TweetFollow Us on Twitter

Oct 98 Getting Started

Volume Number: 14 (1998)
Issue Number: 10
Column Tag: Getting Started

Animation

by Dave Mark and Dan Parks Sydow

How a Mac program generates smooth, flicker-free animation

After learning the basics of programming, the new programmer invariably raises the question of how to go about including animated effects in his or her application. This is true regardless of the programmer's system of choice, but it's especially the case among those interested in programming the Mac. From its inception, the Macintosh has been the machine that brought computers and graphics together for the masses. Mac users love to see animation, and Mac programmers love to include animation in their programs. Now that previous columns have covered the basics of the Macintosh Toolbox, it's time to move on to the basics of animation. This column covers black and white animation using QuickDraw bitmaps. A couple of columns down the road (after we cover Color QuickDraw), we'll revisit this month's technique and see how to adapt it for use in color animation.

The Wrong Way to Animate

If you've ever attempted to write an arcade-style game, you've probably tried your hand at moving an object over a background. If you found that the moving object obscured the background as it moved across it you were certainly less then thrilled. The same holds true if the object appeared to flicker incessantly as it traveled its path. If you're very familiar with these failed animation methods (we all went through the process as we learned how to do it right!), you'll be pleased to find out that while the results were less than ideal, the methods were close to being correct. As such, taking a brief look at the incorrect ways of performing animation serve as a worthwhile prelude to a discussion of how to properly perform computer animation.

A programmer attempting animation for the first time often does so by drawing a background picture in a window and then drawing a foreground object atop the background. Invariably, the attempt at animation then involves repeatedly offsetting the foreground object a bit and redrawing it. While the foreground object will appear to move across the background, the result is unacceptable - a part of each previously drawn image remains exposed, leaving a blurry trail behind the moving object. Figure 1 illustrates this for a cartoon vacuum moving over a gray background (hey, every game doesn't have to be a shoot 'em up, right?).

Figure 1. The result of animating without regard for clearing the background.

Having seen the folly of his ways, the inexperienced animator next tries to remedy the situation by redrawing the background image so as to cover any old foreground image remnant. The foreground image is then offset a bit and redrawn over the fresh background. This corrects the problem of foreground image "leftovers," but introduces the new problem of flicker. When the background image is redrawn in order to cover up the foreground image, it obscures the entire drawing. Taking a snapshot of a few "frames" of this type of animation results in the three views of one window shown in Figure 2. Looking from left to right at this figure reveals that the object has moved along a bit, but in between the movement the user will notice the momentarily blanking of the window.

Figure 2. Clearing the background between foreground redrawing creates flicker.

The Offscreen Bitmap Solution

As you know from previous Getting Started columns, most programs deal with repainting a window's content by responding to updateEvts generated by the Window Manager. When an area of a window that was previously obscured needs to be redrawn, the Window Manager adds the newly revealed area to the window's update region and generates an updateEvt for the window. The technique of relying on update events to refresh a window's content area works fine for programs that don't need to incorporate smooth, fast, animated effects. When it comes to animation, the problem with this approach is that update events take time. It takes time for the Window Manager to calculate the update region and it takes time to post an event. More importantly, it takes time for your program to respond to an update event. If your program is busy responding to another event, the update event might sit in the queue for a while, leaving the window undrawn until you get around to fixing it.

When you've got a rocket ship shooting across a planet's surface, you don't want to leave any holes in the planet, waiting for your program to respond to an update event. You want to fill in the holes in real time, just like the System does when it handles your cursor.

Fortunately, the previously discussed problem of flicker and the just-mentioned problem of slow updating are both easily overcome by employing a programming technique known as offscreen bitmap animation. A bitmap is one way to represent a graphical object. On the Mac, a bitmap is a representation of a monochrome (black and white) image. The map is a grid of pixels, with each pixel considered either on or off. In specifying the state of each pixel (which in memory is represented by a single bit) in a given area, you define a single image, or picture. After defining a bitmap, your next task is to animate it. That is, your program needs to smoothly move it over a background in a window.

