TweetFollow Us on Twitter

Jul 98 Prog Challenge

Volume Number: 14 (1998)
Issue Number: 7
Column Tag: Programmer's Challenge

Jul 97 Programmer's Challenge

by Bob Boonstra, Westford, MA

Going Up?

Welcome to the Programmer's Challenge Skyscraper. Your Challenge this month is to assume control of our skyscraper's elevators and efficiently move a dedicated crew of simulated employees up and down the building.

The prototype for the code you should write is:

#if defined(__cplusplus)
extern "C" {
#endif

#define kMaxFloors 500
#define kMaxElevators 100
#define kElevatorCapacity 16

typedef enum {         /* commanded action for elevator car */
  kGoingUp=1,          /* send car up one floor */
  kGoingDown,          /* send car down one floor */
  kStoppedGoingUp,     /* stop car at an intermediate floor, car going up */
  kStoppedGoingDown,   /* stop car at an intermediate floor, car going down */
  kStoppedIdle         /* stop car, car in idle state */
} CarAction;

typedef struct CarState {
  long atFloor;        /* current location of car */
  long goingToFloor[kMaxFloors];
    /* goingToFloor[i] is the number of passengers in the car is going to floor [i] */
 } CarState;

typedef Boolean (*AdvanceTimeProc) (
                      /* return value of TRUE means Elevator should exit */
  CarAction action[kMaxElevators],  /* direction you move each elevator */
  CarState newState[kMaxElevators],  /* returns new state of each elevator */
  Boolean stopsAtFloor[kMaxFloors],
     /* stopsAtFloor[i]==TRUE means elevator stops at floor i */
  Boolean callGoingUp[kMaxFloors], 
     /* callGoingUp[i]==TRUE means a passenger on floor i wants to go up */
  Boolean callGoingDown[kMaxFloors]
     /* callGoingDown[i]==TRUE means a passenger on floor i wants to go down */
);

void Elevator(
  long numFloors,     /* number of floors in our building, < kMaxFloors */
  long numElevators,  /* number of elevators in our building, <
                         kMaxElevators */
  AdvanceTimeProc AdvanceTime  /* callback to get new state */
);
#if defined(__cplusplus)
}
#endif

Your Elevator routine will be called with the number of floors (numFloors) in our simulated skyscraper, the number of elevators (numElevators) at your command, and a callback routine (AdvanceTime). You should repeatedly call AdvanceTime, commanding an action and a set of constraints (stopsAtFloor) for each elevator car and receiving back the newState of each car. AdvanceTime will also provide an indicator of whether any prospective passengers on floor i have called an elevator to take them higher (callGoingUp[i]) or lower (callGoingDown[i]).

The newState returned by AdvanceTime provides the location of each car and the number of occupants. atFloor is the floor at which the car is now located. Our elevator passengers are extraordinarily cooperative -- on entering, they all indicate their destination by pressing the button corresponding to their floor, whether or not that floor has already been selected, allowing AdvanceTime to give you an accurate count of the passengers going to floor i (goingToFloor[i]). Our passengers are also extraordinarily swift --they exit and enter in such an orderly fashion that the passenger exchange takes place in one time step.

Each call to AdvanceTime will move all the elevators one floor in the direction you indicate. If you stop the car by setting action to kStoppedGoingUp, kStoppedGoingDown, or kStoppedIdle, passengers headed for the current floor will exit and new passengers, up to kElevatorCapacity, will enter. Almost always, passengers headed to higher (or lower) floors will only enter elevators that are kStoppedGoingUp (kStoppedGoingDown) or kStoppedIdle, but occasionally someone will be confused and enter an elevator headed in the wrong direction.

You are free to run your elevators anyway you see fit, except that a car declared to be kGoingUp (or kGoingDown) needs to continue going up (or down) until all passengers headed in that direction have exited. You can designate elevators to be express elevators by setting stopsAtFloor[i] to be FALSE for floors where this elevator does not stop. Passengers will only enter cars that will stop at their intended destination. You can change the stopsAtFloor values at any time, but you need to be careful not to strand passengers -- you can command the car to stop at any time, but the door will only open at floor i if stopsAtFloor[i] is TRUE.

