TweetFollow Us on Twitter

Jun 97 - Getting Started

Volume Number: 13 (1997)
Issue Number: 6
Column Tag: Getting Started

Filling in Some of the Objective-C Pieces

by Dave Mark

Last month, we learned most of the syntax of the Objective-C language. Since then, I have been scorching the e-mail, newsgroups, and phone lines trying to learn more. Much thanks to Michael Rutman, David Klingler, Bob McBeth, and Eric Gundrum for their time and energies in trying to get me on the straight and narrow. As always, the good stuff is theirs, the mistakes, mine.

@private, @public, and @protected

For me, much of the Objective-C learning process involves learning the differences between C++ and Objective-C. For example, C++ allows you to use the access specifiers public:, private:, and protected: to define the scope of a classes' data members and member functions. Objective-C offers a similar mechanism you can use to specify the scope of a classes' instance variables (methods are always public): the compiler directives @private, @public, and @protected.

Here's the official description of each of these compiler directives:

@private
the instance variable is accessible only within the class that declares it.
@protected
The instance variable is accessible within the class that declares it and within classes that inherit it.
@public
The instance variable is accessible everywhere.

Instance variables default to @protected, which makes sense. After all, if you mark an instance variable as @public, that would defeat the whole point of data encapsulation. The point is, you want to force access to your instance variables to occur via one of your classes' methods. So just forget about the @public compiler directive. The default setting of @protected will serve you in the vast majority of cases.

The @private directive does have its place, though. You would use @private if you don't want the instance variable inherited by subclasses. Perhaps you don't want a subclass monkeying with a variable that is key to the architecture of the base class. Or perhaps you want to minimize the dependencies between the base and sub classes. Though @private does have its place, don't use it unless you absolutely have a reason to. The general opinion seems to hold that you should never use @private at all -- that all classes should have all functionality overridable. Just wanted to make sure you heard both sides...

Here's an example that uses all three directives:

@interface Employee : Object
{
	char		*name;

@private
	int		yearsWithCompany;
	int		hoursVacation;

@protected
	char		*title;

@public
	id			supervisor;
	id			officeMate;
}

The @public, @private, and @protected compiler directives hold true for all instance variables that follow until either the end of the class or another directive is encountered. In the example above, the name variable is @protected, since it is not marked otherwise. yearsWithCompany and hoursVacation are @private, title is protected, and supervisor and officeMate are public. Of course, this sample was just to show you how this works and is not intended as realistic code.

Bottom line, your best bet is to leave these directives out of your code and just use the default setting of @protected. On the other hand, it is worth knowing how this works so you can read sample code that uses it and so you can use @private if you find a case where it makes sense.

Init vs. Init:

In last month's column, we looked at a sample program that included a simple class named Number. Here's the Number implementation:

#import "Number.h"

@implementation Number 

- init:(int)startValue /* This is BAD FORM - see below */
{
 [super init];

 value = startValue;

 return self;
}

- squareSelf
{
 value *= value;

 return self;
}

- print
{
 printf( "Number value: %d\n", value );

 return self;
}

@end

The Number class includes a method named init: which takes a single parameter. As it turns out, calling an initialization method init when it takes a parameter is a bad thing. The name init should be reserved for initialization methods with no parameters. Imagine if you had two different classes, each of which declared an init: method, one of which took a float, and one of which took an int as a parameter. Now imagine you had two object pointers, each declared as an id, one pointing to an object of one class, the second pointing to an object of the second class. If you send an init: method to one of these objects, the fact that both init: methods have the same name and yet take different parameter types will cause confusion and potential bad behavior. The name of your initialization method is what sets it apart from others. You'll see examples of this throughout the remainder of this column.

In the simplest case, an initialization method with no parameters, you'll definitely want to use the name init. The name init implies no parameters. The parameterless init starts off by sending the init method to its superclass, then initializing any instance variables that don't depend on parameters, and finally returning self.

Here's an example:

- init
{
	[super init];

	blockSize = 512;

	return self;
}

In this hypothetical example, blockSize is an instance variable whose initial value does not depend on a parameter. (In real life, we'd likely use a #define or, in C++ a const, but bear with the example.) Note that we sent the init message to our superclass before we do anything else. It is important that you send the initialization message to your superclass before you mess with your instance variables or call any of your other methods. Reason being, when you call your superclasses' initialization method, you give your superclass a chance to initialize its variables and a chance to initialize its superclass, etc.

If your class requires an initialization method that takes a parameter, give it a name that starts with init, then add text that reflects the parameters. For example, suppose you had a sequence of classes, Shape, Circle, and Cylinder, where Circle was derived from Shape, and Cylinder derived from Circle. Asssuming it took no parameters, the Shape initialization method would be called init. The Circle initialization method would require a radius, and might be called initRadius:, and the Cylinder's initialization method might be called initRadius:height:. You get the idea.