Your Mac's cursor is an example of a bitmap, and the cursor's movement is a perfect instance of bitmap animation. As the cursor moves around the screen, it appears to float over the background without flickering. Consider the sequence of pictures in Figure 3.

Figure 3. The movement of the cursor provides an example of smooth animation.

The leftmost part of Figure 3 shows an arrow cursor partially obscuring a hard drive icon. Once the cursor moves, it leaves an area of the hard drive icon undrawn - as shown in the center part of the figure. As shown in the rightmost part of Figure 3, before this "hole" gets noticed, the system fills it back up with its previous contents.

Implementing the Offscreen Bitmap Technique

An offscreen bitmap is a bitmap that is drawn in memory, but does not appear on screen. To achieve an animated effect, a total of three offscreen bitmaps are needed. One of these bitmaps holds a background image - the image over which a foreground image will appear to traverse. A second bitmap holds the foreground image. The third offscreen bitmap is a combination of the previous two offscreen bitmaps. This combined, or master, bitmap serves as a mixing board of sorts. Only after the foreground and background are combined in the master bitmap does anything get displayed in a window for the user to see. What gets displayed is a copy of the master bitmap. As shown in Figure 4, it is the only one of the three offscreen bitmaps that gets copied from memory to a window.

Figure 4. Using offscreen bitmaps in memory to create one "frame" of an animated sequence.

Animation begins by copying the background bitmap to the mixer, then copying the foreground bitmap to the same mixer. The mixer bitmap is then copied to a window. This combining of the foreground and background bitmaps, and the subsequent displaying of the result in a window, is performed repeatedly within a loop. In each pass through the loop there should be a slight shift in the position of the foreground image relative to the background image. The result of executing this loop is that the foreground image appears to be moving. Animation is achieved. And because the new image that's displayed in each pass through the loop is created behind the scene in memory rather than in view of the user on-screen, there is a minimum of flicker.

BitMapper

In this month's program we create three offscreen bitmaps to accomplish the animated effect of a hand moving smoothly across a window. As the user drags the mouse, the hand follows. The hand appears to track the cursor, floating along on top of the gray background. Figure 5 shows what the user of the BitMapper program sees.

Figure 5. The BitMapper window.

The floating hand is our foreground bitmap image. The framed gray pattern is the background bitmap image. As you move the mouse, the hand appears to float over the gray background, just like a cursor. What the user is seeing is the mixer bitmap - the copied version of the offscreen bitmap that represents the combining of the foreground hand bitmap with the background gray bitmap.

Creating the BitMapper Resources

To get under way, move into your CodeWarrior development folder and create a folder named BitMapper. Launch ResEdit and create a new resource file named BitMapper.rsrc inside the BitMapper folder.

You need to create two PICT resources - one to serve as the foreground image and one to act as the background image. In the BitMapper source code we'll be referencing these resources by IDs of 128 and 129, so make sure you assign those values to the pictures. In particular, give the background PICT an ID of 128 and the foreground PICT an ID of 129. You don't have to use the same pictures we're using, but you do have to make sure that PICT 128 is larger than PICT 129 so that the background is larger than the foreground!

If you've got a graphics program like ClarisDraw, CorelDraw, or Canvas, create your background by drawing a nice frame, then pasting another image inside it. Copy the whole thing to the clipboard, then paste it inside ResEdit. For the foreground, you'll want something relatively small. Use whatever image you like, but be sure to make it resource ID 129. Note that both images should be black and white only, and not color or grayscale. You can use a color image, but all colored pixels will be translated to black, so things might not come out as you planned them to.

The only other resource needed is a WIND that will define the look and position of the window that is to display the animation. If you've created a background image that is uniform (such as the solid gray image we're using), the window doesn't have to be the size of the background image - when the background image is scaled to the size of the window it won't be distorted. If you create a background image that isn't consistent (perhaps the image is a landscape with trees and so forth), you'll want to make the window's size the same as the image.