The objective of this Challenge is to deliver passengers to their destinations as expeditiously as possible. You incur a cost of one point for each passenger for each time step from the time s/he presses the call button until the time s/he exits the elevator. You also incur one point for each 10 milliseconds of execution time, including the time spent by AdvanceTime. Stranding a passenger inside an elevator or not responding to an elevator call button results in disqualification of your solution. The solution that incurs the fewest points wins the Challenge. There are no storage constraints for this Challenge, except that it must execute on my 96MB 8500/200.

The Challenge will simulate a normal workday in our simulated skyscraper. People arrive at the beginning of the day either by entering the parking garage at floor 0 or by walking into the main entrance at floor 1. They work in approximately equal numbers on floors 2 through numFloors-1. During the day, they move about the building as necessary. Somewhere in the middle of the day, most of them take a lunch break, either at the cafeteria on floor 2 or by leaving the building. Nearly everyone leaves the building at the end of the day. However, as advanced as our elevators are, they don't have a clock, so you'll have to establish your strategy without knowing the time of day.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal. Ernst Munter wins two Challenge points for suggesting this problem, way back in November, 1996.

Three Months Ago Winner

Congratulations to Sebastian Maurer for submitting the winning entry to the April Mancala Challenge. Sebastian won a round-robin tournament whose object was to efficiently capture the most stones in a variant of the ancient game of Mancala. In our variant of the game, the number of bowls ranged from 8 to 32, instead of the traditional 14, and players were allowed to move in either the clockwise or counter-clockwise directions. Congratulations also to JG Heithcock, whose solution actually captured more stones than Sebastian's did, but used better than 50% more execution time to do so. Both of the top solutions used an alpha-beta minmax technique to identify the best move, but Sebastian's heuristic for pruning the tree, combined with the time penalty of one stone per 100ms of execution time, gave him the higher overall score. Sebastian gained a little extra efficiency by partitioning his code into two parallel versions, one for playing first and another for playing second.

Twelve people submitted Mancala solutions, and eleven of those solutions participated in the tournament. (One solution occasionally made illegal moves, so it was eliminated to avoid unevenly affecting the scores of the other players.) The tournament consisted of seven test cases, with board sizes of 8, 12, 16, 20, 24, 28, and 32 bowls. Each solution played against each other solution twice in each test case, once playing first, and once playing second. The top solutions all used some variant of the minmax algorithm, while the lower ranking solutions used simpler heuristics, like always favoring moves that dropped the last stone into their mancala.

The table below lists the results of the tournament, with the solutions ranked in order of total points earned. It lists total execution time for the tournament, the total number of stones captured, the solution rank if execution time had been ignored, total points earned, as well as code size, data size, and programming language used. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges to date prior to this one.

NameTime (secs)Cum StonesRank (stones)Cum PointsCode SizeData SizeLang
Sebastian Maurer (10)54.1614764214222.403488136C
JG Heithcock85.3714897114043.26178448C++
Ken Krugler97.4514627313652.464288308C++
Randy Boring (73)59.9014055413456.028048824C
Eric Kenninga21.1013399513187.9914584894C++
Willeke Rieken (47)3.6311667611630.7440888C++
Simon Jensen-Fellows0.3311512711508.6833646147C, Res
Dennis Jones (10)2.7610383910355.412556125C++
Eric Hangstefer (9)0.05102521010251.543724124C
Ernst Munter (362)104.7611178810130.42791613C++
Josh Cooley0.279446119443.29222864C
K. H.0.00Errors120.003772104C++

Top Contestants

Here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated more than 10 points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

