TweetFollow Us on Twitter

OpenDoc Framework
Volume Number:11
Issue Number:11
Column Tag:APPLE TECHNOLOGY

The OpenDoc Development Framework

A modern framework for OpenDoc development.

By Jim Lloyd, jim@melongem.com

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Developing for OpenDoc

The OpenDoc Development Framework (ODF) is a modern object-oriented framework for developing OpenDoc components for Macintosh and 32-bit Windows platforms. It significantly reduces the work required to create an OpenDoc component editor, especially if you’re developing the part editor for both Macintosh and Windows.

In this article, I’ll provide you with an overview of ODF. Because ODF is too large to address in one short article, I’m forced to condense and highlight. My goal is to provide you with an understanding of the problems ODF solves for you and how it solves them, and to give you a taste of what it is like to develop an OpenDoc component using ODF. I assume some level of understanding of OpenDoc, but not much, so if this is your first exposure to OpenDoc, I suggest you dive in anyway.

Why Another Framework?

Macintosh developers today have their choice of several frameworks. Some of the better known frameworks include Apple’s MacApp, Symantec’s TCL, Metrowerks’ PowerPlant, MacTech’s Sprocket, and Paul Dubois’ TransSkel. If you’ve used any of these frameworks, then you probably appreciate the time and aggravation they can save you by providing a solid foundation on which to build your application. These frameworks not only provide you with code common to all Macintosh applications, they provide you with an architectural framework that makes it easier to design your own application. If all goes well, you simply “fill in the colors and connect the dots,” so to speak.

The degree that “all goes well” depends on the framework you choose and your application’s problem domain. The truth is, any framework is designed to work well with a specific range of application domains. If your application doesn’t fit within that range, then the framework will at best get in your way from time to time, and at worst be totally useless. You are not likely to have much success trying to write a 2K INIT using TCL or MacApp. I don’t consider this to be a shortcoming of those frameworks; common sense dictates that one shouldn’t assume a given tool is the right tool for all jobs, big and small.

Of course, a framework shouldn’t be a single tool; it should be a collection of tools that work well together. If the framework is done well, some of these tools will be applicable to any problem domain. Modern frameworks are designed with this in mind. PowerPlant, for example, is well suited for both simple “dashboard” applications and large-scale applications that use multiple document types, and pieces of the framework can be used in programs that don’t fit these domains.

Why ODF?

Why ODF? Because even a flexible framework like PowerPlant isn’t appropriate for all applications. First, developers need to deliver their applications on multiple platforms, including Microsoft Windows. Second, OpenDoc introduces a new set of requirements that may be very difficult to fulfill unless the requirements are considered in the initial design of the framework. ODF addresses both of these issues. ODF is a modern framework designed to be flexible and robust, to be cross-platform, and to provide complete support for OpenDoc.

ODF is a cross-platform framework because its APIs abstract away the particulars of each operating systems’ specific data structures and APIs. ODF defines platform-independent APIs, and implements these APIs on multiple operating systems. Developers who program to the framework’s APIs exclusively should be able to move their applications to every operating system supported by the framework by simply recompiling their code. ODF currently supports the Macintosh OS for both 68K and PowerPC, and supports Microsoft Windows for its 32-bit operating systems, Windows 95 and Windows NT.

ODF includes a rich foundation of subsystems organized into two layers: the Foundation layer and the OS layer. Subsystems in the Foundation layer have no dependencies on the subsystems in the OS layer, and are generally useful for a very wide range of application domains. Subsystems in the OS layer provide operating system services such as files, resources, and graphics using platform-independent interfaces.

On top of these two layers we add a third layer, known as the Framework layer. The ODF Framework layer is specific to building OpenDoc component editors, and is designed to solve the problems of that particular domain as well as possible. ODF provides full coverage of the OpenDoc APIs, and correctly implements the human interface standards. If you use ODF to develop your OpenDoc part, you’ll need to do less work to make your part functional. You’ll also save yourself much of the additional effort required to make your part interoperate correctly with other parts, as well as the effort required to provide the correct human interface behavior.

