TweetFollow Us on Twitter

Jul 98 Prog Challenge

Volume Number: 14 (1998)
Issue Number: 7
Column Tag: Programmer's Challenge

Jul 97 Programmer's Challenge

by Bob Boonstra, Westford, MA

Going Up?

Welcome to the Programmer's Challenge Skyscraper. Your Challenge this month is to assume control of our skyscraper's elevators and efficiently move a dedicated crew of simulated employees up and down the building.

The prototype for the code you should write is:

#if defined(__cplusplus)
extern "C" {
#endif

#define kMaxFloors 500
#define kMaxElevators 100
#define kElevatorCapacity 16

typedef enum {         /* commanded action for elevator car */
  kGoingUp=1,          /* send car up one floor */
  kGoingDown,          /* send car down one floor */
  kStoppedGoingUp,     /* stop car at an intermediate floor, car going up */
  kStoppedGoingDown,   /* stop car at an intermediate floor, car going down */
  kStoppedIdle         /* stop car, car in idle state */
} CarAction;

typedef struct CarState {
  long atFloor;        /* current location of car */
  long goingToFloor[kMaxFloors];
    /* goingToFloor[i] is the number of passengers in the car is going to floor [i] */
 } CarState;

typedef Boolean (*AdvanceTimeProc) (
                      /* return value of TRUE means Elevator should exit */
  CarAction action[kMaxElevators],  /* direction you move each elevator */
  CarState newState[kMaxElevators],  /* returns new state of each elevator */
  Boolean stopsAtFloor[kMaxFloors],
     /* stopsAtFloor[i]==TRUE means elevator stops at floor i */
  Boolean callGoingUp[kMaxFloors], 
     /* callGoingUp[i]==TRUE means a passenger on floor i wants to go up */
  Boolean callGoingDown[kMaxFloors]
     /* callGoingDown[i]==TRUE means a passenger on floor i wants to go down */
);

void Elevator(
  long numFloors,     /* number of floors in our building, < kMaxFloors */
  long numElevators,  /* number of elevators in our building, <
                         kMaxElevators */
  AdvanceTimeProc AdvanceTime  /* callback to get new state */
);
#if defined(__cplusplus)
}
#endif

Your Elevator routine will be called with the number of floors (numFloors) in our simulated skyscraper, the number of elevators (numElevators) at your command, and a callback routine (AdvanceTime). You should repeatedly call AdvanceTime, commanding an action and a set of constraints (stopsAtFloor) for each elevator car and receiving back the newState of each car. AdvanceTime will also provide an indicator of whether any prospective passengers on floor i have called an elevator to take them higher (callGoingUp[i]) or lower (callGoingDown[i]).

The newState returned by AdvanceTime provides the location of each car and the number of occupants. atFloor is the floor at which the car is now located. Our elevator passengers are extraordinarily cooperative -- on entering, they all indicate their destination by pressing the button corresponding to their floor, whether or not that floor has already been selected, allowing AdvanceTime to give you an accurate count of the passengers going to floor i (goingToFloor[i]). Our passengers are also extraordinarily swift --they exit and enter in such an orderly fashion that the passenger exchange takes place in one time step.

Each call to AdvanceTime will move all the elevators one floor in the direction you indicate. If you stop the car by setting action to kStoppedGoingUp, kStoppedGoingDown, or kStoppedIdle, passengers headed for the current floor will exit and new passengers, up to kElevatorCapacity, will enter. Almost always, passengers headed to higher (or lower) floors will only enter elevators that are kStoppedGoingUp (kStoppedGoingDown) or kStoppedIdle, but occasionally someone will be confused and enter an elevator headed in the wrong direction.

You are free to run your elevators anyway you see fit, except that a car declared to be kGoingUp (or kGoingDown) needs to continue going up (or down) until all passengers headed in that direction have exited. You can designate elevators to be express elevators by setting stopsAtFloor[i] to be FALSE for floors where this elevator does not stop. Passengers will only enter cars that will stop at their intended destination. You can change the stopsAtFloor values at any time, but you need to be careful not to strand passengers -- you can command the car to stop at any time, but the door will only open at floor i if stopsAtFloor[i] is TRUE.