  1. Munter, Ernst 210 points
  2. Boring, Randy 70 points
  3. Cooper, Greg 61 points
  4. Mallett, Jeff 50 points
  5. Rieken, Willeke 47 points
  6. Nicolle, Ludovic 34 points
  7. Lewis, Peter 31 points
  8. Maurer, Sebastian 30 points
  9. Gregg, Xan 24 points
  10. Murphy, ACC 24 points
  11. Hart, Alan 21 points
  12. Antoniewicz, Andy 20 points
  13. Day, Mark 20 points
  14. Higgins, Charles 20 points
  15. Hostetter, Mat 20 points
  16. Studer, Thomas 20 points

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points
2nd place 10 points
3rd place 7 points
4th place 4 points
5th place 2 points
finding bug 2 points
suggesting Challenge 2 points

Here is Sebastian's winning solution to the Mancala Challenge:

Mancala.C
Copyright 1998, Sebastian M. Maurer

#include <stdio.h>
#include "Mancala.h"

enum { kDefault, kPlayAgain, kGameOver };
typedef long StateOfGame;

// There are two versions of almost every routine
// so we don't have to decide at run time
// which side to play on. It speeds things up a
// little bit
// AlphaBeta1 and AlphaBeta2 are the recursive searchers
// for each of the two players. They return the value of
// best move (returned in *chosenBowl, *chosenDirection).
// For a description of Minimax and Alphabeta searches,
// see Peter Norvig's
// "Paradigms of Artificial Intelligence Programming"

#define kMaxSignedLong    0x7FFFFFFF

Prototypes
long AlphaBeta1(
  long depth,
  long board[],
  long *boardStorage,
  const long boardSize,
  long *chosenBowl,
  long *chosenDirection,
  long lowerBound,
  /* any big negative number to enter recursion */
  long upperBound      
  /* any big positive number to enter recursion */
);

long AlphaBeta2(
  long depth,
  long board[],
  long *boardStorage,
  const long boardSize,
  long *chosenBowl,
  long *chosenDirection,
  long lowerBound,
  long upperBound
);

// DropStones -- play the move
// Return true if we get to play again

Boolean DropStones1(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
);

Boolean DropStones2(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
);

// SideEmpty returns true if the side is empty
// (and the game is over)

Boolean FirstSideEmpty(
  long board[],
  const long halfBoardSize
);

Boolean SecondSideEmpty(
  long board[],
  const long boardSize
);
// Moves all the remaining stones
// to the appropriate Mancala

void RemainingToMancala(
  long board[],
  const long boardSize,
  const Boolean playerOne
);

// DoMove Drops the stones, checks if the game
// is over (if so, cleans up the board), and
// returns kGameOver, kPlayAgain, or kDefault
StateOfGame DoMove1(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
);

StateOfGame DoMove2(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
);

// Called only once from
// within Mancala
Boolean ClaimingVictory(
  long board[],
  const long boardSize,
  const Boolean playerOne
);

Mancala
Boolean Mancala(        /* return true if claiming victory */
  long board[]          /* on entry, board[i] is number of stones in bowl i */
                      /* on exit, board reflects the results of your move */
  const long boardSize,  /* number of bowls in the board, including mancalas */
  void *privStorage,    /* pointer to 1MB of storage for your use */
  const Boolean newGame,  /* true for your first move of a game */
  const Boolean playerOne,  /* true when you are the first player */
  long *bowlPlayed,        /* return the number of the bowl you played from */
  long *directionPlayed    /* return 1 if you played counter-clockwise, */
                        /* return -1 if you played clockwise */
)
{
#pragma unused(newGame)
  // Q&D way to decide how far to search
  // so that we don't lose too much time
  long depth;
  switch (boardSize)
  {
    case 8: depth = 10; break;
    case 10: depth = 8; break;
    case 12:
    case 14: depth = 6; break;
    case 16: 
    case 18: depth = 5; break;
    case 20: 
    case 22: 
    case 24: 
    case 26: depth = 4; break;
    case 28: 
    case 30: 
    case 32: depth = 3; break;
    default: depth = 1; break;
  }