An extra benefit to using ODF is that it provides some of the best sample code for OpenDoc parts that you can find. The ODF examples range from the minimalist ODFHello part, which is our interpretation of “Hello World”, implemented as a part, to ODFDraw, a cross-platform drawing part with floating palettes for drawing tools, pattern selection, and color selection. Of greater significance, ODFDraw is a robust container part for embedding other parts. ODFDraw has been the container of choice for OpenDoc demonstrations for much of the last year.

Also included among the ODF examples are a bitmap part, a clock part, a movie part, a table part, and finally the “beeper” part, which will play a big role in this article.

Extending The Beeper’s Functionality

ODFBeeper is a simple button part that can play a sound resource. ODFBeeper, as delivered on previous releases of ODF, supports drag-and-drop so that you can change the sound that is played by dropping a sound file onto the button. In this article, we’ll extend the Beeper part to also execute any compiled AppleScript dropped onto it. Thanks to Eric Jackson for coming up with this idea and drafting me to work on it with him at a recent ODF Coding Retreat. Eric and I did a quick hack so that the Beeper would execute scripts instead of playing a sound. It occurred to me later that with only a little more effort, the Beeper could do either sounds or scripts. The code presented in this article does both, and uses an architecture that would make it easy to add other kinds of actions besides sounds and scripts.

In order to see where we are going, let’s first look at a screen snapshot of the final product:

ODFBeeper User Interface (such as there is)

This screen shot shows an ODFDraw document being used as a generic container. It contains two ODFBeeper parts embedded inside it. Conveniently located nearby are some sound files and some compiled AppleScript files. The user can drag any of these files onto either of the buttons. Clicking on the button will perform the action corresponding to the last file dropped onto the button. Changes to the whole document are persistent. The user can use the capabilities of the container application to rearrange the buttons, and can change the action of a button by dropping a new script or sound file onto the button. Saving the document saves all of the state, so the buttons will be in the same locations and perform the same actions the next time the document is opened.

Developing A Part Editor

Developing a part with ODF is much like developing an application with an application framework like PowerPlant, TCL, or MacApp. You can use your favorite C++ programming tools, including Apple’s, Metrowerks’ and Symantec’s development environments, and other tools such as Object Master from ACIUS and The Debugger from Steve Jasik. The ODF view system is still evolving, so currently there are no visual tools for laying out your part’s views, but visual tools for ODF are under development.

For the purposes of this article, I started with the source for the ODFBeeper example part included with the 1.0d9 release of ODF, which was provided on the OpenDoc DR3 CD. If you have a source code disk subscription, the project and source for this extended example will be on your source code disk, but you’ll still need the OpenDoc DR3 CD if you want to further enhance the example. If you don’t have a source code subscription, keep an eye out for the OpenDoc DR4 release; ODF 1.0d11 will be on that CD and will include the extended ODFBeeper example.

By the way, there’s no way that MacTech could publish all the source code necessary for this sample (and you wouldn’t want to try to type it all in!), so I won’t be showing complete source code listings in this article. Instead, I’ll show the relevant snippets of code as they are discussed. In these snippets, I’ll sometimes omit code not directly relevant to the discussion by replacing several lines of code with a single line containing an ellipsis and optionally a comment, like this:

...      // irrelevant stuff omitted

ODF parts can be developed for either PowerPC or 68K using several different environments. For this article I used the PowerPC compiler in the CW6 release of Metrowerks CodeWarrior Gold and haven’t yet tested the part with other environments, but you can expect the part to be buildable with all supported development environments on the DR4 CD. The following is a snapshot of the ODFBeeper CodeWarrior project:

ODFBeeper Project

The ODFBeeper example uses four source files. BeeperPart.cpp implements the classes CBeeperPart and CBeeperFrame, which are subclasses of the ODF classes FW_CPart and FW_CFrame respectively. BeeperSel.cpp implements the CBeeperSelection class, which is a subclass of the ODF class FW_CSelection. Actions.cpp implements the classes CAction, CSoundAction, and CScriptAction, all of which are completely specific to ODFBeeper; ODF itself knows nothing about actions. SOMBeeper.cpp contains the C++ bindings for the required SOM subclass of ODPart, which won’t be discussed in this article. In addition, ODFBeeper uses the resource file BeeperPart.rsrc that contains a typical assortment of icons, strings, etc. It won’t be discussed further in this article either.

