TweetFollow Us on Twitter

Using File Manager From MP Tasks

Volume Number: 14 (1998)
Issue Number: 8
Column Tag: Toolbox Techniques

Using the File Manager from MP Tasks

by by Matthew Xavier Mora
Edited by Peter N Lewis

How to get data in and out of your MP Task

One of the most common complaints I received while supporting MP Library in Developer Technical Support was that you could not call the toolbox from an MP Task. Multiple preemptive tasks are not much use if you cannot get data into and out of them efficiently. This article shows one way to get data into and out of an MP Task using the file manager, however the techniques used here can be modified for other I/O operations (like audio, video or networking). "But, I thought you couldn't call the file manager from MP Tasks?" Well, you thought wrong. :-) Read on...

Background

In the early version of the MP library there was no easy way to call the toolbox because the MP Library was designed to be compatible with Copland's kernel tasking model. Since the Mac OS toolbox wasn't going to be available from Copland's kernel tasks, the same was done for the Mac OS version of the MP Library. After the Copland project was canceled it was decided to publish a few previously undocumented routines that let you work with the Mac OS toolbox from a task. One of the routines published is MPRPC. MPRPC is a remote procedure mechanism that lets you specify a routine to execute at a time when it is safe to make toolbox calls. It does this by suspending the task and then executing the supplied routine during SystemTask() time. The task is suspended until MPYield is called or until any toolbox routine calls SystemTask(). MPRPC is used internally in the MP Library to implement calls such as MPAllocate and MPAllocateSys (which is why these are blocking calls).

The code in this article is based on the MP File Library that I wrote before the MPRPC call was published. The MP File Library used MPQueues to communicate with the main task and have it execute toolbox commands.

Review

Let's review some of the MP programming guidelines and how adding blocking calls can change some of these guidelines.

  1. Your tasks should do a considerable amount of work. If not, the benefits of using MP will be lost in the overhead of the scheduler and task switching. Adding blocking calls to your tasks adds additional overhead. The main benefit here is that by being able to call the toolbox from an MP Task your task can run autonomously from the main application thread. This results in a better user interface response from the application since the application can off load a time consuming task and call the main event loop more often giving the blocking calls more time to execute the toolbox calls.
  2. You should allocate no more than (MPProcessors() - 1) number of tasks. While it is important to keep the number of tasks low so that task switching does not impact performance, adding blocking calls to a task will also hurt performance if nothing calls MPYield(). "Wait, I thought MP Tasks were preemptive?" Yes they are but if the task is blocked waiting on a resource, the resource can't be released until the main thread calls WaitNextEvent() or another task calls MPYield(). That being the case, if you use MPRPC calls it is a good idea to bend the n-1 rule and create an extra task that can help unblock any waiting tasks.
  3. You should use MPQueues or MPSemaphores when communicating with MP Tasks. This does not change if you are using MPRPC so you should heed this warning.

Get On With It

OK, so how do I call the File Manager? For this simple example I will implement five MP calls that duplicate FSpOpenDF, FSClose, FSRead, FSWrite and SetFPos. Those are all the calls we need for a simple demo. We'll start with a FSRead type call.

First lets define a structure to pass to the MPRPC callback routines that will hold the values that we need to handle all the File Manager calls.

typedef struct FSParamRec{
   short        refNum;        // file ref num
   long         count;         // for read
   Ptr          buffPtr;       // for read
   FSSpecPtr    spec;          // for open
   short        permission;    // for open
   short        posMode;       // for setfpos
   long         posOff;        // for setfpos   
   OSErr        result;        // error result
} FSParamRec,*FSParamRecPtr;

Now lets implement the callback routine that gets called at main application time. This routine will be executing at SystemTask time which means you can call any toolbox routine except for any routines that might call SystemTask() again.

static void * FSReadCallBack( void * parameter)
{
   FSParamRecPtr fsprp = (FSParamRecPtr)parameter;
   
   if (fsprp != nil) {
      fsprp->result = FSRead(fsprp->refNum,
                   &fsprp->count,
                   fsprp->buffPtr);
   }
   
   return fsprp;
}

First we check to make sure the parameter that was passed in is not nil then we simply call the File manager's FSRead call. When FSRead returns, we put the result into the result field and then return the pointer to the struct that was passed in.