  // Start recursion and play move
  if (playerOne) {
    AlphaBeta1(depth, board, (long*)privStorage,
      boardSize, bowlPlayed, directionPlayed,
      -kMaxSignedLong, kMaxSignedLong);
    DropStones1(board, boardSize,
      *bowlPlayed, *directionPlayed);
  }
  else
  {
    AlphaBeta2(depth, board, (long*)privStorage,
      boardSize, bowlPlayed, directionPlayed,
      -kMaxSignedLong, kMaxSignedLong);
    DropStones2(board, boardSize,
      *bowlPlayed, *directionPlayed);
  }
  
  // Correct to proper convention
  *directionPlayed = - (*directionPlayed);
  return ClaimingVictory(board, boardSize, playerOne);
}

AlphaBeta1
long AlphaBeta1(
  long depth,
  long board[],
  long *boardStorage,
  const long boardSize,
  long *chosenBowl,
  long *chosenDirection,
  long lowerBound,
  long upperBound
)
{
  long myMancala, hisMancala, firstBowl, halfBoardSize;
  long bowl, dir, value, bestBowl, bestDir;
  long *workingBoard;
  
  halfBoardSize = boardSize / 2;
  workingBoard = boardStorage + depth * boardSize;
  myMancala = 0;
  hisMancala = halfBoardSize;
  firstBowl = 1;
  
  for (bowl = firstBowl; bowl < hisMancala; bowl++)
    if (board[bowl] > 0)
    {
      StateOfGame result;
      long i;

      dir = -1;

      // The following trick speeds the whole program
      // up by about 1 percent... take it or leave it
      for (i = 0; i < halfBoardSize; i++)
        ((double*)workingBoard)[i] =
          ((double*)board)[i];
        
      result = DoMove1(workingBoard, boardSize,
                bowl, dir);
      if ((depth == 0) || (result == kGameOver))
        value = workingBoard[myMancala] -
              workingBoard[hisMancala];
      else
      {
        if (result == kPlayAgain)
          value = AlphaBeta1(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                lowerBound, upperBound);
        else
          value = - AlphaBeta2(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                - upperBound, - lowerBound);
      }

      if (value > lowerBound)
      {
        bestBowl = bowl;
        bestDir = dir;
        lowerBound = value;
        
        if (lowerBound >= upperBound)
          break;
      }

      dir = 1;

      for (i = 0; i < halfBoardSize; i++)
        ((double*)workingBoard)[i] =
          ((double*)board)[i];
        
      result = DoMove1(workingBoard, boardSize, bowl, dir);
      if ((depth == 0) || (result == kGameOver))
        value = workingBoard[myMancala] -                   workingBoard[hisMancala];
      else
      {
        if (result == kPlayAgain)
          value = AlphaBeta1(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                lowerBound, upperBound);
        else
          value = - AlphaBeta2(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                - upperBound, - lowerBound);
      }

      if (value > lowerBound)
      {
        bestBowl = bowl;
        bestDir = dir;
        lowerBound = value;
        
        if (lowerBound >= upperBound)
          break;
      }
      
    }
  
  *chosenBowl = bestBowl;
  *chosenDirection = bestDir;
  return lowerBound;
}

AlphaBeta2
long AlphaBeta2(
  long depth,
  long board[],
  long *boardStorage,
  const long boardSize,
  long *chosenBowl,
  long *chosenDirection,
  long lowerBound,
  long upperBound
)
{
  long myMancala, hisMancala, firstBowl, halfBoardSize;
  long bowl, dir, value, bestBowl, bestDir;
  long *workingBoard;
  
  halfBoardSize = boardSize / 2;

  workingBoard = boardStorage + depth * boardSize;
  myMancala = halfBoardSize;
  hisMancala = 0;
  firstBowl = myMancala + 1;
  for (bowl = firstBowl; bowl < boardSize; bowl++)
    if (board[bowl] > 0)
    {
      long i, result;

      dir = -1;