I’ll now proceed to describe the source code in the three source files Actions.cpp, BeeperPart.cpp, and BeeperSel.cpp, in that order. However, before discussing the Action classes, I think it would be worthwhile to partially discuss the CBeeperPart class. If you are familiar with the Model-View-Controller architecture from Smalltalk that has been adapted in various incarnations in most frameworks, then you can consider the Action classes to be the Model, CBeeperFrame to be the View, and CBeeperPart to be the Controller. Since the CBeeperPart is in control, it is worthwhile starting with its relationship to the Action classes.

CBeeperPart

Here is a partial definition of the class CBeeperPart:

class CAction; // forward declaration

class FW_CLASS_ATTR CBeeperPart : public FW_CPart
{
public:
    ...  // constructors, methods inherited from FW_CPart

//----------------------------------------------------------
// New API
//
public:
 CAction* GetAction() { return fAction; }
 void   SetAction(CAction* action);

public:
 void   DoAction();

//----------------------------------------------------------
// Data Members
//
private:
 CAction* fAction;
};

In ODF 1.0d9, CBeeperPart had a single data member that was a handle to the sound resource to play when the button was clicked. Since we want our new part to perform different kinds of actions, we’ve changed the data member to be a pointer to an abstract class CAction. We’ll use the Action abstraction to minimize the dependencies of CBeeperPart on the details of implementing sound and script actions. CBeeperPart knows about the existence of abstract actions, and has a very simple protocol for actions which include the ability to get and set the current action, and to forward a request to apply the action to the current CAction object.

CAction

Let’s now look at the definition of the abstract class CAction:

class FW_CLASS_ATTR CAction
{
//----------------------------------------------------------
// Initialization/Destruction
//
public: 
 CAction();
 virtual ~CAction();
 
//----------------------------------------------------------
// Action protocol
//
public: 
 virtual void Internalize(Environment* ev, 
 ODStorageUnit* storage) = 0;
 virtual void Externalize(Environment* ev, 
 ODStorageUnit* storage) = 0;
 virtual void DoIt() = 0;
};

Action objects assume a two-step initialization; they are created in a default state and then initialized from a storage unit with the Internalize method. They also know how to save themselves to a storage unit via the Externalize method, and to do their action via the DoIt method. In this abstract base class, the three methods other than the constructor and destructor are pure virtual methods. Subclasses of CAction must provide a default constructor, a destructor, and implementations of the three virtual methods Internalize, Externalize, and DoIt.

CSoundAction

Let’s now look at the implementation of the two Action subclasses. First, the definition for the class CSoundAction:

class FW_CLASS_ATTR CSoundAction : public CAction
{
//----------------------------------------------------------
// Initialization/Destruction
//
public:
 CSoundAction();
 virtual ~CSoundAction();
 
 static FW_Boolean IsInStorage(
 Environment* ev, ODStorageUnit* storage);
 
//----------------------------------------------------------
// Action protocol
//
public:
 virtual void Internalize(Environment* ev, 
 ODStorageUnit* storage);
 virtual void Externalize(Environment* ev,
 ODStorageUnit* storage);
 virtual void DoIt();

//----------------------------------------------------------
// Private implementation
//
private:
 void InternalizeSound(Environment* ev, 
 ODStorageUnit* storage);
 void InternalizeSoundFile(Environment* ev, 
 ODStorageUnit* storage);
 
 Handle fSoundHandle;
};

This class is a simple implementation of the class CAction, so the constructor, destructor, and three methods Internalize, Externalize, and DoIt are dictated by the base class. CSoundAction adds a public static method IsInStorage, two implementation methods for internalizing from specific sound formats, and a data member for storing a sound handle. Let’s look at the definitions of the methods of this class, beginning wit the implementation of the Internalize method inherited from CAction:

CSoundAction::Internalize

void CSoundAction::Internalize(Environment* ev, 
 ODStorageUnit* storage)
{
 FW_Boolean internalized = FALSE;
 
 if (storage->Exists(ev, 
 kODPropContents, kSoundScrapKind, 0))
 {
    // Mac 'snd ' in Scrap
 storage->Focus(ev, 
 kODPropContents, 
 kODPosUndefined, 
 kSoundScrapKind, 
 0,
 kODPosUndefined);
 InternalizeSound(ev, storage);
 }
 else if (storage->Exists(ev, 
 kODPropContents, kSoundFileKind, 0))
 {
    // Mac sound file
 storage->Focus(ev, 
 kODPropContents, 
 kODPosUndefined, 
 kHFSFlavorType, 
 0, 
 kODPosUndefined);
 InternalizeSoundFile(ev, storage);
 }
}

This code examines the storage unit for the existence of either a sound resource (OSType 'snd') or a sound file (OSType 'sfil'). If either is found, the code focuses the storage unit and then calls one of the two private member functions for reading the specific data type.

By the way, the constants kSoundScrapKind, kSoundFileKind, and kHFSFlavorType are strings defined in the header file BeeperDef.h using a naming convention agreed upon by the OpenDoc implementors (Apple, IBM, and Novell):

#define kHFSFlavorType "Apple:OSType:Scrap:hfs "
#define kSoundScrapKind "Apple:OSType:Scrap:snd "
#define kSoundFileKind  "Apple:OSType:FileType:sfil"

If Internalize detects a sound resource in the scrap, it calls the method InternalizeSound:

CSoundAction::InternalizeSound

void CSoundAction::InternalizeSound(Environment* ev, 
 ODStorageUnit* storage)
{
    // Assume the storage unit is already focused
 unsigned long size = storage->GetSize(ev);
 if (size > 0)
 {
 FW_CAcquireTemporarySystemHandle handle(size);
 FW_CByteArray byteArray;
 storage->GetValue(ev, size, byteArray);
 byteArray.CopyBuffer(handle.GetPointer(), size);
 fSoundHandle = handle.GetPlatformHandle();
 handle.Orphan();
 }
}

InternalizeSound assumes the entire content of the property value is a sound resource. It allocates a handle of the appropriate size and then reads the data into the handle. Finally, it stores the handle in the fSoundHandle field. Looking at the code, we see that a little more is going on here, which is worth explaining in some detail.

To allocate the handle, the code uses an instance of the class FW_CAcquireTemporarySystemHandle, which is a resource acquisition helper object that allocates a “temporary” handle. The handle is considered to be temporary because unless instructed otherwise, the handle will be disposed when the helper object goes out of scope. On the Macintosh, the constructor of FW_CAcquireTemporarySystemHandle will allocate a handle in Multifinder temporary memory (throwing an exception if the allocation fails), and then lock the handle down in memory. On other platforms, it does something equivalent.

The FW_CAcquireTemporarySystemHandle destructor will unlock the object, and optionally dispose the handle. The default behavior is to dispose the handle, but calling the Orphan method instructs the helper object to not dispose the handle. This may seem a little involved, but it is a very convenient idiom for allocation of resources (like memory) that must be disposed if an exception is thrown before the resource is completely initialized.

In CSoundAction::InternalizeSound, we can assume that any of the three lines of code starting with the call to the method GetValue and ending with the call to the method GetPlatformHandle could throw an exception. In actual fact, with the current implementations of these functions, only the GetValue method could throw an exception, but in this case it hurts nothing to be conservative.

ODF provides a range of utility functions and helper objects that make it possible to write portable code that works with exceptions correctly. In the case of CSoundAction::InternalizeSound, the advantages of the platform-independence of the helper objects FW_CAcquireTemporarySystemHandle and FW_CByteArray aren’t fully realized because the function as a whole is making an assumption specific to the Macintosh: 'snd ' resources exist only on the Macintosh. With a little extra effort, it would be possible to create an abstraction for sound data that would work on both Macintosh and Windows. Such a class will likely make it into ODF someday; in the meantime, we leave it as an exercise for the reader.