The objective of this Challenge is to deliver passengers to their destinations as expeditiously as possible. You incur a cost of one point for each passenger for each time step from the time s/he presses the call button until the time s/he exits the elevator. You also incur one point for each 10 milliseconds of execution time, including the time spent by AdvanceTime. Stranding a passenger inside an elevator or not responding to an elevator call button results in disqualification of your solution. The solution that incurs the fewest points wins the Challenge. There are no storage constraints for this Challenge, except that it must execute on my 96MB 8500/200.

The Challenge will simulate a normal workday in our simulated skyscraper. People arrive at the beginning of the day either by entering the parking garage at floor 0 or by walking into the main entrance at floor 1. They work in approximately equal numbers on floors 2 through numFloors-1. During the day, they move about the building as necessary. Somewhere in the middle of the day, most of them take a lunch break, either at the cafeteria on floor 2 or by leaving the building. Nearly everyone leaves the building at the end of the day. However, as advanced as our elevators are, they don't have a clock, so you'll have to establish your strategy without knowing the time of day.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal. Ernst Munter wins two Challenge points for suggesting this problem, way back in November, 1996.

Three Months Ago Winner

Congratulations to Sebastian Maurer for submitting the winning entry to the April Mancala Challenge. Sebastian won a round-robin tournament whose object was to efficiently capture the most stones in a variant of the ancient game of Mancala. In our variant of the game, the number of bowls ranged from 8 to 32, instead of the traditional 14, and players were allowed to move in either the clockwise or counter-clockwise directions. Congratulations also to JG Heithcock, whose solution actually captured more stones than Sebastian's did, but used better than 50% more execution time to do so. Both of the top solutions used an alpha-beta minmax technique to identify the best move, but Sebastian's heuristic for pruning the tree, combined with the time penalty of one stone per 100ms of execution time, gave him the higher overall score. Sebastian gained a little extra efficiency by partitioning his code into two parallel versions, one for playing first and another for playing second.

Twelve people submitted Mancala solutions, and eleven of those solutions participated in the tournament. (One solution occasionally made illegal moves, so it was eliminated to avoid unevenly affecting the scores of the other players.) The tournament consisted of seven test cases, with board sizes of 8, 12, 16, 20, 24, 28, and 32 bowls. Each solution played against each other solution twice in each test case, once playing first, and once playing second. The top solutions all used some variant of the minmax algorithm, while the lower ranking solutions used simpler heuristics, like always favoring moves that dropped the last stone into their mancala.

The table below lists the results of the tournament, with the solutions ranked in order of total points earned. It lists total execution time for the tournament, the total number of stones captured, the solution rank if execution time had been ignored, total points earned, as well as code size, data size, and programming language used. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges to date prior to this one.

NameTime (secs)Cum StonesRank (stones)Cum PointsCode SizeData SizeLang
Sebastian Maurer (10)54.1614764214222.403488136C
JG Heithcock85.3714897114043.26178448C++
Ken Krugler97.4514627313652.464288308C++
Randy Boring (73)59.9014055413456.028048824C
Eric Kenninga21.1013399513187.9914584894C++
Willeke Rieken (47)3.6311667611630.7440888C++
Simon Jensen-Fellows0.3311512711508.6833646147C, Res
Dennis Jones (10)2.7610383910355.412556125C++
Eric Hangstefer (9)0.05102521010251.543724124C
Ernst Munter (362)104.7611178810130.42791613C++
Josh Cooley0.279446119443.29222864C
K. H.0.00Errors120.003772104C++

Top Contestants

Here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated more than 10 points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

