TweetFollow Us on Twitter

GX Rigid Body Dragging
Volume Number:12
Issue Number:8
Column Tag:New Technologies

Dragging and Rigid-Body
Transformations

QD GX can make your Mac a swinging place

By Lawrence D’Oliveiro

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

QuickDraw GX offers some interesting new possibilities for interactive graphics. This article is a note on one of them: the idea of dragging an object about, and having it rotate to follow the drag, just like real objects tend to do when you pull or push them.

The code I’m presenting here is by no means finished; think of it as a rough sketch, a demonstration of the concept. It is written in Modula-2, and makes heavy use of my standard libraries, which you can find at ftp://ftphost.waikato.ac.nz/pub/ldo/MyModLib.hqx.

Feel free to use my code as a starting point for your own experiments.

Transformations in QuickDraw GX

QuickDraw GX supports 3-by-3 mappings, which are capable of applying any kind of linear transformation to the geometry of a GX shape. (A linear transformation is one that preserves the straightness of lines. Thus, a GX mapping cannot transform a straight line to a curve, or vice versa.)

Linear transformations can be broken down into various simple types: translations (changes of position), rotations, scaling, skewing and perspective. In fact, any arbitrary linear transformation can be considered to be built from components of these types.

There are various useful subsets of linear transformations: an affine transformation is one where any pair of parallel lines remains parallel after the transformation. GX’s perspective transformations clearly are not affine; thus, an affine transformation is one that has no perspective component.

An important subset of affine transformations is the set of rigid-body transformations: these are ones that preserve the distance between any two given points. Rigid-body transformations consist only of translations and rotations; this corresponds intuitively to our notions of real rigid bodies, which cannot be scaled or stretched in any way, though you can usually move them around and reorient them any way you like (unless they’re a lot bigger or heavier than you are).

Figure 1. As the cursor pulls the arrow to the right, the arrow swings into line with the direction of motion. These are successive screen shots from my program; the upper-left corner of each shot is the upper-left corner of the window.

Dragging a Rigid Body

Consider what happens when you try to move a real rigid body. The body has a center of mass; if you orient the direction of your force so that it passes exactly through this point, the object will change its position without rotating. But if you offset your force by any amount, you will produce a torque, and the object will change both its position and its orientation. (For example, place a book on a smooth surface such a desk, grasp it by just one corner, and pull in a straight line; the book, as it starts to move, also swings around to line up its center of mass with the direction of travel.)

Figure 1 shows this happening in my program.

In the following analysis, I’ll follow the rules of Aristotelian, rather than Newtonian, physics: objects have no inertia, but they are subject to friction, which acts through their center of mass. Thus, they stop moving as soon as you stop pushing them.

Consider a body with its center of mass at a point C. Say you apply a small force on it at a point F, sufficient to displace that point to a new position G close to F. The center of mass is in turn moved to a new position D (Figure 2).

Figure 2. Movements... Figure 3. ...and analysis

The force you apply can be split into two components: the component parallel to CF moves the object without rotating it (hence the new position of the center of mass, D, lies on this line), while the component perpendicular to this line exerts a pure rotational force on the object without moving the center of mass.

In Figure 2, q is the angle CFG and can have any value, while f is the angle of rotation FCG, and is assumed to be small (you’ll see why shortly).

Now draw a line P1P2 parallel to CF, and project the points C, D, F and G onto this line at the points Cp, Dp, Fp and Gp (Figure 3). Gt is the intersection between FFp and CG. In this case, q is greater than 90°, so the angle GFGt is q - 90° (I’ll leave the analysis of the case where q is less than 90° as an “exercise for the reader”, as they say). Since f is small, FGtG is close to 90°, so the ratio FGtFG is approximately cos q - 90°, which equals sin q. Now, since GFGt is a right angle, sin f equals FGtCF which becomes FG sin qCF when you apply the above approximation.

For larger movements, where the angle f might not be small, simply split the movement into lots of small steps with correspondingly small f. If you want a fancy-sounding term for this mathematical trick, it’s called differential calculus.

Translating This Into Code

The next step is to write some actual code based on this analysis. In the following, I’ll intermingle declarations and statements to suit the exposition, rather than the requirements of strict language syntax (in other words, I’ll be following the order in which code is usually written).