That's it for the BitMapper.rsrc file. Now quit ResEdit, making sure to first save your changes.

Creating the BitMapper Project

Launch CodeWarrior and create a new project based on the MacOS:C_C++:MacOS Toolbox:MacOS Toolbox Multi-Target stationary. You've already created a project folder, so uncheck the Create Folder check box. Name the project BitMapper.mcp and specify that the project be placed in the BitMapper folder.

In the newly created project window you'll want to remove the SillyBalls.c and SillyBalls.rsrc files and add the BitMapper.rsrc file. Our BitMapper project doesn't make use of any of the standard ANSI libraries, so go ahead and remove the ANSI Libraries folder.

Next, choose New from the File menu to create a new, empty source code window. Save it with the name BitMapper.c. Add the new file to the project by choosing Add Window from the Project menu. The full source code listing for the BitMapper program appears next in the source code walk-through. You can type it into the BitMapper.c file as you read the walk-through, or you can save some typing by downloading the whole BitMapper project from MacTech's ftp site at ftp://ftp.mactech.com/src/mactech/volume14_1998/14.10.sit.

Walking Through the Source Code

As with previous projects, BitMapper starts off with some constant definitions.

/********************* constants *********************/

#define         kMoveToFront               (WindowPtr)-1L
#define         kWINDResID                  128

const short   kBackgroundPictID =      128;
const short   kForegroundPictID =      129;

These are followed by BitMapper's function prototypes.

/********************* functions *********************/

void        ToolBoxInit( void );
WindowPtr   WindowInit( void );
PicHandle   LoadPicture( short resID );
GrafPtr     CreateBitMap( const Rect *rPtr );

The main() function starts off with several local variable declarations and a call to the routine that initializes the Toolbox.

/************************ main ***********************/

void   main( void )
{
   Rect            r;
   GrafPtr      backPortPtr, forePortPtr, mixerPortPtr;
   WindowPtr   window;
   PicHandle   backPict, forePict;
   Point         p;
   
   ToolBoxInit();

Next, a window is created. The application-defined routine WindowInit(), which is discussed ahead, returns a WindowPtr that is stored in the local variable window. A call to ShowWindow() ensures that the window becomes visible onscreen.

   window = WindowInit();
   ShowWindow(window);

Next, the background PICT is loaded. The frame of the PICT (its bounding rectangle) is normalized (its size is left the same, but it's repositioned so that its top and left coordinates are both 0).

   backPict = LoadPicture( kBackgroundPictID );
   r = (**backPict).picFrame;
   OffsetRect( &r, -r.left, -r.top );

This normalized Rect is passed on to the application-defined routine CreateBitMap(). CreateBitMap(), discussed below, creates an offscreen GrafPort the size of the specified Rect. You're used to working with a GrafPort that's associated with a window (every window has one). Even though the newly created GrafPort isn't linked to any window, it can be drawn to - just like a window's GrafPort. You can use SetPort() on it, as well as all the standard QuickDraw routines such as DrawString() and DrawPicture(). While your drawing won't appear on the screen, the drawing will affect the memory used to implement the GrafPort.

   backPortPtr = CreateBitMap( &r );

CreateBitMap() returns a pointer to the newly created GrafPort. When CreateBitMap() returns, this port is made the current port. That means any subsequent port-altering calls will affect the GrafPort referenced by backPortPtr. Next, DrawPicture() is called to draw the background PICT in the background GrafPort.