  1. Munter, Ernst 210 points
  2. Boring, Randy 70 points
  3. Cooper, Greg 61 points
  4. Mallett, Jeff 50 points
  5. Rieken, Willeke 47 points
  6. Nicolle, Ludovic 34 points
  7. Lewis, Peter 31 points
  8. Maurer, Sebastian 30 points
  9. Gregg, Xan 24 points
  10. Murphy, ACC 24 points
  11. Hart, Alan 21 points
  12. Antoniewicz, Andy 20 points
  13. Day, Mark 20 points
  14. Higgins, Charles 20 points
  15. Hostetter, Mat 20 points
  16. Studer, Thomas 20 points

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points
2nd place 10 points
3rd place 7 points
4th place 4 points
5th place 2 points
finding bug 2 points
suggesting Challenge 2 points

Here is Sebastian's winning solution to the Mancala Challenge:

Mancala.C
Copyright 1998, Sebastian M. Maurer

#include <stdio.h>
#include "Mancala.h"

enum { kDefault, kPlayAgain, kGameOver };
typedef long StateOfGame;

// There are two versions of almost every routine
// so we don't have to decide at run time
// which side to play on. It speeds things up a
// little bit
// AlphaBeta1 and AlphaBeta2 are the recursive searchers
// for each of the two players. They return the value of
// best move (returned in *chosenBowl, *chosenDirection).
// For a description of Minimax and Alphabeta searches,
// see Peter Norvig's
// "Paradigms of Artificial Intelligence Programming"

#define kMaxSignedLong    0x7FFFFFFF

Prototypes
long AlphaBeta1(
  long depth,
  long board[],
  long *boardStorage,
  const long boardSize,
  long *chosenBowl,
  long *chosenDirection,
  long lowerBound,
  /* any big negative number to enter recursion */
  long upperBound      
  /* any big positive number to enter recursion */
);

long AlphaBeta2(
  long depth,
  long board[],
  long *boardStorage,
  const long boardSize,
  long *chosenBowl,
  long *chosenDirection,
  long lowerBound,
  long upperBound
);

// DropStones -- play the move
// Return true if we get to play again

Boolean DropStones1(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
);

Boolean DropStones2(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
);

// SideEmpty returns true if the side is empty
// (and the game is over)

Boolean FirstSideEmpty(
  long board[],
  const long halfBoardSize
);

Boolean SecondSideEmpty(
  long board[],
  const long boardSize
);
// Moves all the remaining stones
// to the appropriate Mancala

void RemainingToMancala(
  long board[],
  const long boardSize,
  const Boolean playerOne
);

// DoMove Drops the stones, checks if the game
// is over (if so, cleans up the board), and
// returns kGameOver, kPlayAgain, or kDefault
StateOfGame DoMove1(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
);

StateOfGame DoMove2(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
);

// Called only once from
// within Mancala
Boolean ClaimingVictory(
  long board[],
  const long boardSize,
  const Boolean playerOne
);

Mancala
Boolean Mancala(        /* return true if claiming victory */
  long board[]          /* on entry, board[i] is number of stones in bowl i */
                      /* on exit, board reflects the results of your move */
  const long boardSize,  /* number of bowls in the board, including mancalas */
  void *privStorage,    /* pointer to 1MB of storage for your use */
  const Boolean newGame,  /* true for your first move of a game */
  const Boolean playerOne,  /* true when you are the first player */
  long *bowlPlayed,        /* return the number of the bowl you played from */
  long *directionPlayed    /* return 1 if you played counter-clockwise, */
                        /* return -1 if you played clockwise */
)
{
#pragma unused(newGame)
  // Q&D way to decide how far to search
  // so that we don't lose too much time
  long depth;
  switch (boardSize)
  {
    case 8: depth = 10; break;
    case 10: depth = 8; break;
    case 12:
    case 14: depth = 6; break;
    case 16: 
    case 18: depth = 5; break;
    case 20: 
    case 22: 
    case 24: 
    case 26: depth = 4; break;
    case 28: 
    case 30: 
    case 32: depth = 3; break;
    default: depth = 1; break;
  }