VAR
 LastMouse, ThisMouse : Point;
 ThisDelta : gxPoint;
 ShapeCenter : gxPoint;

LastMouse is the point F, while ThisMouse is the point G. ThisDelta is the displacement FG, computed as follows:

 ThisDelta.x := IntToFixed(ThisMouse.h - LastMouse.h);
 ThisDelta.y := IntToFixed(ThisMouse.v - LastMouse.v);

ShapeCenter is supposed to be the center of mass, or center of geometry, of the shape. GX provides a call, GXGetShapeCenter, that is supposed to return this in the coordinate system of the shape geometry itself. You could then put this through the shape mapping to get the center in “local coordinates”. Unfortunately, when I tried this, I got incorrect results for a complex picture shape (a QuickDraw GX bug?). So, to avoid this problem, my code takes ShapeCenter as the center of the shape’s bounding rectangle, rather than of its actual geometry:

GXGetShapeLocalBounds(TheShape, Bounds);
ShapeCenter.x := (Bounds.right + Bounds.left) DIV 2;
ShapeCenter.y := (Bounds.bottom + Bounds.top) DIV 2;

Next we perform the computation of the actual rotation angle, using good old floating-point numbers instead of fixed-point ones:

VAR
 DeltaX, DeltaY, Delta : LongReal;
 RadiusX, RadiusY, Radius : LongReal;
 DragAngle, RotationAngleSin : LongReal;
 RotationAngle : LongReal;

DeltaX and DeltaY are the x- and y-components of the displacement FG, while Delta is the magnitude of this displacement.

DeltaX := Fix2Double(ThisDelta.x);
DeltaY := Fix2Double(ThisDelta.y);
Delta := Sqrt(Squared(DeltaX) + Squared(DeltaY));

Similarly, RadiusX and RadiusY are the x- and y-components of thedistance CF, while Radius is the magnitude of this distance.

RadiusX := Fix2Double(IntToFixed(LastMouse.h) - ShapeCenter.x);
RadiusY := Fix2Double(IntToFixed(LastMouse.v) - ShapeCenter.y);
Radius := Sqrt(Squared(RadiusX) + Squared(RadiusY));

DragAngle is the angle q. I compute it here from the difference between the angles of the lines FG and CF (ArcTan2(x, y) returns the angle with tangent y/x in the appropriate quadrant, taking account of the signs of x and y):

DragAngle := ArcTan2(DeltaX, DeltaY) - ArcTan2(RadiusX, RadiusY);

RotationAngleSin is the sine of the angle f. DLimit is just a routine that constrains its first argument to within the specified limits (in this case, between -1 and 1). The need for this constraint will become apparent later.

RotationAngleSin := DLimit
 (
 Delta * Sin(DragAngle) / Radius,
 FLOATD(-1),
 FLOATD(1)
 );

And finally, we compute the angle f itself, converting from the floating-point radians that SANE operates in, to the fixed-point degrees that QuickDraw GX uses:

RotationAngle := 
 Double2Fix(ArcSin(RotationAngleSin) * FLOATD(180) / Pi())

Applying the transformation to the shape is pretty straightforward. Simply obtain the shape’s existing mapping:

VAR
 ShapeMapping : gxMapping;
...
GXGetShapeMapping(TheShape, ShapeMapping);

then apply the appropriate movement and rotation:

MoveMapping
  (
 (*@target :=*) ShapeMapping,
 (*hOffset :=*) ThisDelta.x,
 (*vOffset :=*) ThisDelta.y
  );
RotateMapping
  (
 (*@target :=*) ShapeMapping,
 (*angle :=*) RotationAngle,
 (*xCenter :=*) IntToFixed(ThisMouse.h),
 (*yCenter :=*) IntToFixed(ThisMouse.v)
  );
GXSetShapeMapping(TheShape, ShapeMapping)

Note that the center of rotation used in the RotateMapping call is the point G rather than C. This is all right, because the direction of rotation calculated by the code is actually the opposite of that in the analysis; thus the effect is the same.

Other Matters

There are several other aspects of the example code that I’ve glossed over so far.

To keep the size of the source code down, the program itself has absolutely the minimum user interface I felt I could get away with. It doesn’t even have any menus! When you start it up, it already has a shape loaded that you can try dragging about. You can bring in a different shape by dragging it into the window, from a Finder clipping file or another drag-aware application (I’ve provided a few sample clippings you can try). To quit the program, click the close box in the window.

An important issue is how to do off-screen rendering, so that your on-screen drawing doesn’t flicker. There is no direct equivalent to QuickDraw GWorlds in QuickDraw GX, but the GX SDK library code shows you how to create a much more powerful alternative: an offscreen graphics context that can optimize drawing simultaneously for multiple screens, rather than just the deepest one that your window happens to cross.