   DrawPicture( backPict, &r );

Next, the master GrafPort is created. This GrafPort is used to merge the foreground PICT with the background PICT. Once again, when this call to CreateBitMap() returns, the new GrafPort is the current port.

   mixerPortPtr = CreateBitMap( &r );

Just as we did with the background PICT, this next sequence of code loads the foreground PICT, creates a normalized bounding Rect, and finally creates a GrafPort for the foreground PICT.

   forePict = LoadPicture( kForegroundPictID );
   r = (**forePict).picFrame;
   OffsetRect( &r, -r.left, -r.top );
   
   forePortPtr = CreateBitMap( &r );

The call of CreateBitMap() leaves forePortPtr as the current port. Next, DrawPicture() is used to draw the foreground picture in this newly created GrafPort.

   DrawPicture( forePict, &r );

OK. That's about all the preliminary stuff. Now we're ready to animate. Before we do, though, we'll use HideCursor() to make the cursor invisible so that our foreground hand picture can be made to take the place of the normal pointer cursor.

   HideCursor();

Next, we'll enter a loop, waiting for the mouse button to be clicked.

   while ( !Button() )
   {

At the heart of our program is the CopyBits() Toolbox routine. CopyBits() copies one QuickDraw BitMap to another. A BitMap is the Toolbox data structure that holds one bitmap - we'll get into the BitMap data structure a little later on. This call to CopyBits() copies the background BitMap into the mixer BitMap, using the bounding rectangle associated with each of the BitMaps. The srcCopy parameter specifies how the BitMap is copied. The srcCopy parameter tells CopyBits() to replace all bits in the destination BitMap's rectangle with the bits in the source BitMap.

      CopyBits(   &(backPortPtr->portBits), 
                     &(mixerPortPtr->portBits),
                     &(backPortPtr->portBits.bounds),
                     &(mixerPortPtr->portBits.bounds),
                     srcCopy, nil );

Next, we get the current position of the mouse, in global coordinates.

      GetMouse( &p );

Now set the port to the BitMapper window, then convert the mouse position to the window's local coordinates.

      SetPort( window );
      GlobalToLocal( &p );

Next, the foreground BitMap's bounding rectangle is copied to a local variable, r, and offset by the mouse's position. Basically, r is the same size as the foreground BitMap (the pointing hand), positioned on the background BitMap (which is the same size as the window) according to the current location of the mouse.

      r = forePortPtr->portBits.bounds;
      OffsetRect( &r, p.h, p.v );

Now the foreground BitMap is copied to the mixer BitMap, using r as the destination bounding rectangle. Notice the use of srcOr instead of srcCopy. This makes the foreground BitMap transparent. To see the effect this has, try changing the srcOr to srcCopy.

      CopyBits(   &(forePortPtr->portBits), 
                     &(mixerPortPtr->portBits),
                     &(forePortPtr->portBits.bounds), 
                     &r, srcOr, nil );

Finally, the mixer BitMap is copied to the window. In short, the loop works like this: Build the window's image offscreen, then copy the combined image to the window.

      CopyBits(   &(mixerPortPtr->portBits), 
                     &(window->portBits),
                     &(mixerPortPtr->portBits.bounds), 
                     &(window->portRect),
                     srcCopy, nil );
   }
}

ToolBoxInit() is the same as it ever was...

/******************** ToolBoxInit ********************/

void   ToolBoxInit( void )
{
   InitGraf( &qd.thePort );
   InitFonts();
   InitWindows();
   InitMenus();
   TEInit();
   InitDialogs( 0L );
   InitCursor();
}

WindowInit() loads the background PICT, copying its framing rectangle into r.

/********************* WindowInit ********************/

WindowPtr   WindowInit( void )
{
   WindowPtr   window;
   PicHandle   pic;
   Rect        r;
   short       pictWidth;
   short       pictHeight;
   
   pic = LoadPicture( kBackgroundPictID );
   r = (**pic).picFrame;

From variable r the width and height of the background picture are determined.

   pictWidth  = r.right - r.left;
   pictHeight = r.bottom - r.top;

Next, a new window is created from the WIND resource. A call to SizeWindow() resizes the window to match the size of the just-loaded background picture.

   window = GetNewWindow( kWINDResID, nil, kMoveToFront);
   SizeWindow( window, pictWidth, pictHeight, true);

WindowInit() ends by returning the window pointer variable WindowPtr to the calling routine.

   return( window );
}

LoadPicture() loads the specified PICT resource. If the PICT isn't found, LoadPicture() beeps once, then exit.