  // Start recursion and play move
  if (playerOne) {
    AlphaBeta1(depth, board, (long*)privStorage,
      boardSize, bowlPlayed, directionPlayed,
      -kMaxSignedLong, kMaxSignedLong);
    DropStones1(board, boardSize,
      *bowlPlayed, *directionPlayed);
  }
  else
  {
    AlphaBeta2(depth, board, (long*)privStorage,
      boardSize, bowlPlayed, directionPlayed,
      -kMaxSignedLong, kMaxSignedLong);
    DropStones2(board, boardSize,
      *bowlPlayed, *directionPlayed);
  }
  
  // Correct to proper convention
  *directionPlayed = - (*directionPlayed);
  return ClaimingVictory(board, boardSize, playerOne);
}

AlphaBeta1
long AlphaBeta1(
  long depth,
  long board[],
  long *boardStorage,
  const long boardSize,
  long *chosenBowl,
  long *chosenDirection,
  long lowerBound,
  long upperBound
)
{
  long myMancala, hisMancala, firstBowl, halfBoardSize;
  long bowl, dir, value, bestBowl, bestDir;
  long *workingBoard;
  
  halfBoardSize = boardSize / 2;
  workingBoard = boardStorage + depth * boardSize;
  myMancala = 0;
  hisMancala = halfBoardSize;
  firstBowl = 1;
  
  for (bowl = firstBowl; bowl < hisMancala; bowl++)
    if (board[bowl] > 0)
    {
      StateOfGame result;
      long i;

      dir = -1;

      // The following trick speeds the whole program
      // up by about 1 percent... take it or leave it
      for (i = 0; i < halfBoardSize; i++)
        ((double*)workingBoard)[i] =
          ((double*)board)[i];
        
      result = DoMove1(workingBoard, boardSize,
                bowl, dir);
      if ((depth == 0) || (result == kGameOver))
        value = workingBoard[myMancala] -
              workingBoard[hisMancala];
      else
      {
        if (result == kPlayAgain)
          value = AlphaBeta1(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                lowerBound, upperBound);
        else
          value = - AlphaBeta2(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                - upperBound, - lowerBound);
      }

      if (value > lowerBound)
      {
        bestBowl = bowl;
        bestDir = dir;
        lowerBound = value;
        
        if (lowerBound >= upperBound)
          break;
      }

      dir = 1;

      for (i = 0; i < halfBoardSize; i++)
        ((double*)workingBoard)[i] =
          ((double*)board)[i];
        
      result = DoMove1(workingBoard, boardSize, bowl, dir);
      if ((depth == 0) || (result == kGameOver))
        value = workingBoard[myMancala] -                   workingBoard[hisMancala];
      else
      {
        if (result == kPlayAgain)
          value = AlphaBeta1(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                lowerBound, upperBound);
        else
          value = - AlphaBeta2(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                - upperBound, - lowerBound);
      }

      if (value > lowerBound)
      {
        bestBowl = bowl;
        bestDir = dir;
        lowerBound = value;
        
        if (lowerBound >= upperBound)
          break;
      }
      
    }
  
  *chosenBowl = bestBowl;
  *chosenDirection = bestDir;
  return lowerBound;
}

AlphaBeta2
long AlphaBeta2(
  long depth,
  long board[],
  long *boardStorage,
  const long boardSize,
  long *chosenBowl,
  long *chosenDirection,
  long lowerBound,
  long upperBound
)
{
  long myMancala, hisMancala, firstBowl, halfBoardSize;
  long bowl, dir, value, bestBowl, bestDir;
  long *workingBoard;
  
  halfBoardSize = boardSize / 2;

  workingBoard = boardStorage + depth * boardSize;
  myMancala = halfBoardSize;
  hisMancala = 0;
  firstBowl = myMancala + 1;
  for (bowl = firstBowl; bowl < boardSize; bowl++)
    if (board[bowl] > 0)
    {
      long i, result;

      dir = -1;

      for (i = 0; i < halfBoardSize; i++)
        ((double*)workingBoard)[i] =
          ((double*)board)[i];
      