A Multi-Class Example

Designing your initialization methods can get a little more complex when you are working with subclasses. In the example above, the Shape class has an init method, while the Circle class, derived from Shape, adds a radius parameter in a method named initRadius:. So far, no problem. To initialize its superclass, initRadius: just sends an init message to its superclass:

[super init]

But what about the initRadius:height: method of the Cylinder class? Should it send an init message to its superclass? That doesn't make sense, since its superclasses' initialization method is initRadius: and takes a parameter. The correct approach is for each class to include all initialization methods of its superclass, adding in any additional methods for extra/differing parameters that it brings to the table. In our example, Shape would feature an init method, Circle would feature init and initRadius: methods, and Cylinder would feature init, initRadius:, and initRadius:height: methods.

Each init method will send an init message to its superclass, and set any instance variables unique to its class to a default value. For example, the Circle init method would set radius to 0 (or whatever) and the Cylinder init method would set height to 0.

Additional methods that are overriding existing super class methods send an initialization message to the superclass, passing parameters as appropriate. For example, the Cylinder initRadius: method sends an initRadius: message to Circle.

Finally, methods that don't have a matching method in the superclass send an initialization message to self using the method that most closely matches itself. For example, the Circle classes' initRadius: method sends an init message to self (no parameters), while the Cylinder classes' initRadius:height: method sends an initRadius: message to itself but includes the radius parameter. Once the called initialization method returns, the calling method continues by setting its unique instance variables to the parameter passed in to it. For example, once initRadius:height: calls [self initRadius:r] (which will set the radius instance variable to r), it then sets the height instance variable to h (the passed in height parameter).

If the last few paragraphs have left you a bit dazed and confused, not to worry. Here's a program that brings this all to life. As you go through the code, try to follow the chain of initialization. Where does each instance variable get initialized? Can you predict the sequence of initializations when initRadius:height: gets called? Try to work this out before you get to the project run at the end of the column.

The source code that follows is a ".m" and ".h" file for each of the three classes Shape, Circle, and Cylinder. In addition, you'll see a listing for main.m, the main() function that starts the ball rolling.

Shape.m

#import "Shape.h"

@implementation Shape

- init
{
 [super init];

 printf( "\n[Shape init]\n" );

 return self;
}

@end

Shape.h

#import <Object.h>

@interface Shape : Object
{
}

- init;

@end

Circle.m

#import "Circle.h"

@implementation Circle

- init
{
 [super init];

 printf( "[Circle init] - Set radius to 0...\n" );

 radius = 0;

 return self;
}

- initRadius:(int)r
{
 [self init];
 radius = r;

 printf( "[Circle initRadius] - Set radius to %d...\n",
									r );

 return self;
}

@end

Circle.h

#import "Shape.h"

@interface Circle : Shape
{
 int radius;
}

- init;
- initRadius:(int)r;

@end

Cylinder.m

#import "Cylinder.h"

@implementation Cylinder


- init
{
 [super init];

 printf( "[Cylinder init] - Set height to 0...\n" );

 height = 0;

 return self;
}

- initRadius:(int)r
{
 [super initRadius:r];

 printf( "[Cylinder initRadius]\n" );

 return self;
}

- initRadius:(int)r height:(int)h
{
 [self initRadius:r];

 height = h;

 printf
 ( "[Cylinder initRadius:height:] - Set height to %d...\n", h );

 return self;
}

@end

Cylinder.h

#import "Circle.h"

@interface Cylinder : Circle
{
 int height;
}

- init;
- initRadius:(int)r;
- initRadius:(int)r height:(int)h;

@end

main.m

#include "Cylinder.h"

void main()
{
 id shape = [[Shape alloc] init];
 id circle = [[Circle alloc] initRadius:33];
 id cylinder = [[Cylinder alloc] initRadius:27 height:10];

 [shape free];
 [circle free];
 [cylinder free];
}

Running the Program

When you run the program above, here's what you see:

[Shape init]

[Shape init]
[Circle init] - Set radius to 0...
[Circle initRadius] - Set radius to 33...

[Shape init]
[Circle init] - Set radius to 0...
[Cylinder init] - Set height to 0...
[Circle initRadius] - Set radius to 27...
[Cylinder initRadius]
[Cylinder initRadius:height:] - Set height to 10...