/******************** LoadPicture ********************/

PicHandle   LoadPicture( short resID )
{
   PicHandle   picture;
   
   picture = GetPicture( resID );

   if ( picture == nil )
   {
      SysBeep( 10 );
      ExitToShell();
   }
}

CreateBitMap() creates a new GrafPort the size of the specified Rect. A BitMap is a QuickDraw data structure designed to hold a bitmap of an image one pixel deep (that is, capable of only displaying either black or white).

/******************* CreateBitMap ********************/

GrafPtr CreateBitMap( const Rect *rPtr )
{
   short        i;
   BitMap       *bPtr;
   GrafPtr      g;

First, a new GrafPort is allocated using NewPtr(). If the memory couldn't be allocated, beep once.

   g = (GrafPtr)NewPtr( sizeof(GrafPort) );
   if ( g == nil )
      SysBeep( 10 );

Next, a BitMap data structure is allocated. Again, if the memory was not allocated, beep once. These beeps aren't really effective - they're put in place as a weak substitute for error checking. You'll want to weave more adequate memory allocation failure handling into your overall error-handling scheme.

   bPtr = (BitMap *)NewPtr( sizeof( BitMap ) );
   if ( bPtr == nil )
      SysBeep( 10 );

Next, the specified rectangle is copied into the BitMap's bounds field. This field specifies the coordinates bounding the BitMap.

   bPtr->bounds = *rPtr;

The rowBytes field indicates how many bytes are used to store one row of the BitMap. For example, 0 through 8 pixels can be stored in 1 byte, 9 through 16 pixels in 2 bytes, etc.

   bPtr->rowBytes = (rPtr->right - rPtr->left + 7) /8;

Next, i is set to the number of rows in the bounding rectangle, and i * rowBytes bytes are allocated for the bit image itself. Again, if the memory was not allocated, beep once.

   i = rPtr->bottom - rPtr->top;
   bPtr->baseAddr = NewPtr( bPtr->rowBytes * i );

   if ( bPtr->baseAddr == nil )
      SysBeep( 10 );

Next, OpenPort() is called to initialize the new GrafPort, which is pointed to by g. OpenPort() leaves g as the current port. SetPortBits() ties the specified BitMap to the current port.

   OpenPort( g );
   SetPortBits( bPtr );

Finally, we return a pointer to the newly allocated GrafPort.

   return( g );
}

Running BitMapper

Run BitMapper by selecting Run from the Project menu. Once your code compiles, a window should appear with your background PICT drawn in it. The window will be the exact size of the background PICT.

As you move the mouse, the foreground PICT should follow the mouse's movement. Click the mouse to exit the program.

Till Next Month...

This sample code should get you on your way to successful offscreen bitmap animation. You can get more information on bitmaps and the BitMap data type in the Basic QuickDraw chapter of the Imaging With QuickDraw volume of Inside Macintosh. Once you've mastered this technique, you're ready to tackle color animation by using PixMaps and the Toolbox routine CopyPixMap(). As mentioned at the beginning of the column, we'll get to PixMap animation, but first we'll have to cover the basics of programming with Color QuickDraw. If you're anxious to prepare for next month's article, peruse the Color QuickDraw chapter of Inside Macintosh: Imaging With QuickDraw.