      result = DoMove2(workingBoard, boardSize,
                bowl, dir);
    if ((depth == 0) || (result == kGameOver))
        value = workingBoard[myMancala] -
              workingBoard[hisMancala];
      else
      {
        if (result == kPlayAgain)
          value = AlphaBeta2(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                lowerBound, upperBound);
        else
          value = - AlphaBeta1(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                - upperBound, - lowerBound);
      }
      if (value > lowerBound)
      {
        bestBowl = bowl;
        bestDir = dir;
        lowerBound = value;
        if (lowerBound >= upperBound)
          break;
      }
      
      dir = 1;
      
      for (i = 0; i < halfBoardSize; i++)
        ((double*)workingBoard)[i] =
          ((double*)board)[i];

      result = DoMove2(workingBoard, boardSize,
                bowl, dir);
      if ((depth == 0) || (result == kGameOver))
        value = workingBoard[myMancala] -
              workingBoard[hisMancala];
      else
      {
        if (result == kPlayAgain)
          value = AlphaBeta2(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                lowerBound, upperBound);
        else
          value = - AlphaBeta1(
                depth - 1, workingBoard,
                boardStorage, boardSize,
                chosenBowl, chosenDirection,
                - upperBound, - lowerBound);
      }

      if (value > lowerBound)
      {
        bestBowl = bowl;
        bestDir = dir;
        lowerBound = value;
        if (lowerBound >= upperBound)
          break;
      }

    }
  
  *chosenBowl = bestBowl;
  *chosenDirection = bestDir;
  return lowerBound;
}

DropStones1
/***
Boolean DropStones()
Drops stones, return true if we get to play again
***/

inline Boolean DropStones1(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
)
{
  long myMancala, hisMancala, firstBowl, lastBowl;
  long stonesInHand, nextBowl;

  myMancala = 0;
  hisMancala = boardSize / 2;
  firstBowl = 1;
  lastBowl = hisMancala - 1;

  stonesInHand = board[bowlPlayed];
  board[bowlPlayed] = 0;
  nextBowl = bowlPlayed;
  /* Drop stones */
  while (stonesInHand > 0) {
    nextBowl += directionPlayed;
    
    if (nextBowl == hisMancala)
      nextBowl += directionPlayed;
    else
    {
      if (nextBowl < 0)
        nextBowl = boardSize - 1;
      else
        if (nextBowl == boardSize)
          nextBowl = 0;
    }
    board[nextBowl] += 1;
    stonesInHand -= 1;
  }
  
  /* Perform capture */
  if ((board[nextBowl] == 1) &&
    (nextBowl >= firstBowl) &&
    (nextBowl <= lastBowl))
  {
    board[nextBowl] = 0;
    board[myMancala] += 
      (1 + board[boardSize - nextBowl]);
    board[boardSize - nextBowl] = 0;
  }
  
  /* Return true if get to play again */
  return (nextBowl == myMancala);
}

DropStones2
inline Boolean DropStones2(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
)
{
  long myMancala, firstBowl, lastBowl;
  long stonesInHand, nextBowl;

  myMancala = boardSize / 2;
  firstBowl = myMancala + 1;
  lastBowl = boardSize - 1;

  stonesInHand = board[bowlPlayed];
  board[bowlPlayed] = 0;
  nextBowl = bowlPlayed;
  /* Drop stones */
  while (stonesInHand > 0) {
    nextBowl += directionPlayed;
    
    if (nextBowl <= 0)
      nextBowl = boardSize - 1;
    else
      if (nextBowl == boardSize)
        nextBowl = 1;
    board[nextBowl] += 1;
    stonesInHand -= 1;
  }
  
  /* Perform capture */
  if ((board[nextBowl] == 1) &&
    (nextBowl >= firstBowl) &&
    (nextBowl <= lastBowl))
  {
    board[nextBowl] = 0;
    board[myMancala] +=
      (1 + board[boardSize - nextBowl]);
    board[boardSize - nextBowl] = 0;
  }
  
