TweetFollow Us on Twitter

Using File Manager From MP Tasks

Volume Number: 14 (1998)
Issue Number: 8
Column Tag: Toolbox Techniques

Using the File Manager from MP Tasks

by by Matthew Xavier Mora
Edited by Peter N Lewis

How to get data in and out of your MP Task

One of the most common complaints I received while supporting MP Library in Developer Technical Support was that you could not call the toolbox from an MP Task. Multiple preemptive tasks are not much use if you cannot get data into and out of them efficiently. This article shows one way to get data into and out of an MP Task using the file manager, however the techniques used here can be modified for other I/O operations (like audio, video or networking). "But, I thought you couldn't call the file manager from MP Tasks?" Well, you thought wrong. :-) Read on...

Background

In the early version of the MP library there was no easy way to call the toolbox because the MP Library was designed to be compatible with Copland's kernel tasking model. Since the Mac OS toolbox wasn't going to be available from Copland's kernel tasks, the same was done for the Mac OS version of the MP Library. After the Copland project was canceled it was decided to publish a few previously undocumented routines that let you work with the Mac OS toolbox from a task. One of the routines published is MPRPC. MPRPC is a remote procedure mechanism that lets you specify a routine to execute at a time when it is safe to make toolbox calls. It does this by suspending the task and then executing the supplied routine during SystemTask() time. The task is suspended until MPYield is called or until any toolbox routine calls SystemTask(). MPRPC is used internally in the MP Library to implement calls such as MPAllocate and MPAllocateSys (which is why these are blocking calls).

The code in this article is based on the MP File Library that I wrote before the MPRPC call was published. The MP File Library used MPQueues to communicate with the main task and have it execute toolbox commands.

Review

Let's review some of the MP programming guidelines and how adding blocking calls can change some of these guidelines.

  1. Your tasks should do a considerable amount of work. If not, the benefits of using MP will be lost in the overhead of the scheduler and task switching. Adding blocking calls to your tasks adds additional overhead. The main benefit here is that by being able to call the toolbox from an MP Task your task can run autonomously from the main application thread. This results in a better user interface response from the application since the application can off load a time consuming task and call the main event loop more often giving the blocking calls more time to execute the toolbox calls.
  2. You should allocate no more than (MPProcessors() - 1) number of tasks. While it is important to keep the number of tasks low so that task switching does not impact performance, adding blocking calls to a task will also hurt performance if nothing calls MPYield(). "Wait, I thought MP Tasks were preemptive?" Yes they are but if the task is blocked waiting on a resource, the resource can't be released until the main thread calls WaitNextEvent() or another task calls MPYield(). That being the case, if you use MPRPC calls it is a good idea to bend the n-1 rule and create an extra task that can help unblock any waiting tasks.
  3. You should use MPQueues or MPSemaphores when communicating with MP Tasks. This does not change if you are using MPRPC so you should heed this warning.

Get On With It

OK, so how do I call the File Manager? For this simple example I will implement five MP calls that duplicate FSpOpenDF, FSClose, FSRead, FSWrite and SetFPos. Those are all the calls we need for a simple demo. We'll start with a FSRead type call.

First lets define a structure to pass to the MPRPC callback routines that will hold the values that we need to handle all the File Manager calls.

typedef struct FSParamRec{
   short        refNum;        // file ref num
   long         count;         // for read
   Ptr          buffPtr;       // for read
   FSSpecPtr    spec;          // for open
   short        permission;    // for open
   short        posMode;       // for setfpos
   long         posOff;        // for setfpos   
   OSErr        result;        // error result
} FSParamRec,*FSParamRecPtr;

Now lets implement the callback routine that gets called at main application time. This routine will be executing at SystemTask time which means you can call any toolbox routine except for any routines that might call SystemTask() again.

static void * FSReadCallBack( void * parameter)
{
   FSParamRecPtr fsprp = (FSParamRecPtr)parameter;
   
   if (fsprp != nil) {
      fsprp->result = FSRead(fsprp->refNum,
                   &fsprp->count,
                   fsprp->buffPtr);
   }
   
   return fsprp;
}

First we check to make sure the parameter that was passed in is not nil then we simply call the File manager's FSRead call. When FSRead returns, we put the result into the result field and then return the pointer to the struct that was passed in.