 
AAPL
$117.60
Apple Inc.
-1.03
MSFT
$47.47
Microsoft Corpora
-0.12
GOOG
$541.08
Google Inc.
+1.81

MacTech Search:
Community Search:

Software Updates via MacUpdate

MacUpdate Desktop 6.0.3 - Discover and i...
MacUpdate Desktop 6 brings seamless 1-click installs and version updates to your Mac. With a free MacUpdate account and MacUpdate Desktop 6, Mac users can now install almost any Mac app on macupdate.... Read more
SteerMouse 4.2.2 - Powerful third-party...
SteerMouse is an advanced driver for USB and Bluetooth mice. It also supports Apple Mighty Mouse very well. SteerMouse can assign various functions to buttons that Apple's software does not allow,... Read more
iMazing 1.1 - Complete iOS device manage...
iMazing (was DiskAid) is the ultimate iOS device manager with capabilities far beyond what iTunes offers. With iMazing and your iOS device (iPhone, iPad, or iPod), you can: Copy music to and from... Read more
PopChar X 7.0 - Floating window shows av...
PopChar X helps you get the most out of your font collection. With its crystal-clear interface, PopChar X provides a frustration-free way to access any font's special characters. Expanded... Read more
Carbon Copy Cloner 4.0.3 - Easy-to-use b...
Carbon Copy Cloner backups are better than ordinary backups. Suppose the unthinkable happens while you're under deadline to finish a project: your Mac is unresponsive and all you hear is an ominous,... Read more
ForeverSave 2.1.3 - Universal auto-save...
ForeverSave auto-saves all documents you're working on while simultaneously doing backup versioning in the background. Lost data can be quickly restored at any time. Losing data, caused by... Read more
Voila 3.8.1 - Capture, annotate, organiz...
Voila is a screen-capture, recording, and annotation tool that is a full-featured replacement for Mac's screen-capture and screen-recording capabilities. It has a large and robust set of editing,... Read more
SyncTwoFolders 2.0.6 - Syncs two user-sp...
SyncTwoFolders simply synchronizes two folders. It supports synchronization across mounted network drives and it is a possibility to run a simulation showing in a log what will be done. Please visit... Read more
Duplicate Annihilator 5.1.1 - Find and d...
Duplicate Annihilator takes on the time-consuming task of comparing the images in your iPhoto library using effective algorithms to make sure that no duplicate escapes. Duplicate Annihilator detects... Read more
HandBrake 0.10.0 - Versatile video encod...
HandBrake is a tool for converting video from nearly any format to a selection of modern, widely supported codecs. Supported Sources: VIDEO_TS folder, DVD image or real DVD (unencrypted -- CSS is... Read more

Latest Forum Discussions

See All

Tilt to Live Bundle Set to Arrive This T...
Tilt to Live Bundle Set to Arrive This Thanksgiving Posted by Ellis Spice on November 25th, 2014 [ permalink ] One Man Left has unveiled an upcoming Tilt to Live bundle, allowing players to get the series for a di | Read more »
BattleLore: Command (Entertainment)
BattleLore: Command 1.0 Device: iOS Universal Category: Entertainment Price: $9.99, Version: 1.0 (iTunes) Description: ***NOTE: Compatible with iPad 2/iPad mini, iPod touch 5 and up and iPhone 4S and up – WILL NOT RUN ON EARLIER... | Read more »
Weather Or Not Review
Weather Or Not Review By Jennifer Allen on November 25th, 2014 Our Rating: :: STYLISH WEATHER REPORTINGiPhone App - Designed for the iPhone, compatible with the iPad Check the weather quickly and conveniently with Weather or Not... | Read more »
The All-New Football Manager Handheld 20...
The All-New Football Manager Handheld 2015 is Available Now Posted by Jessica Fisher on November 25th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Six iOS Games to Get You Ready for Thank...
Image Source: Friends Wiki At this point in the month, you or at least a few people you know are probably getting ready to scramble around (or are already scrambling around) for Thanksgiving Dinner. It’s a hectic day of precise oven utilization, but... | Read more »
Call of Duty: Heroes: Tips, Tricks, and...
Hello Heroes: What’d we think of Call of Duty‘s take on Clash of Clans? Check out our Call of Duty: Heroes review to find out! Just downloaded Call of Duty: Heroes and need some handy tips and tricks on how to get ahead of the rest? As we often do,... | Read more »
Call of Duty: Heroes Review
Call of Duty: Heroes Review By Jennifer Allen on November 25th, 2014 Our Rating: :: CLASH OF FRANCHISESUniversal App - Designed for iPhone and iPad Mix Clash of Clans with Call of Duty, and this is what you get.   | Read more »
Slider Review
Slider Review By Jordan Minor on November 25th, 2014 Our Rating: :: SLIDE TO PLAYUniversal App - Designed for iPhone and iPad Slider has all the excitement of unlocking your phone screen.   | Read more »
oh my giraffe (Games)
oh my giraffe 1.0.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.0 (iTunes) Description: Eat fruits while being chased by lions. Cut the vines to send fruit plummeting onto the lions. Don't worry, your flexible... | Read more »
One of 2000’s Most Loves Adventure Games...
One of 2000’s Most Loves Adventure Games, The Longest Journey, has Come to iOS Posted by Jessica Fisher on November 25th, 2014 [ permalink ] | Read more »