As you can see, the listing is broken into three parts, each produced by the initialization of a Shape, Circle, and Cylinder, respectively. Note that when (inside main.m) we created a Shape and sent it an init message, this produced a call of the Shape classes' init method. Simple. Of course, we really should have left the init method out of the Shape class, since it doesn't do anything but add overhead. If we left it out, the right thing would have happened (the init message would have found its way to the Object class).

When we created a Circle and sent it the initRadius: message, we spawn a chain of init messages to Shape and then Circle. Finally, the initRadius: message gets sent to Circle.

The Cylinder object produces a similar chain of initialization. First, we see the chain of init messages from Shape to Circle to Cylinder, then the chain of initRadius: messages from Circle to Cylinder, followed finally by the initRadius:height: message to Cylinder.

Till Next Month...

Spend some time looking over this output till you get the pattern. Once you understand this initialization technique, think about what would happen if you added an Oval class as a subclass to Circle, with an added width instance variable. How would this affect the initialization chain? If you have access to an Objective-C environment, take the time to enter this code and take it for a spin. Add some methods of your own (an area method for Circle, perhaps?) and experiment! See you next month...

 
AAPL
$98.52
Apple Inc.
-0.51
MSFT
$43.90
Microsoft Corpora
-0.07
GOOG
$585.73
Google Inc.
-4.87

MacTech Search:
Community Search:

Software Updates via MacUpdate

OS X Yosemite Wallpaper 1.0 - Desktop im...
OS X Yosemite Wallpaper is the gorgeous new background image for Apple's upcoming OS X 10.10 Yosemite. This wallpaper is available for all screen resolutions with a source file that measures 5,418... Read more
Acorn 4.4 - Bitmap image editor. (Demo)
Acorn is a new image editor built with one goal in mind - simplicity. Fast, easy, and fluid, Acorn provides the options you'll need without any overhead. Acorn feels right, and won't drain your bank... Read more
Bartender 1.2.20 - Organize your menu ba...
Bartender lets you organize your menu bar apps. Features: Lets you tidy your menu bar apps how you want. See your menu bar apps when you want. Hide the apps you need to run, but do not need to... Read more
TotalFinder 1.6.2 - Adds tabs, hotkeys,...
TotalFinder is a universally acclaimed navigational companion for your Mac. Enhance your Mac's Finder with features so smart and convenient, you won't believe you ever lived without them. Tab-based... Read more
Vienna 3.0.0 RC 2 :be5265e: - RSS and At...
Vienna is a freeware and Open-Source RSS/Atom newsreader with article storage and management via a SQLite database, written in Objective-C and Cocoa, for the OS X operating system. It provides... Read more
VLC Media Player 2.1.5 - Popular multime...
VLC Media Player is a highly portable multimedia player for various audio and video formats (MPEG-1, MPEG-2, MPEG-4, DivX, MP3, OGG, ...) as well as DVDs, VCDs, and various streaming protocols. It... Read more
Default Folder X 4.6.7 - Enhances Open a...
Default Folder X attaches a toolbar to the right side of the Open and Save dialogs in any OS X-native application. The toolbar gives you fast access to various folders and commands. You just click... Read more
TinkerTool 5.3 - Expanded preference set...
TinkerTool is an application that gives you access to additional preference settings Apple has built into Mac OS X. This allows to activate hidden features in the operating system and in some of the... Read more
Audio Hijack Pro 2.11.0 - Record and enh...
Audio Hijack Pro drastically changes the way you use audio on your computer, giving you the freedom to listen to audio when you want and how you want. Record and enhance any audio with Audio Hijack... Read more
Intermission 1.1.1 - Pause and rewind li...
Intermission allows you to pause and rewind live audio from any application on your Mac. Intermission will buffer up to 3 hours of audio, allowing users to skip through any assortment of audio... Read more