      for (i = 0; i < halfBoardSize; i++)
        ((double*)workingBoard)[i] =
          ((double*)board)[i];
      
      result = DoMove2(workingBoard, boardSize,
                bowl, dir);
    if ((depth == 0) || (result == kGameOver))
        value = workingBoard[myMancala] -
              workingBoard[hisMancala];
      else
      {
        if (result == kPlayAgain)
          value = AlphaBeta2(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                lowerBound, upperBound);
        else
          value = - AlphaBeta1(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                - upperBound, - lowerBound);
      }
      if (value > lowerBound)
      {
        bestBowl = bowl;
        bestDir = dir;
        lowerBound = value;
        if (lowerBound >= upperBound)
          break;
      }
      
      dir = 1;
      
      for (i = 0; i < halfBoardSize; i++)
        ((double*)workingBoard)[i] =
          ((double*)board)[i];

      result = DoMove2(workingBoard, boardSize,
                bowl, dir);
      if ((depth == 0) || (result == kGameOver))
        value = workingBoard[myMancala] -
              workingBoard[hisMancala];
      else
      {
        if (result == kPlayAgain)
          value = AlphaBeta2(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                lowerBound, upperBound);
        else
          value = - AlphaBeta1(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                - upperBound, - lowerBound);
      }

      if (value > lowerBound)
      {
        bestBowl = bowl;
        bestDir = dir;
        lowerBound = value;
        if (lowerBound >= upperBound)
          break;
      }

    }
  
  *chosenBowl = bestBowl;
  *chosenDirection = bestDir;
  return lowerBound;
}

DropStones1
/***
Boolean DropStones()
Drops stones, return true if we get to play again
***/

inline Boolean DropStones1(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
)
{
  long myMancala, hisMancala, firstBowl, lastBowl;
  long stonesInHand, nextBowl;

  myMancala = 0;
  hisMancala = boardSize / 2;
  firstBowl = 1;
  lastBowl = hisMancala - 1;

  stonesInHand = board[bowlPlayed];
  board[bowlPlayed] = 0;
  nextBowl = bowlPlayed;
  /* Drop stones */
  while (stonesInHand > 0) {
    nextBowl += directionPlayed;
    
    if (nextBowl == hisMancala)
      nextBowl += directionPlayed;
    else
    {
      if (nextBowl < 0)
        nextBowl = boardSize - 1;
      else
        if (nextBowl == boardSize)
          nextBowl = 0;
    }
    board[nextBowl] += 1;
    stonesInHand -= 1;
  }
  
  /* Perform capture */
  if ((board[nextBowl] == 1) &&
    (nextBowl >= firstBowl) &&
    (nextBowl <= lastBowl))
  {
    board[nextBowl] = 0;
    board[myMancala] += 
      (1 + board[boardSize - nextBowl]);
    board[boardSize - nextBowl] = 0;
  }
  
  /* Return true if get to play again */
  return (nextBowl == myMancala);
}

DropStones2
inline Boolean DropStones2(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
)
{
  long myMancala, firstBowl, lastBowl;
  long stonesInHand, nextBowl;

  myMancala = boardSize / 2;
  firstBowl = myMancala + 1;
  lastBowl = boardSize - 1;

  stonesInHand = board[bowlPlayed];
  board[bowlPlayed] = 0;
  nextBowl = bowlPlayed;
  /* Drop stones */
  while (stonesInHand > 0) {
    nextBowl += directionPlayed;
    
    if (nextBowl <= 0)
      nextBowl = boardSize - 1;
    else
      if (nextBowl == boardSize)
        nextBowl = 1;
    board[nextBowl] += 1;
    stonesInHand -= 1;
  }
  
  /* Perform capture */
  if ((board[nextBowl] == 1) &&
    (nextBowl >= firstBowl) &&
    (nextBowl <= lastBowl))
  {
    board[nextBowl] = 0;
    board[myMancala] +=
      (1 + board[boardSize - nextBowl]);
    board[boardSize - nextBowl] = 0;
  }
  