All that is left is to do is to implement the new MyMPFSRead call.

pascal OSErr MyMPFSRead(short refNum,
                         long * count,
                         void * buffPtr)
{
   FSParamRec fsrr;   // make the record on the stack 
                      // no worries since it is a blocking call

   fsrr.refNum   = refNum;
   fsrr.count    = *count;
   fsrr.buffPtr  = buffPtr;
   fsrr.result   = paramErr;   //preset in case 
                               //anything goes wrong
   
   (void) _MPRPC(FSReadCallBack,&fsrr); 
   //ignore what is returned


   *count = fsrr.count;   //return the new count

   return fsrr.result;    //return the result
}

First we allocate a FSReadRec on the stack that gets passed to MPRPC. We fill out the fields in the struct with what was passed into us, call MPRPC and wait for the result. Then return the result to the caller.

That's it. You can now call FSRead from an MP Task. Using the same basic techniques you can implement all the file manager calls you need to get data in and out of your tasks. Now lets see how the task calls the new routines.

The MP Task itself is pretty straight forward as a result of the blocking I/O calls since there are no flags or spin loops to worry about.

static long MyMPTask(void * param)
{
   FSSpecPtr   fsp;
   Boolean     done = false;
   OSStatus    status;
   OSErr       err;
   MPQueueID   mpq = (MPQueueID) param;

   
   // don't start until we get the message
   status = MPWaitOnQueue(mpq,&fsp,nil,nil, kDurationForever);
   // the message is the file spec
   if (fsp) {   
      short          refNum;
      long          count = 1024; //read 1k of data
      
      err = MyMPFSpOpenDF(fsp,fsRdPerm,&refNum);
      if (!err) {
         err = MyMPSetFPos(refNum,fsFromStart,0);
         if (!err) {
   
#if qUseAsyncRead         
                err = MyMPFSReadAsync(refNum,&count,gBuffer);
#else
                err = MyMPFSRead(refNum,&count,gBuffer);
#endif            
            // we got some data. you could compress it
            // do FFT's on it or whatever.
            // In our case we just set the flag that we got
            // the data and tell the processors to sync up
            
            if (count > 0) {   
               gCount = count; // signal that we got some text   
               __eieio();      // sync processors
            } else {
               gCount = -1;    // signal that we got an error   
               __eieio();      // sync processors
            }
         } 
         err = MyMPFSClose(refNum);
      }
   }
}

In our task we immediately block (as every task should) on MPWaitOnQueue waiting for the FSSpecPtr from the application. When MPWaitOnQueue returns, we check the file spec pointer to make sure it is not nil and precedes to open the file. We set the file position to the beginning of the file and start the read operation. Notice that for either the async or non async case the code is still the same. The only difference is to the application since the task is blocked until the read completes. After the read completes, this is where you would do some serious processing on the data. It is very important that you do a lot of processing to minimize the overhead of the blocking I/O calls. The demo doesn't do any processing so the next thing to do is to set the gCount variable indicating we got the data making sure the write get synchronized with the other processors. We close the file and return. Returning from the task kills the task. You might want the task to hang around and be ready to process another file. In that case set up a while loop on MPWaitOnQueue. You can set the exit termination condition to be a nil FSSpecPtr.

Adding More Features

The FSRead technique is good at getting data in and out of your task but you basically block the entire application while it waits for the FSRead to complete. We can improve this by using asynchronous file manager calls to keep from blocking the main application task while executing a Read call.

We need a different structure to do an async read. I wrap the new struct around a ParamBlockRec to contain the flag needed to signal the completion of the read call.

typedef struct FSReadAsyncRec { ParamBlockRec pb; // standard paramblock Boolean callPending; // our pending flag } FSReadAsyncRec, *FSReadAsyncRecPtr;

The MyMPFSReadAsync code is a little more complicated but it saves having to have another task running just to call MPYield() since this routine spins on MPYield waiting for the PBRead to complete.

static pascal OSErr MyMPFSReadAsync(short refNum,
                               long * count,
                               void * buffPtr)
{
   FSReadAsyncRec       fsrar;      // make the rec on the stack 
   // Build a rountine descriptor by hand since we can't call
   // NewIOCompletionProc(userRoutine)
   RoutineDescriptor    ioCompProc = 
                  BUILD_ROUTINE_DESCRIPTOR(uppIOCompletionProcInfo,
                                          MyReadCompletion);