All that is left is to do is to implement the new MyMPFSRead call.

pascal OSErr MyMPFSRead(short refNum,
                         long * count,
                         void * buffPtr)
{
   FSParamRec fsrr;   // make the record on the stack 
                      // no worries since it is a blocking call

   fsrr.refNum   = refNum;
   fsrr.count    = *count;
   fsrr.buffPtr  = buffPtr;
   fsrr.result   = paramErr;   //preset in case 
                               //anything goes wrong
   
   (void) _MPRPC(FSReadCallBack,&fsrr); 
   //ignore what is returned


   *count = fsrr.count;   //return the new count

   return fsrr.result;    //return the result
}

First we allocate a FSReadRec on the stack that gets passed to MPRPC. We fill out the fields in the struct with what was passed into us, call MPRPC and wait for the result. Then return the result to the caller.

That's it. You can now call FSRead from an MP Task. Using the same basic techniques you can implement all the file manager calls you need to get data in and out of your tasks. Now lets see how the task calls the new routines.

The MP Task itself is pretty straight forward as a result of the blocking I/O calls since there are no flags or spin loops to worry about.

static long MyMPTask(void * param)
{
   FSSpecPtr   fsp;
   Boolean     done = false;
   OSStatus    status;
   OSErr       err;
   MPQueueID   mpq = (MPQueueID) param;

   
   // don't start until we get the message
   status = MPWaitOnQueue(mpq,&fsp,nil,nil, kDurationForever);
   // the message is the file spec
   if (fsp) {   
      short          refNum;
      long          count = 1024; //read 1k of data
      
      err = MyMPFSpOpenDF(fsp,fsRdPerm,&refNum);
      if (!err) {
         err = MyMPSetFPos(refNum,fsFromStart,0);
         if (!err) {
   
#if qUseAsyncRead         
                err = MyMPFSReadAsync(refNum,&count,gBuffer);
#else
                err = MyMPFSRead(refNum,&count,gBuffer);
#endif            
            // we got some data. you could compress it
            // do FFT's on it or whatever.
            // In our case we just set the flag that we got
            // the data and tell the processors to sync up
            
            if (count > 0) {   
               gCount = count; // signal that we got some text   
               __eieio();      // sync processors
            } else {
               gCount = -1;    // signal that we got an error   
               __eieio();      // sync processors
            }
         } 
         err = MyMPFSClose(refNum);
      }
   }
}

In our task we immediately block (as every task should) on MPWaitOnQueue waiting for the FSSpecPtr from the application. When MPWaitOnQueue returns, we check the file spec pointer to make sure it is not nil and precedes to open the file. We set the file position to the beginning of the file and start the read operation. Notice that for either the async or non async case the code is still the same. The only difference is to the application since the task is blocked until the read completes. After the read completes, this is where you would do some serious processing on the data. It is very important that you do a lot of processing to minimize the overhead of the blocking I/O calls. The demo doesn't do any processing so the next thing to do is to set the gCount variable indicating we got the data making sure the write get synchronized with the other processors. We close the file and return. Returning from the task kills the task. You might want the task to hang around and be ready to process another file. In that case set up a while loop on MPWaitOnQueue. You can set the exit termination condition to be a nil FSSpecPtr.

Adding More Features

The FSRead technique is good at getting data in and out of your task but you basically block the entire application while it waits for the FSRead to complete. We can improve this by using asynchronous file manager calls to keep from blocking the main application task while executing a Read call.

We need a different structure to do an async read. I wrap the new struct around a ParamBlockRec to contain the flag needed to signal the completion of the read call.

typedef struct FSReadAsyncRec { ParamBlockRec pb; // standard paramblock Boolean callPending; // our pending flag } FSReadAsyncRec, *FSReadAsyncRecPtr;

The MyMPFSReadAsync code is a little more complicated but it saves having to have another task running just to call MPYield() since this routine spins on MPYield waiting for the PBRead to complete.

static pascal OSErr MyMPFSReadAsync(short refNum,
                               long * count,
                               void * buffPtr)
{
   FSReadAsyncRec       fsrar;      // make the rec on the stack 
   // Build a rountine descriptor by hand since we can't call
   // NewIOCompletionProc(userRoutine)
   RoutineDescriptor    ioCompProc = 
                  BUILD_ROUTINE_DESCRIPTOR(uppIOCompletionProcInfo,
                                          MyReadCompletion);