  /* Return true if get to play again */
  return (nextBowl == myMancala);
}

FirstSideEmpty
/*
Boolean FirstSideEmpty()
Checks to see if first side has no stones left in it
*/
inline Boolean FirstSideEmpty(
  long board[],
  const long halfBoardSize
) 
{
  long bowl;
  for(bowl = halfBoardSize - 1; bowl > 0; bowl--)
    if (board[bowl] != 0)
      return false;
  return true;
}


SecondSideEmpty
/*
Boolean SecondSideEmpty()
Checks to see if first side has no stones left in it
*/
inline Boolean SecondSideEmpty(
  long board[],
  const long boardSize
) 
{
  long bowl;
  long halfBoardSize = boardSize / 2;
  for(bowl = boardSize - 1; bowl > halfBoardSize; bowl--)
    if (board[bowl] != 0)
      return false;
  return true;
}

RemainingToMancala
/*
void RemainingToMancala()
Moves remaining stones on specified side into Mancala
*/
inline void RemainingToMancala(
  long board[],
  const long boardSize,
  const Boolean playerOne
)
{
  long mancala, firstBowl, lastBowl, bowl;

  if (playerOne) {
    mancala = 0;
    firstBowl = 1;
    lastBowl = boardSize / 2 - 1;
  } else {
    mancala = boardSize / 2;
    firstBowl = boardSize / 2 + 1;
    lastBowl = boardSize - 1;
  }  
  
  for(bowl = firstBowl; bowl <= lastBowl; bowl++)
  {
    board[mancala] += board[bowl];
    board[bowl] = 0;
  }
}


DoMove1
/***
StateOfGame DoMove()
Drops the specified stones and cleans up the board 
if the game is over.
***/

inline StateOfGame DoMove1(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
)
{
  Boolean getToPlayAgain;

  getToPlayAgain = DropStones1(board, boardSize,
            bowlPlayed, directionPlayed);

  if (FirstSideEmpty(board, boardSize / 2)) {
    RemainingToMancala(board, boardSize, false);
    return kGameOver;
  }
  
  if (SecondSideEmpty(board, boardSize)) {
    RemainingToMancala(board, boardSize, true);
    return kGameOver;
  }
  
  if (getToPlayAgain)
    return kPlayAgain;
  else
    return kDefault;
}

DoMove2
inline StateOfGame DoMove2(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
)
{
  Boolean getToPlayAgain;
  
  getToPlayAgain = DropStones2(board, boardSize,
            bowlPlayed, directionPlayed);

  if (FirstSideEmpty(board, boardSize / 2)) {
    RemainingToMancala(board, boardSize, false);
    return kGameOver;
  }
  
  if (SecondSideEmpty(board, boardSize)) {
    RemainingToMancala(board, boardSize, true);
    return kGameOver;
  }
  
  if (getToPlayAgain)
    return kPlayAgain;
  else
    return kDefault;
}

ClaimingVictory
/* Boolean ClaimingVictory()
  Only called before returning from Mancala
  Does not clean up the board
*/
Boolean ClaimingVictory(
  long board[],
  const long boardSize,
  const Boolean playerOne
)
{
  long bowl;
  long sum = 0;
  long halfBoardSize = boardSize / 2;
  