   ClearBlock(&fsrar,sizeof(fsrar)); 
   
   fsrar.pb.ioParam.ioRefNum     =   refNum;
   fsrar.pb.ioParam.ioReqCount   =   *count;
   fsrar.pb.ioParam.ioBuffer     =   buffPtr;
   fsrar.pb.ioParam.ioCompletion =   &ioCompProc;
   fsrar.callPending             = true;
   __eieio();                  //ensure that callPending gets set
                               //before we call MPRPC
   
   (void) _MPRPC(FSReadAsyncCallBack,&fsrar); //ignore what is 

   // spin waiting for flag to be set in completionRoutine

   while ( fsrar.callPending ) { //Spin waiting for completion
      MPYield();
   }

   *count = fsrar.pb.ioParam.ioActCount;   
                  //return the new count

   return fsrar.pb.ioParam.ioResult;   //return the result
}

MyMPFSReadAsync sets up the parameter block, builds a completion routine descriptor on the fly, calls MPRPC and then spins in a tight loop calling MPYield until the callPending flag is cleared.

The FSReadAsyncCallBack routine is very simple.

static void * FSReadAsyncCallBack( void * parameter)
{
   FSReadAsyncRecPtr fsr = (FSReadAsyncRecPtr) parameter;
   OSErr err;
   
   if (fsr != nil) {   
      err = PBReadAsync((ParmBlkPtr)fsr);   
                           //just call PBRead and return
   }                      // completion routine sets the flag   
   return fsr;
}

FSReadAsyncCallBack just calls PBReadAsync and returns. Below is the completion routine that tells the task the read has completed.

static void MyReadCompletion(ParmBlkPtr pb)
{
   FSReadAsyncRecPtr fs = (FSReadAsyncRecPtr)pb; 
   
   fs->callPending = false;  // set flag
   __eieio();                   // make sure it sticks
}

It just sets the callPending flag, signals the processors to sync up and returns. We can't set a MPQueue or a MPSemapore in here (which would be the better way to do it) because MP Library calls can't be called at interrupt time.

Handling asynchronous routines gets a little more complicated but it saves having to make sure other tasks are running just to call MPYield(). Now you might be thinking why are we using a flag when you could just spin on ioResult? Read on to see why this is not good idea...

Gotchas

When working with multiple processors some conventional Mac programming wisdom goes out the window. A good case in point is when ioResult is set. Normally ioResult is set to 1 to indicate a call is pending. The last thing the file manager does before calling the ioCompletion routine is to set ioResult to the error result from the parameter block call. None of this really changes when multiple processors are involved but the non-main processors are not bound by the 68k enable/disable interrupt tricks. So if your MP Task spins on ioResult waiting to see when the read is complete (ioResult != 1) your task starts to execute before the file manager is done with the parameter block. After the file manager sets the ioResult field, it gets the ioCompletion routine's address from the parameter block and jumps to it.

In our case the parameter block in on the stack and when the task unblocks, the stack is released and your task crunches merrily along where a parameter block used to be (and is still in use by the file manager). The second processor could be a 200 MHz CPU and in the time the file manager has set ioResult and jumps to the completion routine, your task could be millions of instructions away using the memory where the parameter block used to be.

The same is true for many of parts of the Mac OS Toolbox. The critical region technique of disabling interrupts does not work well when multiple processors are involved. So be careful and always use MPQueues, MPSemaphores and MPCriticalRegions to coordinate your various tasks.

Another gotcha may be in your thought process. You might be thinking that it would be cool to use the same techniques mentioned in the article to make every Toolbox call available from MP tasks. While this is possible, and would make your task code a lot easier to write, it is not a good idea. The benefits of multiprocessing only come from careful algorithm design, implementation, and profiling. Guideline #1 mentioned above says that your task should do a considerable amount of work to gain any performance improvements. Having your task block, waiting on a bunch of toolbox calls is not going to improve performance. On the other hand having to load all the data you need into memory before your task can start running may not be feasible either. This is where a careful balance of having main processor moving data in and out of your task while processors n+1 crunch along can really pay off.