Latest Forum Discussions

See All

Frog Orbs 2 Review
Frog Orbs 2 Review By Nadia Oxford on July 29th, 2014 Our Rating: :: THIS MAGIC IS A TAD MONOTONOUS Universal App - Designed for iPhone and iPad Frog Orbs 2 is repetitive, but younger players should enjoy it nonetheless.   | Read more »
Puzzix Review
Puzzix Review By Jennifer Allen on July 29th, 2014 Our Rating: :: NICE IDEAUniversal App - Designed for iPhone and iPad A little like Tetris, Puzzix is all about piecing together blocks and watching them vanish. It could do with... | Read more »
Cannonball eMail is Now Live – Works Wit...
Cannonball eMail is Now Live – Works With Gmail, Yahoo, Outlook, Hotmail, and AOL Posted by Jessica Fisher on July 29th, 2014 [ permalink ] | Read more »
To The End Review
To The End Review By Lee Hamlet on July 29th, 2014 Our Rating: :: A VICIOUS CYCLEUniversal App - Designed for iPhone and iPad To The End will test players’ patience, timing, and dedication as they try to navigate all 13 levels in... | Read more »
Kairobotica (Games)
Kairobotica 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: In a galaxy not so far away, miscreants and monsters are wreaking havoc, and it's up to everyone's favorite mechanical mascot... | Read more »
Traps n’ Gemstones Review
Traps n’ Gemstones Review By Campbell Bird on July 28th, 2014 Our Rating: :: CASTLEVANIA JONESUniversal App - Designed for iPhone and iPad Fight mummies, dig tunnels, and ride a runaway minecart to discover ancient secrets in this... | Read more »
The Phantom PI Mission Apparition Review
The Phantom PI Mission Apparition Review By Jordan Minor on July 28th, 2014 Our Rating: :: GHOSTS BUSTEDUniversal App - Designed for iPhone and iPad The Phantom PI is an exceedingly clever and well-crafted adventure game.   | Read more »
More Stubies Are Coming Your Way in a Ne...
More Stubies Are Coming Your Way in a New Update Posted by Jessica Fisher on July 28th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
The Great Prank War Review
The Great Prank War Review By Nadia Oxford on July 28th, 2014 Our Rating: :: PRANKING IS SERIOUS BUSINESSUniversal App - Designed for iPhone and iPad Though short, The Great Prank War offers an interesting and fun mix of action and... | Read more »
Marvel Contest of Champions Announced at...
Marvel Contest of Champions Announced at Comic-Con Posted by Jennifer Allen on July 28th, 2014 [ permalink ] Announced over the weekend at San Diego Comic-Con was the fairly exciting looking Marvel Contest of Champions. | Read more »

Price Scanner via MacPrices.net

Updated MacBook Pro Price Trackers
We’ve updated our MacBook Pro Price Trackers with the latest information on prices, bundles, and availability on the new 2014 models from Apple’s authorized internet/catalog resellers as well as... Read more
Apple updates MacBook Pros with slightly fast...
Apple updated 13″ and 15″ Retina MacBook Pros today with slightly faster Haswell processors. 13″ models now ship with 8GB of RAM standard, while 15″ MacBook Pros ship with 16GB across the board. Most... Read more
Apple drops price on 13″ 2.5GHz MacBook Pro b...
The Apple Store has dropped their price for the 13″ 2.5GHz MacBook Pro by $100 to $1099 including free shipping. Read more
Apple drops prices on refurbished 2013 MacBoo...
The Apple Store has dropped prices on Apple Certified Refurbished 13″ and 15″ 2013 MacBook Pros, with model now available starting at $929. Apple’s one-year warranty is standard, and shipping is free... Read more
iOS 8 and OS X 10.10 To Support DuckDuckGo As...
Writing for Quartz, Dan Frommer reports that Apple’s forthcoming iOS 8 and OS X 10.10 operating systems version updates will allow users to select DuckDuckGo as their default search engine. He notes... Read more
U.K. Hospital Using iPods and iPads To Record...
British news journal GazetteLive’s. Ian McNeal notes that the old “an apple a day keeps the doctor away” proverb is being turned on its head at http://southtees.nhs.uk/hospitals/james-cook/ James... Read more
13-inch 2.5GHz MacBook Pro on sale for $1099,...
Best Buy has the 13″ 2.5GHz MacBook Pro available for $1099.99 on their online store. Choose free shipping or free instant local store pickup (if available). Their price is $100 off MSRP. Price is... Read more
Roundup of Apple refurbished MacBook Pros, th...
The Apple Store has Apple Certified Refurbished 13″ and 15″ MacBook Pros available for up to $400 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free. Their prices... Read more
Record Mac Shipments In Q2/14 Confound Analys...
A Seeking Alpha Trefis commentary notes that Apple’s fiscal Q3 2014 results released July 22, beat market predictions on earnings, although revenues were slightly lower than anticipated. Apple’s Mac’... Read more
Intel To Launch Core M Silicon For Use In Not...
Digitimes’ Monica Chen and Joseph Tsai, report that Intel will launch 14nm-based Core M series processors specifically for use in fanless notebook/tablet 2-in-1 models in Q4 2014, with many models to... Read more

Jobs Board

Sr Software Lead Engineer, *Apple* Online S...
Sr Software Lead Engineer, Apple Online Store Publishing Systems Keywords: Company: Apple Job Code: E3PCAK8MgYYkw Location (City or ZIP): Santa Clara Status: Full Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
Sr. Product Leader, *Apple* Store Apps - Ap...
**Job Summary** Imagine what you could do here. At Apple , great ideas have a way of becoming great products, services, and customer experiences very quickly. Bring Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.