  if (FirstSideEmpty(board, halfBoardSize))
  {
    for (bowl = halfBoardSize + 1;
        bowl < boardSize; bowl++)
      sum += board[bowl];
    if (playerOne)
      return board[0] > (sum + board[halfBoardSize]);
    else
      return board[0] < (sum + board[halfBoardSize]);
  }
  if (SecondSideEmpty(board, boardSize))
  {
    for (bowl = 1; bowl < halfBoardSize; bowl++)
      sum += board[bowl];
    if (playerOne)
      return (board[0] + sum) > board[halfBoardSize];
    else
      return (board[0] + sum) < board[halfBoardSize];
  }
  return false;
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Bookends 12.8 - Reference management and...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Bookends uses the cloud to sync reference libraries on all the Macs you use.... Read more
Apple iTunes 12.6 - Play Apple Music and...
Apple iTunes lets you organize and stream Apple Music, download and watch video and listen to Podcasts. It can automatically download new music, app, and book purchases across all your devices and... Read more
Default Folder X 5.1.4 - Enhances Open a...
Default Folder X attaches a toolbar to the right side of the Open and Save dialogs in any OS X-native application. The toolbar gives you fast access to various folders and commands. You just click on... Read more
Amazon Chime 4.1.5587 - Amazon-based com...
Amazon Chime is a communications service that transforms online meetings with a secure, easy-to-use application that you can trust. Amazon Chime works seamlessly across your devices so that you can... Read more
CrossOver 16.2 - Run Windows apps on you...
CrossOver can get your Windows productivity applications and PC games up and running on your Mac quickly and easily. CrossOver runs the Windows software that you need on Mac at home, in the office,... Read more
Adobe Creative Cloud 4.0.0.185 - Access...
Adobe Creative Cloud costs $19.99/month for a single app, or $49.99/month for the entire suite. Introducing Adobe Creative Cloud desktop applications, including Adobe Photoshop CC and Illustrator CC... Read more
MegaSeg 6.0.2 - Professional DJ and radi...
MegaSeg is a complete solution for pro audio/video DJ mixing, radio automation, and music scheduling with rock-solid performance and an easy-to-use design. Mix with visual waveforms and Magic... Read more
Bookends 12.8 - Reference management and...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Bookends uses the cloud to sync reference libraries on all the Macs you use.... Read more
Adobe Creative Cloud 4.0.0.185 - Access...
Adobe Creative Cloud costs $19.99/month for a single app, or $49.99/month for the entire suite. Introducing Adobe Creative Cloud desktop applications, including Adobe Photoshop CC and Illustrator CC... Read more
Default Folder X 5.1.4 - Enhances Open a...
Default Folder X attaches a toolbar to the right side of the Open and Save dialogs in any OS X-native application. The toolbar gives you fast access to various folders and commands. You just click on... Read more

The best deals on the App Store this wee...
Deals, deals, deals. We're all about a good bargain here on 148Apps, and luckily this was another fine week in App Store discounts. There's a big board game sale happening right now, and a few fine indies are still discounted through the weekend.... | Read more »
The best new games we played this week
It's been quite the week, but now that all of that business is out of the way, it's time to hunker down with some of the excellent games that were released over the past few days. There's a fair few to help you relax in your down time or if you're... | Read more »
Orphan Black: The Game (Games)
Orphan Black: The Game 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Dive into a dark and twisted puzzle-adventure that retells the pivotal events of Orphan Black. | Read more »
The Elder Scrolls: Legends is now availa...
| Read more »
Ticket to Earth beginner's guide: H...
Robot Circus launched Ticket to Earth as part of the App Store's indie games event last week. If you're not quite digging the space operatics Mass Effect: Andromeda is serving up, you'll be pleased to know that there's a surprising alternative on... | Read more »
Leap to victory in Nexx Studios new plat...
You’re always a hop, skip, and a jump away from a fiery death in Temple Jump, a new platformer-cum-endless runner from Nexx Studio. It’s out now on both iOS and Android if you’re an adventurer seeking treasure in a crumbling, pixel-laden temple. | Read more »
Failbetter Games details changes coming...
Sunless Sea, Failbetter Games' dark and gloomy sea explorer, sets sail for the iPad tomorrow. Ahead of the game's launch, Failbetter took to Twitter to discuss what will be different in the mobile version of the game. Many of the changes make... | Read more »
Splish, splash! The Pokémon GO Water Fes...
Niantic is back with a new festival for dedicated Pokémon GO collectors. The Water Festival officially kicks off today at 1 P.M. PDT and runs through March 29. Magikarp, Squirtle, Totodile, and their assorted evolved forms will be appearing at... | Read more »
Death Road to Canada (Games)
Death Road to Canada 1.0 Device: iOS Universal Category: Games Price: $7.99, Version: 1.0 (iTunes) Description: Get it now at the low launch price! Price will go up a dollar every major update. Update news at the bottom of this... | Read more »
Bean's Quest Beginner's Guide:...
Bean's Quest is a new take on both the classic platformer and the endless runner, and it's free on the App Store for the time being. Instead of running constantly, you can't stop jumping. That adds a surprising new level of challenge to the game... | Read more »