  /* Return true if get to play again */
  return (nextBowl == myMancala);
}

FirstSideEmpty
/*
Boolean FirstSideEmpty()
Checks to see if first side has no stones left in it
*/
inline Boolean FirstSideEmpty(
  long board[],
  const long halfBoardSize
) 
{
  long bowl;
  for(bowl = halfBoardSize - 1; bowl > 0; bowl--)
    if (board[bowl] != 0)
      return false;
  return true;
}


SecondSideEmpty
/*
Boolean SecondSideEmpty()
Checks to see if first side has no stones left in it
*/
inline Boolean SecondSideEmpty(
  long board[],
  const long boardSize
) 
{
  long bowl;
  long halfBoardSize = boardSize / 2;
  for(bowl = boardSize - 1; bowl > halfBoardSize; bowl--)
    if (board[bowl] != 0)
      return false;
  return true;
}

RemainingToMancala
/*
void RemainingToMancala()
Moves remaining stones on specified side into Mancala
*/
inline void RemainingToMancala(
  long board[],
  const long boardSize,
  const Boolean playerOne
)
{
  long mancala, firstBowl, lastBowl, bowl;

  if (playerOne) {
    mancala = 0;
    firstBowl = 1;
    lastBowl = boardSize / 2 - 1;
  } else {
    mancala = boardSize / 2;
    firstBowl = boardSize / 2 + 1;
    lastBowl = boardSize - 1;
  }  
  
  for(bowl = firstBowl; bowl <= lastBowl; bowl++)
  {
    board[mancala] += board[bowl];
    board[bowl] = 0;
  }
}


DoMove1
/***
StateOfGame DoMove()
Drops the specified stones and cleans up the board 
if the game is over.
***/

inline StateOfGame DoMove1(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
)
{
  Boolean getToPlayAgain;

  getToPlayAgain = DropStones1(board, boardSize,
            bowlPlayed, directionPlayed);

  if (FirstSideEmpty(board, boardSize / 2)) {
    RemainingToMancala(board, boardSize, false);
    return kGameOver;
  }
  
  if (SecondSideEmpty(board, boardSize)) {
    RemainingToMancala(board, boardSize, true);
    return kGameOver;
  }
  
  if (getToPlayAgain)
    return kPlayAgain;
  else
    return kDefault;
}

DoMove2
inline StateOfGame DoMove2(
  long board[],
  const long boardSize,
  long bowlPlayed,
  long directionPlayed
)
{
  Boolean getToPlayAgain;
  
  getToPlayAgain = DropStones2(board, boardSize,
            bowlPlayed, directionPlayed);

  if (FirstSideEmpty(board, boardSize / 2)) {
    RemainingToMancala(board, boardSize, false);
    return kGameOver;
  }
  
  if (SecondSideEmpty(board, boardSize)) {
    RemainingToMancala(board, boardSize, true);
    return kGameOver;
  }
  
  if (getToPlayAgain)
    return kPlayAgain;
  else
    return kDefault;
}

ClaimingVictory
/* Boolean ClaimingVictory()
  Only called before returning from Mancala
  Does not clean up the board
*/
Boolean ClaimingVictory(
  long board[],
  const long boardSize,
  const Boolean playerOne
)
{
  long bowl;
  long sum = 0;
  long halfBoardSize = boardSize / 2;
  