My actual program uses a routine I wrote called MoveSprite, which creates temporary offscreen structures every time you call it to move an object. It automatically sizes these structures to cover only the affected on-screen area (and doesn’t bother doing off-screen drawing if the old and new positions of the object don’t overlap). Thus, this routine is simpler to use than explicitly creating separate off-screen structures and reusing them for the duration of the drag, though it may be slower.

One feature of the code is that it doesn’t rotate the shape if you drag it at a point close to its center, or if you hold the command-key down. I figure this sort of feature could be useful in a “real” program, where the user might not always want the object to rotate.

One pitfall you always have to keep in mind when doing calculations on a computer is rounding error. In this case, repeated calls to RotateMapping can accumulate distortions in the shape geometry, since the mapping elements cannot be computed exactly. To get around this, you should keep separate track of the shape position and rotation angle, and recompute the shape mapping from these values each time, instead of applying an incremental rotation to the previous mapping. This will keep the distortion within fixed bounds, instead of letting it accumulate. My code doesn’t do this, though I must admit I have yet to notice any distortions in shapes after repeated drags.

Finally, I should own up to one important liberty I have taken with the mathematical analysis. Remember how I kept saying that the displacement and rotation angle were assumed to be small? In fact, the code will happily compute arbitrarily large values for the FG displacement, depending on how quickly you can move the mouse, and how long it takes your machine to redraw the shape in between checking the mouse position. This means that, for large mouse movements, the code is no longer strictly MC (Mathematically Correct). It’s also why I put in the DLimit call.

But then, I figure this is part of the fun of programming. For instance, I have found that I can drag a shape to a corner of the window, and leave the mouse absolutely stationary outside the window, while the shape continues to spin round and round in the corner. Is this a consequence of the code hitting a non-MC situation? I don’t know - you tell me!

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

FontExplorer X Pro 5.0.1 - Font manageme...
FontExplorer X Pro is optimized for professional use; it's the solution that gives you the power you need to manage all your fonts. Now you can more easily manage, activate and organize your... Read more
Calcbot 1.0.2 - Intelligent calculator a...
Calcbot is an intelligent calculator and unit converter for the rest of us. Featuring an easy-to-read history tape, expression view, intuitive conversion, and much more! Features History Tape -... Read more
MTR 5.0.0.1 - The Mac's oldest and...
MTR (was MacTheRipper)--the Mac's oldest and smartest DVD-backup app--is now updated to version 5.001 MTR -- the complete toolbox, not a one-trick, point-and-click extractor. MTR is intended for... Read more
LibreOffice 4.4.5.2 - Free, open-source...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
Adobe Lightroom 6.1.1 - Import, develop,...
Adobe Lightroom is available as part of Adobe Creative Cloud for as little as $9.99/month bundled with Photoshop CC as part of the photography package. Lightroom 6 is also available for purchase as a... Read more
File Juicer 4.41 - Extract images, video...
File Juicer is a drag-and-drop can opener and data archaeologist. Its specialty is to find and extract images, video, audio, or text from files which are hard to open in other ways. It finds and... Read more
A Better Finder Rename 9.52 - File, phot...
A Better Finder Rename is the most complete renaming solution available on the market today. That's why, since 1996, tens of thousands of hobbyists, professionals and businesses depend on A Better... Read more
OmniFocus 2.2.3 - GTD task manager with...
OmniFocus helps you manage your tasks the way that you want, freeing you to focus your attention on the things that matter to you most. Capturing tasks and ideas is always a keyboard shortcut away in... Read more
TinkerTool 5.4 - Expanded preference set...
TinkerTool is an application that gives you access to additional preference settings Apple has built into Mac OS X. This allows to activate hidden features in the operating system and in some of the... Read more
Tinderbox 6.3.1 - Store and organize you...
Tinderbox is a personal content management assistant. It stores your notes, ideas, and plans. It can help you organize and understand them. And Tinderbox helps you share ideas through Web journals... Read more