Price Scanner via MacPrices.net

Early Black Friday MacBook Pro sale: 15-inch...
 Best Buy has posted early Black Friday prices on 15″ Retina MacBook Pros, with models on sale for $300 off MSRP on their online store for a limited time. Choose free local store pickup (if available... Read more
A9 Chips Already?
It’s barely more than a couple of months since Apple got the first A8 systems-on-chip into consumer hands, but rumor and news focus is already turning to the next-generation A9 SoC. Apple Daily... Read more
NewerTech Announces NuGuard KXs Impact X-Orbi...
NewerTech has announced updates to its family of Impact X-Orbing Screen Armor bringing military grade, triple layer protection to Apple’s new iPhone 6 and 6 Plus. Like all models in the NuGuard KXs... Read more
13-inch 1.4GHz MacBook Air on sale for $889,...
 B&H Photo has the 13″ 1.4GHz/128GB MacBook Air on sale for $889 including free shipping plus NY tax only. Their price is $110 off MSRP. B&H will also include free copies of Parallels Desktop... Read more
Save up to $300 on Macs and iPads with your A...
Purchase a new Mac or iPad at The Apple Store for Education and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free,... Read more
Apple refurbished Mac Pros available for up t...
The Apple Store is offering Apple Certified Refurbished Mac Pros for up to $600 off the cost of new models. An Apple one-year warranty is included with each Mac Pro, and shipping is free. The... Read more
Jumptuit Launches One-Tap Windows 8.1 iTunes...
Jumptuit has launched Windows 8.1 support for One-Tap iTunes Sync. with which Windows 8.1 users can now easily sync their iTunes libraries with Microsoft OneDrive. Jumptuit provides easy access from... Read more
Apple restocks refurbished 13-inch 2014 Retin...
The Apple Store has restocked Apple Certified Refurbished 2014 13″ 2.6GHz Retina MacBook Pros for up to $230 off the cost of new models. An Apple one-year warranty is included with each model, and... Read more
CEA Study Finds More People Recycling Electro...
A new study by the Consumer Electronics Association (CEA) finds that electronics recycling receives the continued and growing support of consumers. According to the CEA,s Recycling and Reuse Study,... Read more
15″ 2.2GHz Retina MacBook Pro on sale for $17...
 B&H Photo has the 2014 15″ 2.2GHz Retina MacBook Pro on sale today for $1749. Shipping is free, and B&H charges NY sales tax only. B&H will also include free copies of Parallels Desktop... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
*Apple* Solutions Consultant (ASC)- Retail S...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
Project Manager, *Apple* Financial Services...
**Job Summary** Apple Financial Services (AFS) offers consumers, businesses and educational institutions ways to finance Apple purchases. We work with national and Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.