  if (FirstSideEmpty(board, halfBoardSize))
  {
    for (bowl = halfBoardSize + 1;
        bowl < boardSize; bowl++)
      sum += board[bowl];
    if (playerOne)
      return board[0] > (sum + board[halfBoardSize]);
    else
      return board[0] < (sum + board[halfBoardSize]);
  }
  if (SecondSideEmpty(board, boardSize))
  {
    for (bowl = 1; bowl < halfBoardSize; bowl++)
      sum += board[bowl];
    if (playerOne)
      return (board[0] + sum) > board[halfBoardSize];
    else
      return (board[0] + sum) < board[halfBoardSize];
  }
  return false;
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Logitech Control Center 3.9.2 - Keyboard...
Logitech Control Center (LCC) is designed to support OS X and allows you to take full advantage of your Logitech keyboard, mouse, or trackball. With the LCC you can: Browse the Internet using... Read more
Adobe Acrobat Pro 15.007.20033 - Powerfu...
Acrobat Pro DC is available only as a part of Adobe Creative Cloud, and can only be installed and/or updated through Adobe's Creative Cloud app. Adobe Acrobat Pro DC with Adobe Document Cloud... Read more
CleanMyMac 3.0.1 - Delete files that was...
CleanMyMac makes space for the things you love. Sporting a range of ingenious new features, CleanMyMac lets you safely and intelligently scan and clean your entire system, delete large, unused files... Read more
Evernote 6.0.10 - Create searchable note...
Evernote allows you to easily capture information in any environment using whatever device or platform you find most convenient, and makes this information accessible and searchable at anytime, from... Read more
CleanApp 5.0.1 - Application deinstaller...
CleanApp is an application deinstaller and archiver.... Your hard drive gets fuller day by day, but do you know why? CleanApp 5 provides you with insights how to reclaim disk space. There are... Read more
Quicken 2015 2.5.0 - Complete personal f...
Quicken 2015 helps you manage all your personal finances in one place, so you can see where you're spending and where you can save. Quicken automatically categorizes your financial transactions,... Read more
Tonality Pro 1.1.4 - Professional-grade...
Tonality Pro gives you the power to create stunning and dramatic black & white images. This is a complete monochrome image editor with more than 150 one-click style presets, totally unique... Read more
Adobe Photoshop CC 2014 15.2.2 - Profess...
Photoshop CC 2015 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Photoshop customer). Photoshop CS6 is still available for purchase (... Read more
BBEdit 11.1 - Powerful text and HTML edi...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
Together 3.4.3 - Store and organize all...
Together helps you organize your Mac, giving you the ability to store, edit and preview your files in a single clean, uncluttered interface. Smart storage. With simple drag-and-drop functionality,... Read more

The Enchanted Cave 2 (Games)
The Enchanted Cave 2 2.1 Device: iOS Universal Category: Games Price: $2.99, Version: 2.1 (iTunes) Description: Delve into a strange cave with a seemingly endless supply of treasure, strategically choosing your battles to gather as... | Read more »
Crystal Siege is on Sale With a New Univ...
Crystal Siege,  FDG Entertainment's RPG  Tower Defense game, has gone universal in its latest update. [Read more] | Read more »
Oh My Pixel! We Go Hands-on With The Kni...
I recently had a chance to play around with the upcoming Knights of Pen & Paper 2 from Paradox Interactive. I was a huge fan of the first game, so I had a lot of expectations going into it - and I wasn't disappointed. The game has gotten some... | Read more »
Throw Out Your Stylus and Sketch With Pe...
Penpoint Drawing, by Damin Liu,  is a new creative drawing app that uses your finger as your stylus. [Read more] | Read more »
Oceanhouse has Released Just So Thankful...
Oceanhouse Media, makers of digital book apps, are celebrating Mother's Day with a giveaway and a new app. [Read more] | Read more »
Get Dressed, the Virtual Wardrobe App fo...
Dressed, by  Kabuki Vision, is one of the first fashion apps for the Apple Watch. It pairs your watch with your iPhone to let you browse garments from your closet and mix and match them to create the perfect outfit. To add new pieces you just use... | Read more »
Show Everyone Who the Pack Master is in...
HeroCraft has added the new PvP Arena mode to  Warhammer 40,000: Space Wolf. Now you'll be able to go up against wolves around the world in intense  3-v-3 battles. As you battle the stages will get harder, but you'll get amazing rewards and climb... | Read more »
Jurassic World: The Game - Tips, Tricks,...
You’ve probably already got a huge and incredibly popular theme park in Jurassic Park Builder. That’s great, but Jurassic World: The Game is a slightly different beast. This time around you’ll be spending a lot more time in the Arena, and will have... | Read more »
Battledots (Games)
Battledots 1.00 Device: iOS Universal Category: Games Price: $.99, Version: 1.00 (iTunes) Description: Battledots is an intense, fast-paced strategy game where you must attack the opponent while defending your base, and everything is... | Read more »
Stella's Journey (Games)
Stella's Journey 1.1 Device: iOS Universal Category: Games Price: $2.99, Version: 1.1 (iTunes) Description: "The concept is neat and fun to play around with" - TouchArcade"Aside from looking fantastic, the game offers some very... | Read more »