Price Scanner via MacPrices.net

2.6GHz Mac mini on sale for $559, $140 off MS...
Guitar Center has the 2.6GHz Mac mini (MGEN2LL/A) on sale for $559 including free shipping. Their price is $140 off MSRP, and it’s the lowest price available for this model. Read more
SSD Speeder RAM Disk SSD Life Extender App Fo...
Fehraltorf, Switzerland based B-Eng has announced they are making their SSD Speeder app for macOS publicly available for purchase on their website. SSD Speeder is a RAM disk utility that prevents... Read more
iPhone Scores Highest Overall in Smartphone D...
Customer satisfaction is much higher among smartphone owners who use their device to operate other connected home services such as smart thermostats and smart appliances, according to the J.D. Power... Read more
Swipe CRM Free Photo-Centric CRM Sales DEal C...
Swipe CRM LLC has introduced Swipe CRM: Visual Sales 1.0 for iPad, an app for creating, managing, and sharing visually stunning sales deals. Swipe CRM is targeted to small-and-medium creative... Read more
13-inch 2.0GHz Apple MacBook Pros on sale for...
B&H has the non-Touch Bar 13″ 2.0GHz MacBook Pros in stock today and on sale for $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.0GHz MacBook Pro Space Gray (... Read more
15-inch Touch Bar MacBook Pros on sale for up...
B&H Photo has the new 2016 15″ Apple Touch Bar MacBook Pros in stock today and on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.7GHz Touch Bar... Read more
Apple’s iPhone 6s Tops Best-Selling Smartphon...
In terms of shipments, the iPhone 6s from Apple bested all competitors for sales in 2016, according to new analysis from IHS Markit, a world leader in critical information, analytics and solutions.... Read more
Logitech Rugged Combo Protective iPad Case an...
Logitech has announced its Logitech Rugged Combo, Logitech Rugged Case, and Logitech Add-on Keyboard for Rugged Case for Apple’s new, more affordable $329 9.7-inch iPad, a complete solution designed... Read more
T-Mobile To Offer iPhone 7 and iPhone 7 Plus...
T-Mobile has announced it will offer iPhone 7 and iPhone 7 Plus (PRODUCT)RED Special Edition in a vibrant red aluminum finish. The introduction of this special edition iPhone celebrates Apple’s 10... Read more
9-inch 128GB iPad Pros on sale for $50-$70 of...
B&H Photo has 9.7″ 128GB Apple WiFi iPad Pros on sale for up to $70 off MSRP, each including free shipping. B&H charges sales tax in NY only: - 9″ Space Gray 128GB WiFi iPad Pro: $649 $50... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Fulltime aan de slag als shopmanager in een h...
Ben jij helemaal gek van Apple -producten en vind je het helemaal super om fulltime shopmanager te zijn in een jonge en hippe elektronicazaak? Wil jij werken in Read more
Starte Dein Karriere-Abenteuer in den Hauptst...
…mehrsprachigen Teams betreust Du Kunden von bekannten globale Marken wie Apple , Mercedes, Facebook, Expedia, und vielen anderen! Funktion Du wolltest schon Read more
*Apple* Retail - Multiple Positions- Chicago...
SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Fulltime aan de slag als shopmanager in een h...
Ben jij helemaal gek van Apple -producten en vind je het helemaal super om fulltime shopmanager te zijn in een jonge en hippe elektronicazaak? Wil jij werken in Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.