   ClearBlock(&fsrar,sizeof(fsrar)); 
   
   fsrar.pb.ioParam.ioRefNum     =   refNum;
   fsrar.pb.ioParam.ioReqCount   =   *count;
   fsrar.pb.ioParam.ioBuffer     =   buffPtr;
   fsrar.pb.ioParam.ioCompletion =   &ioCompProc;
   fsrar.callPending             = true;
   __eieio();                  //ensure that callPending gets set
                               //before we call MPRPC
   
   (void) _MPRPC(FSReadAsyncCallBack,&fsrar); //ignore what is 

   // spin waiting for flag to be set in completionRoutine

   while ( fsrar.callPending ) { //Spin waiting for completion
      MPYield();
   }

   *count = fsrar.pb.ioParam.ioActCount;   
                  //return the new count

   return fsrar.pb.ioParam.ioResult;   //return the result
}

MyMPFSReadAsync sets up the parameter block, builds a completion routine descriptor on the fly, calls MPRPC and then spins in a tight loop calling MPYield until the callPending flag is cleared.

The FSReadAsyncCallBack routine is very simple.

static void * FSReadAsyncCallBack( void * parameter)
{
   FSReadAsyncRecPtr fsr = (FSReadAsyncRecPtr) parameter;
   OSErr err;
   
   if (fsr != nil) {   
      err = PBReadAsync((ParmBlkPtr)fsr);   
                           //just call PBRead and return
   }                      // completion routine sets the flag   
   return fsr;
}

FSReadAsyncCallBack just calls PBReadAsync and returns. Below is the completion routine that tells the task the read has completed.

static void MyReadCompletion(ParmBlkPtr pb)
{
   FSReadAsyncRecPtr fs = (FSReadAsyncRecPtr)pb; 
   
   fs->callPending = false;  // set flag
   __eieio();                   // make sure it sticks
}

It just sets the callPending flag, signals the processors to sync up and returns. We can't set a MPQueue or a MPSemapore in here (which would be the better way to do it) because MP Library calls can't be called at interrupt time.

Handling asynchronous routines gets a little more complicated but it saves having to make sure other tasks are running just to call MPYield(). Now you might be thinking why are we using a flag when you could just spin on ioResult? Read on to see why this is not good idea...

Gotchas

When working with multiple processors some conventional Mac programming wisdom goes out the window. A good case in point is when ioResult is set. Normally ioResult is set to 1 to indicate a call is pending. The last thing the file manager does before calling the ioCompletion routine is to set ioResult to the error result from the parameter block call. None of this really changes when multiple processors are involved but the non-main processors are not bound by the 68k enable/disable interrupt tricks. So if your MP Task spins on ioResult waiting to see when the read is complete (ioResult != 1) your task starts to execute before the file manager is done with the parameter block. After the file manager sets the ioResult field, it gets the ioCompletion routine's address from the parameter block and jumps to it.

In our case the parameter block in on the stack and when the task unblocks, the stack is released and your task crunches merrily along where a parameter block used to be (and is still in use by the file manager). The second processor could be a 200 MHz CPU and in the time the file manager has set ioResult and jumps to the completion routine, your task could be millions of instructions away using the memory where the parameter block used to be.

The same is true for many of parts of the Mac OS Toolbox. The critical region technique of disabling interrupts does not work well when multiple processors are involved. So be careful and always use MPQueues, MPSemaphores and MPCriticalRegions to coordinate your various tasks.

Another gotcha may be in your thought process. You might be thinking that it would be cool to use the same techniques mentioned in the article to make every Toolbox call available from MP tasks. While this is possible, and would make your task code a lot easier to write, it is not a good idea. The benefits of multiprocessing only come from careful algorithm design, implementation, and profiling. Guideline #1 mentioned above says that your task should do a considerable amount of work to gain any performance improvements. Having your task block, waiting on a bunch of toolbox calls is not going to improve performance. On the other hand having to load all the data you need into memory before your task can start running may not be feasible either. This is where a careful balance of having main processor moving data in and out of your task while processors n+1 crunch along can really pay off.

More MP Information

Hopefully, this article piqued your interest in Multiprocessing. If you want more information there are a number of documents and resources to help you get the most out of MP. An introduction to MP systems was printed in MacTech March '96, TechNote 1071 on Multiprocessing is on the web http://www.apple.com/developer/ and I have set up a MP mailing list where developers can ask questions on MP programming issues. The list includes folks like the senior engineer who wrote the MP Library as well as Chris Cooksey and myself. For subscription information you can go to my web site http://www.best.com/~mxmora/mxm.html. Also, don't forget Apple Developer Technical Support is there for information about MP's past, present and future.