More MP Information

Hopefully, this article piqued your interest in Multiprocessing. If you want more information there are a number of documents and resources to help you get the most out of MP. An introduction to MP systems was printed in MacTech March '96, TechNote 1071 on Multiprocessing is on the web http://www.apple.com/developer/ and I have set up a MP mailing list where developers can ask questions on MP programming issues. The list includes folks like the senior engineer who wrote the MP Library as well as Chris Cooksey and myself. For subscription information you can go to my web site http://www.best.com/~mxmora/mxm.html. Also, don't forget Apple Developer Technical Support is there for information about MP's past, present and future.

Summary

I hope this article shows how easy it is to get data into and out of your MP tasks. Use this information wisely and you should see some real improvements in your applications performance. You can use these techniques to work with other I/O technologies like networking, graphics and sound. I have created a MP File Library that you may want to use based on some of the techniques used in this article. It uses a slightly more complicated model for better performance. You can download a copy of my MP File Library from my web site at http://www.best.com/~mxmora/software.html. Good luck, and happy multiprocessing.


Matthew Xavier Mora was the engineer responsible for answering questions on Multitasking support in Apple's Developer Technical Support. As a self proclaimed evangelist for the Multi-processing API library he was instrumental in convincing both third-party developers and Apple engineers to implement MP support in their software. If you were ever thinking about moving into the Silicon Valley, consider that this article was written while Matt was sitting all night outside a school building waiting to register his son for pre-school. When Matt is not out doing crazy things like that you can reach him at mxmora@best.com.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

calibre 3.1.1 - Complete e-book library...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
Sparkle Pro 2.2 - $79.99
Sparkle Pro will change your mind if you thought building websites wasn't for you. Sparkle is the intuitive site builder that lets you create sites for your online portfolio, team or band pages, or... Read more
Spotify 1.0.57.474. - Stream music, crea...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
beaTunes 5.0.1 - Organize your music col...
beaTunes is a full-featured music player and organizational tool for music collections. How well organized is your music library? Are your artists always spelled the same way? Any R.E.M. vs REM?... Read more
LibreOffice 5.3.4.2 - Free, open-source...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
VOX 2.8.26 - Music player that supports...
VOX just sounds better! The beauty is in its simplicity, yet behind the minimal exterior lies a powerful music player with a ton of features and support for all audio formats you should ever need.... Read more
iFFmpeg 6.4.0 - Convert multimedia files...
iFFmpeg is a comprehensive media tool to convert movie, audio and media files between formats. The FFmpeg command line instructions can be very hard to master/understand, so iFFmpeg does all the hard... Read more
Beamer 3.3 - Stream any movie file from...
Beamer streams to your Apple TV.... Plays any movie file - Just like the popular desktop movie players, Beamer accepts all common formats, codecs and resolutions. AVI, MKV, MOV, MP4, WMV, FLV. To... Read more
jAlbum Pro 14.0 - Organize your digital...
jAlbum Pro has all the features you love in jAlbum, but comes with a commercial license. You can create gorgeous custom photo galleries for the Web without writing a line of code! Beginner-friendly... Read more
Apple Remote Desktop Client 3.9.3 - Clie...
Apple Remote Desktop Client is the best way to manage the Mac computers on your network. Distribute software, provide real-time online help to end users, create detailed software and hardware reports... Read more

Latest Forum Discussions

See All

This War of Mine gets a new ending and m...
This War of Mine just got a big new update, featuring free DLC that adds a new ending to the game, among other exciting changes. The update is celebrating the game's two-year release anniversary. Apart from the new ending, which will be quite... | Read more »
Summon eight new heroes in Fire Emblem H...
Nintendo keeps coming at us with Fire Emblem Heroes updates, and it doesn't look like that trend is stopping anytime soon. The folks behind the game have just announced the new War of the Clerics Voting Gauntlet, expected to start next Tuesday. [... | Read more »
The best deals on the App Store this wee...
iOS publishers are pulling out all the stops this week -- there's a huge number of seriously great games at discounted prices this week. Let's not waste any time and get right down to business. [Read more] | Read more »
The House of da Vinci (Games)
The House of da Vinci 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Enter The House of Da Vinci, a new must-try 3D puzzle adventure game. Solve mechanical puzzles, discover hidden... | Read more »
Solve the disappearance of history’s gre...
Blue Brain Games invites you to indulge in an immersive hands-on 3D puzzle adventure in similar vein to The Room series, with its debut release The House of Da Vinci. Set during the historic period of the Italian Renaissance (when Leonardo himself... | Read more »
Age of Rivals (Games)
Age of Rivals 3.3 Device: iOS Universal Category: Games Price: $.99, Version: 3.3 (iTunes) Description: Deep civilization-building strategy in a fast-paced card game! | Read more »
Panthera Frontier (Games)
Panthera Frontier 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: | Read more »
Angry Birds Evolution beginner's gu...
Angry Birds changes things up a fair bit in its latest iteration, Angry Birds Evolution. The familiar sling-shot physics mechanics are still there, but the game now features team-based gameplay, RPG elements, and a new top-down view. With all of... | Read more »
Sega Forever is for the retro game fans
Sega is launching a new retro games service titled Sega Forever, in a move that's sure to delight games enthusiasts with a bit of nostalgia. Sega's releasing five classic games for free. The titles include Sonic the Hedgehog, Phantasy Star II,... | Read more »
The Little Acre (Games)
The Little Acre 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: | Read more »

