   return result;

ExerciseAll () tests all of the functions in URandomLib.

double ExerciseAll()
   double   total = 0.0;
   float      mean, sigma;
   short      k;
   for (long i = 0;i < 50000;i++) {
      k = PRNG.UShort7() & 15;
      switch (k) {
         case 0:
            total += (double)PRNG.ULong32();
         case 1:
            total += (double)PRNG.ULong31();
         case 2:
            total -= (double)PRNG.ULong31();
         case 3:
            total += (double)PRNG.UShort16();
         case 4:
            total += (double)PRNG.UShort15();
         case 5:
            total -= (double)PRNG.UShort15();
         case 6:
            total += (double)PRNG.UShort8();
         case 7:
            total += (double)PRNG.UShort8u();
         case 8:
            total += (double)PRNG.UShort7();
         case 9:
            total += (double)PRNG.UBoolean();
         case 10:
            total += (double)PRNG.Uniform_0_1();
         case 11:
            total += (double)PRNG.Uniform_m1_1();
         case 12:
            total += (double)PRNG.DUniform_0_1();
         case 13:
            total += (double)PRNG.DUniform_m1_1();
         case 14:
            mean = PRNG.Uniform_m1_1();
            sigma = PRNG.Uniform_0_1();
            total += (double)PRNG.Normal(mean, sigma);
         case 15:
            total += (double)PRNG.Expo(PRNG.Uniform_0_1());
   return total;

Carry out CoinFlipTest and ExerciseAll.

void main()
   int   Nrepeats;
   // initialize RANDU
   RANDU_Seed = PRNG.ULong32();      // PRNG is automatically initialized
   // test individual "random" bits
   printf("Coin-flip test:\n\n");
   printf("Enter the number of repetitions.\n");
   scanf("%d", &Nrepeats);
   printf("Expected frequencies:\n");
   for (int i = 0;i <= 10;i++) {
      Expectation[i] = Nrepeats*Theory[i];
      printf("%ld ", Expectation[i]);
   printf("Using URandomLib...\n");
   CoinFlipTest(Nrepeats, true);      // use URandomLib
   printf("Using RANDU...\n");
   CoinFlipTest(Nrepeats, false);     // use RANDU
   // test all of the functions in URandomLib
   printf("Exercise all functions: 
               (you should get 1.381345e+11, twice)\n\n");
   PRNG.Initialize(12345678, 87654321);
   PRNG.SaveStart("UltraTemp.dat");   // save initial state to file
   printf("%e\n", ExerciseAll());
   PRNG.RecallStart("UltraTemp.dat"); // initial state from file
   printf("%e\n", ExerciseAll());

Bibliography and References

  • Marsaglia, George and Arif Zaman. "A New Class of Random Number Generators", Annals of Applied Probability, vol. 1 No. 3 (1991), pp. 462-480.
  • Knuth, Donald E. The Art of Computer Programming, 2nd ed., vol. 2, Chap. 3, Addison-Wesley, 1981.

Michael McLaughlin,, a former chemistry professor and Peace Corps volunteer, currently does R&D for future Air Traffic Control systems. He has been programming computers since 1965 but has long since forsaken Fortran, PLI, and Lisp in favor of C++ and assembly.


Community Search:
MacTech Search:

Software Updates via MacUpdate

BetterTouchTool 1.989 - Customize Multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom... Read more
calibre 2.77.0 - Complete e-book library...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
Quicksilver 1.5.2 - Application launcher...
Quicksilver is a light, fast and free Mac application that gives you the power to control your Mac with keystrokes alone. Quicksilver allows you to find what you need quickly and easily, then act... Read more
Paperless 2.3.9 - $49.95
Paperless is a digital documents manager. Remember when everyone talked about how we would soon be a paperless society? Now it seems like we use paper more than ever. Let's face it - we need and we... Read more
Apple GarageBand 10.1.5 - Complete recor...
The new GarageBand is a whole music creation studio right inside your Mac -- complete with keyboard, synths, orchestral and percussion instruments, presets for guitar and voice, an entirely... Read more
Adobe Audition CC 2017 10.0.2 - Professi...
Audition CC 2017 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Audition customer). Adobe Audition CC 2017 empowers you to create and... Read more
Adobe After Effects CC 2017 14.1 - Creat...
After Effects CC 2017 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous After Effects customer). The new, more connected After Effects CC... Read more
Adobe Premiere Pro CC 2017 11.0.2 - Digi...
Premiere Pro CC 2017 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Premiere Pro customer). Adobe Premiere Pro CC 2017 lets you edit... Read more
WALTR 2 2.0.9 - $39.95
WALTR 2 helps you wirelessly drag-and-drop any music, ringtones, videos, PDF, and ePub files onto your iPhone, iPad, or iPod without iTunes. It is the second major version of Softorino's critically-... Read more
Yummy FTP Pro 1.11.14 - $14.99 (50% off)
Yummy FTP Pro is an advanced Mac file transfer app which provides a full-featured professional toolkit combined with blazing speeds and impeccable reliability, so whether you want to transfer a few... Read more