Summary

I hope this article shows how easy it is to get data into and out of your MP tasks. Use this information wisely and you should see some real improvements in your applications performance. You can use these techniques to work with other I/O technologies like networking, graphics and sound. I have created a MP File Library that you may want to use based on some of the techniques used in this article. It uses a slightly more complicated model for better performance. You can download a copy of my MP File Library from my web site at http://www.best.com/~mxmora/software.html. Good luck, and happy multiprocessing.


Matthew Xavier Mora was the engineer responsible for answering questions on Multitasking support in Apple's Developer Technical Support. As a self proclaimed evangelist for the Multi-processing API library he was instrumental in convincing both third-party developers and Apple engineers to implement MP support in their software. If you were ever thinking about moving into the Silicon Valley, consider that this article was written while Matt was sitting all night outside a school building waiting to register his son for pre-school. When Matt is not out doing crazy things like that you can reach him at mxmora@best.com.

 
AAPL
$101.63
Apple Inc.
-0.03
MSFT
$46.24
Microsoft Corpora
-0.46
GOOG
$573.10
Google Inc.
-2.52

MacTech Search:
Community Search:

Software Updates via MacUpdate

NTFS 11.3.62 - Provides full read and wr...
Paragon NTFS breaks down the barriers between Windows and OS X. Paragon NTFS effectively solves the communication problems between the Mac system and NTFS, providing full read and write access to... Read more
OS X Yosemite 10.10 DP8 - Developer Prev...
Note: This is a Developer Preview. You must be a registered Apple Mac Developer to download this update. You can also sign up for the free OS X Beta Program to download and preview public beta... Read more
FotoMagico 4.5 - Powerful slideshow crea...
FotoMagico lets you create professional slideshows from your photos and music with just a few, simple mouse clicks. It sports a very clean and intuitive yet powerful user interface. High image... Read more
Screenshot Path 1.2.1 - Change the defau...
Screenshot Path lets you change the folder where OS X saves screenshots. Screenshots are saved by default to the user’s desktop. This is handy for the occasional screenshot but those looking to take... Read more
Fantastical 1.3.16 - Create calendar eve...
Fantastical is the Mac calendar you'll actually enjoy using. Creating an event with Fantastical is quick, easy, and fun: Open Fantastical with a single click or keystroke Type in your event details... Read more
GIMP 2.8.14 - Powerful, free image editi...
GIMP is a multi-platform photo manipulation tool. GIMP is an acronym for GNU Image Manipulation Program. The GIMP is suitable for a variety of image manipulation tasks, including photo retouching,... Read more
HoudahSpot 3.9.3 - Advanced front-end fo...
HoudahSpot is an advanced file search tool built upon MacOS X Spotlight. Spotlight unleashed Create detailed queries to locate the exact file you need Narrow down searches. Zero in on files Save... Read more
djay 4.2.3 - Transform your Mac into a f...
djay transforms your Mac into a full-fledged DJ system, allowing you to mix your iTunes music library on a hyper-realistic turntable interface. Perform live, record mixes on-the-go, or enable... Read more
iDefrag 2.2.8 - Disk defragmentation and...
iDefrag helps defragment and optimize your disk for improved performance. Features include: Supports HFS and HFS+ (Mac OS Extended). Supports case sensitive and journaled filesystems. Supports... Read more
Bookends 12.2.3 - Reference management a...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Access the power of Bookends directly from Mellel, Nisus Writer Pro, or MS Word (... Read more