Price Scanner via MacPrices.net

ABBYY TextGrabber 6 for iOS Implements Instan...
ABBYY has announced the release of TextGrabber 6.0.0, an important feature update to the company’s productivity app developed for iOS and Android devices. TextGrabber 6.0 now offers Real-Time... Read more
vPhone, First Smartphone That Can’t Be Lost,...
Austin, Texas based Hypori has introduced the vPhone, a virtual smartphone that affords every business user the benefits of separate work and personal phones, conveniently delivered on a single... Read more
Save this weekend with 2016 refurbished MacBo...
Apple has dropped prices on Certified Refurbished 2016 15″ and 13″ MacBook Pros by as much as $590 off original MSRP. An Apple one-year warranty is included with each model, and shipping is free: -... Read more
New 27-inch 3.4GHz iMac on sale for $1699, sa...
MacMall has the new 2017 27″ 3.4GHz iMac (MNE92LL/A) in stock and on sale for $1699 including free shipping. Their price is $100 off MSRP. Read more
Clearance 2016 MacBook Pros available for up...
B&H Photo has clearance 2016 13″ and 15″ MacBook Pros in stock today and on sale for up to $400 off original MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: - 15″ 2.7GHz... Read more
Apple Ranks 9th In comScore Top 50 U.S. Digit...
comScore, Inc. has released its monthly ranking of U.S. online activity at the top digital media properties for May 2017 based on data from comScore Media Metrix Multi-Platform. * Entity has... Read more
10.5-inch iPad Pros available for up to $20 o...
B&H Photo has the new 2017 10.5″ iPad Pros available for up to $20 off MSRP including free shipping plus NY & NJ sales tax only: - 64GB iPad Pro WiFi: $649 - 256GB iPad Pro WiFi: $749 - 512GB... Read more
Three Off-The-Beaten-Track iOS Apps That Dese...
One of the great things about using iPads and iPhones is the vast selection of apps available for most anything you want or need to do. The three outlined in this article have been in my core app... Read more
Apple No. 1 Spot In Gartner Top 100 Vendors i...
Gartner, Inc. has unveiled the top global 100 vendors in IT in 2016 based on their revenue across IT (excluding communication services) and component market segments. In the Gartner Global Top 100:... Read more
Clearance iMacs available for up to $300 off...
B&H Photo has clearance 21″ and 27″ Apple iMacs available starting at $949, each including free shipping plus NY & NJ sales tax only: - 27″ 3.3GHz iMac 5K: $1999 $300 off original MSRP - 27″... Read more

Jobs Board

*Apple* News Product Marketing Mgr., Publish...
…organizational consensus on strategy and vision for publisher tools, authoring, and Apple News Format.Carries this strategy and vision across the organization to Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Security Data Analyst - *Apple* Information...
…data sources need to be collected to allow Information Security to better protect Apple employees and customers from a wide range of threats.Act as the subject matter Read more
Lead *Apple* Solutions Consultant - Apple I...
…integrity, and trust.Success Metrics/Key Performance Indicators:Quantitative* Year over Year growth in Apple Product and Beyond the Box sales in the assigned Point of Read more
*Apple* Solutions Consultant till v%u00E5r...
…ethics, integrity, and trust.Success Metrics/Key Performance Indicators:QuantitativeYear over Year growth in Apple Product and Beyond the Box sales in the assigned Point Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.