Super Gridland (Entertainment)
Super Gridland 1.0 Device: iOS Universal Category: Entertainment Price: $1.99, Version: 1.0 (iTunes) Description: Match. Build. Survive. "exquisitely tuned" - Rock Paper Shotgun No in-app purches, and no ads! | Read more »
Red's Kingdom (Games)
Red's Kingdom 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Mad King Mac has kidnapped your father and stolen your golden nut! Solve puzzles and battle goons as you explore and battle your... | Read more »
Turbo League Guide: How to tame the cont...
| Read more »
Fire Emblem: Heroes coming to Google Pla...
Nintendo gave us our first look at Fire Emblem: Heroes, the upcoming mobile Fire Emblem game the company hinted at last year. Revealed at the Fire Emblem Direct event held today, the game will condense the series' tactical RPG combat into bite-... | Read more »
ReSlice (Music)
ReSlice 1.0 Device: iOS Universal Category: Music Price: $9.99, Version: 1.0 (iTunes) Description: Audio Slice Machine Slice your audio samples with ReSlice and create flexible musical atoms which can be triggered by MIDI notes or... | Read more »
Stickman Surfer rides in with the tide t...
Stickson is back and this time he's taken up yet another extreme sport - surfing. Stickman Surfer is out this Thursday on both iOS and Android, so if you've been following the other Stickman adventures, you might be interested in picking this one... | Read more »
Z-Exemplar (Games)
Z-Exemplar 1.4 Device: iOS Universal Category: Games Price: $3.99, Version: 1.4 (iTunes) Description: | Read more »
5 dastardly difficult roguelikes like th...
Edmund McMillen's popular roguelike creation The Binding of Isaac: Rebirth has finally crawled onto mobile devices. It's a grotesque dual-stick shooter that tosses you into an endless, procedurally generated basement as you, the pitiable Isaac,... | Read more »
Last week on PocketGamer
Welcome to a weekly feature looking back on the past seven days of coverage on our sister website, PocketGamer. It’s taken a while for 2017 to really get going, at least when it comes to the world of portable gaming. Thank goodness, then, for... | Read more »
ROME: Total War - Barbarian Invasion set...
To the delight of mobile strategy fans, Feral Interactive released ROME: Total War just a few months ago. Now the game's expansion, Barbarian Invasion is marching onto iPads as a standalone release. [Read more] | Read more »

Price Scanner via

B-Eng introduces SSD Health Check for Mac OS
Fehraltorf, Switzerland based independant Swiss company- B-Eng has announced the release and immediate availability of SSD Health Check 1.0, the company’s new hard drive utility for Mac OS X. As the... Read more
Apple’s Education discount saves up to $300 o...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free: -... Read more
4-core 3.7GHz Mac Pro on sale for $2290, save...
Guitar Center has the 3.7GHz 4-core Mac Pro (MD253LL/A) on sale for $2289.97 including free shipping or free local store pickup (if available). Their price is a $710 savings over standard MSRP for... Read more
128GB Apple iPad Air 2, refurbished, availabl...
Apple has Certified Refurbished 128GB iPad Air 2s WiFis available for $419 including free shipping. That’s an $80 savings over standard MSRP for this model. A standard Apple one-year warranty is... Read more
13-inch 2.7GHz Retina MacBook Pro on sale for...
B&H Photo has the 2015 13″ 2.7GHz/128GB Retina Apple MacBook Pro on sale for $100 off MSRP. Shipping is free, and B&H charges NY tax only: - 13″ 2.7GHz/128GB Retina MacBook Pro (MF839LL/A): $... Read more
Laptop Market – Flight To Quality? – The ‘Boo...
Preliminary quarterly PC shipments data released by Gartner Inc. last week reveal an interesting disparity between sales performance of major name PC vendors as opposed to that of less well-known... Read more
IBM and Bell Transform Canadian Enterprise Mo...
IBM and Bell Canada have announced they are joining forces to offer IBM MobileFirst for iOS market-ready enterprise applications for iPad, iPhone or Apple Watch. Bell, Canada’s largest communications... Read more
Otter Products is Closing… For a Day of Givin...
On Thursday, Feb. 9, Otter Products is closing doors to open hearts. In partnership with the OtterCares Foundation, the company is pausing operations for a day so all employees can volunteer with... Read more
15-inch 2.2GHz Retina MacBook Pro on sale for...
Amazon has 2015 15″ 2.2GHz Retina MacBook Pros (MJLQ2LL/A) available for $1799.99 including free shipping. Apple charges $1999 for this model, so Amazon’s price is represents a $200 savings. Read more
Back in stock: Apple refurbished 13-inch Reti...
Apple has Certified Refurbished 2015 13″ Retina MacBook Pros available for up to $360 off original MSRP, starting at $1099. An Apple one-year warranty is included with each model, and shipping is... Read more

Jobs Board

*Apple* & PC Desktop Support Technician...
Apple & PC Desktop Support Technician job in Los Angeles, CA Introduction: We have immediate job openings for several Desktop Support Technicians with one of our Read more
*Apple* Retail - Multiple Positions - Apple,...
SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (Multi-L...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* & PC Desktop Support Technician...
Apple & PC Desktop Support Technician job in Stamford, CT We have immediate job openings for several Desktop Support Technicians with one of our most well-known Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.