Latest Forum Discussions

See All

Vizzywig 4K (Photography)
Vizzywig 4K 1.0 Device: iOS iPhone Category: Photography Price: $999.99, Version: 1.0 (iTunes) Description: REQUIRES: iOS 7 on iPhone 5S with 32GB or 64GB. (Do not use iOS 8)The world's FIRST mobile 4K video capture, editing and... | Read more »
The Sleeping Prince Review
The Sleeping Prince Review By Jennifer Allen on September 15th, 2014 Our Rating: :: RESTRICTIVE KINGDOM SAVINGUniversal App - Designed for iPhone and iPad The Sleeping Prince looks and feels great to play, but its lack of peril and... | Read more »
It Came From Canada: Terra Battle
In some way or another, most Japanese RPGs owe something to Final Fantasy. But with Terra Battle, the now-common mix of Western medieval fantasy with Eastern anime aesthetic feels earned. After all, its developer, Mistwalker, was founded by the... | Read more »
Five Nights at Freddy’s Review
Five Nights at Freddy’s Review By Rob Thomas on September 15th, 2014 Our Rating: :: FIVE FRIGHTS AT FREDDY'SUniversal App - Designed for iPhone and iPad Can you survive five nights as the new night watchman of Freddy Fazbear’s... | Read more »
Phantom Rift Review
Phantom Rift Review By Nadia Oxford on September 15th, 2014 Our Rating: :: FRIENDLY PHANTOMUniversal App - Designed for iPhone and iPad Despite a snag here and there, Phantom Rift is a well-crafted and imaginative adventure RPG.   | Read more »
Phantom Rift – Tips, Tricks, Strategies,...
Hello, Wanderers: | Read more »
Meet the Newest Character for Temple Run...
Meet the Newest Character for Temple Run 2, from National Geographic Kids’ Action-Adventure Book Posted by Jessica Fisher on September 15th, 2014 [ | Read more »
Battle Riders Review
Battle Riders Review By Jordan Minor on September 15th, 2014 Our Rating: :: UNTWISTED METALUniversal App - Designed for iPhone and iPad BattleRiders has cool car combat, but it could be crazier.   | Read more »
Rapture - World Conquest (Games)
Rapture - World Conquest 1.0.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.0 (iTunes) Description: The End is coming! Bombard the globe with devastating miracles and decimate the enemy civilizations. Guide your... | Read more »
Toonia Jelly: Music Review
Toonia Jelly: Music Review By Amy Solomon on September 15th, 2014 Our Rating: :: CUTE MUSICAL EXPLORATIONUniversal App - Designed for iPhone and iPad Toonia Jelly: Music is a charming exploratory app for young children with a... | Read more »

Price Scanner via MacPrices.net

10% off iPhone 6 and 6 Plus Otterbox cases
Get 10% off on popular Otterbox iPhone 6 and iPhone 6 Plus cases at MacMall through September 19th. Use code OTTERBOX10 to see the discount. Read more
15-inch MacBook Pros on sale for up to $125 o...
Amazon has the new 2014 15″ Retina MacBook Pros on sale for up to $125 off MSRP including free shipping: - 15″ 2.2GHz Retina MacBook Pro: $1899.99 save $100 - 15″ 2.5GHz Retina MacBook Pro: $2374... Read more
27-inch 3.2GHz iMac on sale for $1698, $101 o...
Abt has the 27″ 3.2GHz iMac on sale for $1698 including free shipping. Their price is $101 off MSRP. Read more
More To Making A Larger iPad Than Expanded Sc...
CNET’s Ross Rubin has posted a thoughtful analysis of prospects for a larger display iPad Pro, noting that Microsoft and Samsung currently have the large-display touchscreen tablet category to... Read more
SwiftKey Keyboard Finally Coming To iPhone An...
At the TechCrunch Disrupt event in San Francisco, Swiftkey unveiled the first details about SwiftKey Keyboard for iPhone, iPad & iPod touch. SwiftKey’s philosophy is that you should be able to... Read more
Save $75 on the 16GB iPad mini with Retina Di...
Best Buy has the 16GB iPad mini with Retina Display on sale for $324.99 on their online store for a limited time. Their price is $75 off MSRP, and it’s the lowest price available for this mini.... Read more
21-inch 1.4GHz iMac on sale for $979, $120 of...
B&H Photo has the new 21″ 1.4GHz iMac on sale for $979.99 including free shipping plus NY sales tax only. Their price is $120 off MSRP. B&H will also include free copies of Parallels Desktop... Read more
Apple restocks refurbished 21-inch 1.4GHz iMa...
The Apple Store has restocked Apple Certified Refurbished 21″ 1.4GHz iMacs for $929 including free shipping plus Apple’s standard one-year warranty. Their price is $170 off the cost of new models,... Read more
13-inch 2.6GHz/256GB Retina MacBook Pro on sa...
Adorama has the 13″ 2.6GHz/256GB Retina MacBook Pro on sale for $1379 including free shipping plus NY & NJ sales tax only. Their price is $120 off MSRP, and it’s the lowest price available for... Read more
Macally iPhone 6 Cases
Macally has introduced a Line of Snap-On Shell Cases, Frame Bumper Cases and a Rugged Protective Case for iPhone 6 with 4.7inch Screen, such as the SNAP case in a variety of brilliant metallic... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.