Price Scanner via MacPrices.net

Sale! New 13-inch 256GB MacBook Air for $1099...
B&H Photo has the new 2015 13″ 1.6GHz/256GB MacBook Air on sale for $1099.99 including free shipping plus NY tax only. Their price is $100 off MSRP. Read more
Japan Post Group, IBM and Apple Deliver iPads...
Japan Post Group, IBM and Apple executives meeting in in New York City yesterday announced a first-of-its-kind initiative aimed at improving the quality of life for millions of Japanese senior... Read more
Worldwide Tablet Market Contracts For Second...
Worldwide tablet shipments recorded a second consecutive quarter of year-over-year decline in the first calendar quarter of 2015 (1Q15), according to preliminary data from the International Data... Read more
Apple restocks refurbished Mac minis for up t...
The Apple Store has restocked Apple Certified Refurbished 2014 Mac minis, with models available starting at $419. Apple’s one-year warranty is included with each mini, and shipping is free: - 1.4GHz... Read more
13-inch 2.5GHz MacBook Pro available for $999...
Adorama has the 13-inch 2.5GHz MacBook Pro on sale for $999 including free shipping plus NY & NJ sales tax only. Their price is $100 off MSRP. Read more
New 13-inch Retina MacBook Pros available for...
Save up to $80 on the purchase of a new 2015 13″ Retina MacBook Pro at the following resellers. Shipping is free with each model: 2.7GHz/128GB MSRP $1299 2.7GHz/256GB... Read more
15-inch 2.2GHz Retina MacBook Pro (Apple refu...
The Apple Store has restocked Apple Certified Refurbished 15″ 2.2GHz Retina MacBook Pros for $1699 including free shipping plus Apple’s standard one-year warranty. Their price is $300 off MSRP, and... Read more
1.4GHz Mac mini, refurbished, available for $...
The Apple Store has Apple Certified Refurbished 1.4GHz Mac minis available for $419. Apple’s one-year warranty is included, and shipping is free. Their price is $80 off MSRP, and it’s the lowest... Read more
Sale! 15-inch Retina MacBook Pros for up to $...
MacMall has 15″ Retina MacBook Pros on sale for up to $255 off MSRP. Shipping is free: - 15″ 2.2GHz Retina MacBook Pro: $1794.99 save $205 - 15″ 2.5GHz Retina MacBook Pro: $2244.99 save $255 B&H... Read more
Sale! New 11-inch 128GB MacBook Air for $799,...
B&H Photo has the new 2015 11″ 1.6GHz/128GB MacBook Air on sale for $799.99 including free shipping plus NY tax only. That’s $100 off MSRP. Read more

Jobs Board

Senior Identity Architect - *Apple* Pay - A...
Changing the world is all in a day039s work at Apple . If you love innovation, here039s your chance to make a career of it. You039ll work hard. But the job comes with Read more
Hardware Systems Integration Engineer - *App...
Changing the world is all in a day039s work at Apple . If you love innovation, here039s your chance to make a career of it. You039ll work hard. But the job comes with Read more
*Apple* Solutions Consultant - Retail Sales...
**Job Summary** The ASC is an Apple employee who serves as the Apple business manager and influencer in a hyper-business critical Reseller's store which delivers Read more
Technical Project Manager - *Apple* Pay - A...
**Job Summary** Apple Pay is seeking an experienced technical PM…manage the rollout of features to merchants for the Apple Pay platform in the US Within this role Read more
Software Engineer, *Apple* Watch - Apple (U...
…the team that is revolutionizing the watch! As a software engineer on the Apple Watch team, you will be responsible for building world-class applications and frameworks Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.