Gallery Doctor (Photography)
Gallery Doctor 1.0 Device: iOS iPhone Category: Photography Price: $2.99, Version: 1.0 (iTunes) Description: Free up valuable iCloud and iPhone storage with Gallery Doctor, the only iPhone cleaner that automatically identifies the... | Read more »
You Against Me (Games)
You Against Me 1.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0 (iTunes) Description: A simple game… You. Me. Claim, steal, lock, score, win! | Read more »
Yep, it's True - Angry Birds 2 is O...
The not exactly rumors were true and the birds are back. Angry Birds 2 has come to the App Store and the world will... well I suppose it'll still be the same, but now we have more bird-flinging options! [Read more] | Read more »
You Could Design Your Own Card for Chain...
If you've ever wanted to create your own item, weapon, trap, or even monster for Chainsaw Warrior: Lords of the Night, this is your chance. Auroch Digital is currently holding a contest so that fans can fight to the death (not really) to see which... | Read more »
Bitcoin Billionaire is Going Back in Tim...
If you thought you managed to buy everything there is to buy in Bitcoin Billionaire and make all the money, well you though wrong. Those of you who made it far enough might remember investing in time travel - and it looks like that investment is... | Read more »
Domino Drop (Games)
Domino Drop 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Domino Drop is a delightful new puzzle game with dominos and gravity!Learn how to play it in a minute, master it day by day.Your... | Read more »
OPERATION DRACULA (Games)
OPERATION DRACULA 1.0.1 Device: iOS Universal Category: Games Price: $5.99, Version: 1.0.1 (iTunes) Description: 25% off launch sale!!! 'Could prove to be one of the most accurate representations of the Japanese bullet hell shmup... | Read more »
Race The Sun (Games)
Race The Sun 1.01 Device: iOS iPhone Category: Games Price: $4.99, Version: 1.01 (iTunes) Description: You are a solar craft. The sun is your death timer. Hurtle towards the sunset at breakneck speed in a futile race against time.... | Read more »
Tap Delay (Music)
Tap Delay 1.0.0 Device: iOS Universal Category: Music Price: $4.99, Version: 1.0.0 (iTunes) Description: Back in the “old days”, producers and engineers created delay and echo effects using tape machines. Tap Delay combines the warm... | Read more »
This Week at 148Apps: July 20-24, 2015
July is Heating Up With 148Apps How do you know what apps are worth your time and money? Just look to the review team at 148Apps. We sort through the chaos and find the apps you're looking for. The ones we love become Editor’s Choice, standing out... | Read more »

Price Scanner via MacPrices.net

Apple’s Education discount saves up to $300 o...
Purchase a new Mac or iPad at The Apple Store for Education and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free,... Read more
12-inch MacBooks in stock for $20 off, save o...
Adorama has 12″ Retina MacBooks in stock for $20 off MSRP including free shipping plus NY & NJ sales tax only. For a limited time, Adorama will include a free Apple USB-C to USB Adapter, free 4-... Read more
College Student Deals: Additional $100 off Ma...
Take an additional $100 off all MacBooks and iMacs at Best Buy Online with their College Students Deals Savings, valid through August 8, 2015. Anyone with a valid .EDU email address can take... Read more
2015 13-inch 2.7GHz Retina MacBook Pro on sal...
B&H Photo has the new 2015 13″ 2.7GHz/128GB Retina MacBook Pro on sale today for $1199 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more
2.8GHz Mac mini available for $988, includes...
Adorama has the 2.8GHz Mac mini available for $988, $11 off MSRP, including a free copy of Apple’s 3-Year AppleCare Protection Plan. Shipping is free, and Adorama charges sales tax in NY & NJ... Read more
Updated Mac Price Trackers
We’ve updated our Mac Price Trackers with the latest information on prices, bundles, and availability on systems from Apple’s authorized internet/catalog resellers: - 15″ MacBook Pros - 13″ MacBook... Read more
High-Precision Battery Fuel Gauge IC Extends...
Renesas Electronics Corporation has announced its new lithium-ion (Li-ion) battery fuel gauge IC, the RAJ240500, designed to extend battery life for connected mobile devices such as tablets, notebook... Read more
27-inch 3.3GHz 5K iMac on sale for $1799, $20...
B&H Photo has the 27″ 3.3GHz 5K iMac on sale for $1799 including free shipping plus NY tax only. Their price is $200 off MSRP, and it’s the lowest price available for this model from any Apple... Read more
Twelve South Free Dual Screen Backgrounds Co...
Twelve South has posted a second collection of travel Desktop photos, noting: For the Twelve South team, a vacation is never just a vacation. It’s a time to try out new prototypes on the road, visit... Read more
Apple Refurbished iMacs available for up to $...
The Apple Store has Apple Certified Refurbished iMacs available for up to $380 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 27″ 3.5GHz 5K iMac – $1949 $... Read more

Jobs Board

Engineering Manager, Search Relevance, *Appl...
**Job Summary** Apple 's new Spotlight Suggestions service provides fast, relevant search results from the Inte et in Spotlight and Safari on iOS and OS X. We are looking Read more
Lead Infrastructure Engineer - *Apple* /Mac P...
…of a team * Requires proven problem solving skills Preferred Additional: * Apple Certified System Administrator (ACSA) * Apple Certified Technical Coordinator (ACTC) Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales. Specialist - Retail Customer Service and Sales. Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales. Specialist - Retail Customer Service and Sales. Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.