Let’s now look at the method to internalize a sound file:

CSoundAction::InternalizeSoundFile

void CSoundAction::InternalizeSoundFile(Environment* ev,
 ODStorageUnit* storage)
{
    // Storage Unit should already be Focused on HFSFlavor
 unsigned long hfsSize = storage->GetSize(ev);
 if (hfsSize > 0)
 {
    // Get the HFS flavor
 HFSFlavor hfsInfo;
 FW_CByteArray byteArray;
 storage->GetValue(ev, sizeof(HFSFlavor), byteArray);
 byteArray.CopyBuffer(&hfsInfo, sizeof(HFSFlavor));
 
    // Create platform independent file spec
 FW_CFileSpecification fileSpec(hfsInfo.fileSpec);
 
    // Open the resource file
 FW_CResourceFile resourceFile(fileSpec);
 
    // Get any (i.e. the first) sound resource
 const FW_ResourceType resourceType = 'snd ';
 const FW_ResourceId resourceId = 1;
 Handle sound = ::Get1IndResource(resourceType, 
 resourceId);
 
 if (sound != NULL)
 {
    // if succeeded, detach the handle and keep it
 ::DetachResource(sound);
 fSoundHandle = sound;
 }
 else
 {
    // No sound resource loaded, throw an exception
 FW_THROW(FW_XResourceNotFound(resourceFile,
 resourceId, 
 resourceType));
 }
 }
}

InternalizeSoundFile is similar to InternalizeSound. The difference is that instead of getting the sound resource directly from the storage unit, it instead gets an HFS file specification from the storage unit. It then uses this file specification to open the file and grab the sound resource from the file. The code here is a bit complicated because sound files don’t use fixed resource IDs, so the code must look for any sound resource. Unfortunately, this is a function that we don’t (yet!) provide in the Resources subsystem of ODF, so we have to resort to direct calls to the Macintosh toolbox resource manager. The good news is that ODF doesn’t get in the way of doing this. In fact, it is still convenient to use an instance of the class FW_CResourceFile to open the file, since it will assume responsibility for closing the file when it goes out of scope. So, we use ODF to create and open the resource file, and then use the two toolbox calls Get1IndResource and DetachResource to get the sound resource from the file. Since we’ve taken direct responsibility for reading the resource, it is our responsibility to handle any errors, which we do by throwing the appropriate exception.

By the way, a new feature already added since ODF 1.0d9 will make it simpler to throw standard exceptions. Instead of writing the above FW_THROW statement, you could instead write something like this:

FW_FailOnError(::ResError());

We’ve seen how to internalize sound resources, now let’s see the code to externalize them:

CSoundAction::Externalize

void CSoundAction::Externalize(Environment* ev, 
 ODStorageUnit* storage)
{
    // Assume we’re focused on the correct property
 storage->AddValue(ev, kSoundScrapKind);
 if (fSoundHandle != NULL)
 {
 FW_CAcquireLockedSystemHandle lock(fSoundHandle);
 FW_CByteArray byteArray(*fSoundHandle, 
 FW_CMemoryManager::
 GetSystemHandleSize(fSoundHandle));
 storage->SetValue(ev, byteArray);
 }
}

Externalize simply adds a sound scrap property value, and then writes out the sound handle. Since the handle needs to be locked in order to be written out, we take advantage of the FW_CAcquireLockedSystemHandle helper object to lock the object and assume responsibility for unlocking it. The rest of the code should be self-explanatory.

Finally, we round out our implementation of CSoundAction with the DoIt method:

CSoundAction::DoIt

void CSoundAction::DoIt()
{
 if (fSoundHandle != NULL)
 {
 FW_CAcquireLockedSystemHandle lock(fSoundHandle);
 ::SndPlay(NULL, (SndListHandle)fSoundHandle, TRUE);
 }
}

Here we simply lock the handle with a helper object and then use the toolbox function SndPlay to play it. What could be easier?

CScriptAction

The implementation of the class CScriptAction has a lot in common with the class CSoundAction. Compiled scripts, like sounds, are stored in memory as relocatable blocks accessed via handles, and are stored on disk as resources in the resource fork. The code to internalize and externalize a compiled script is therefore similar to the code to internalize and externalize a sound resource. The only significant difference is in the implementation of InternalizeScriptFile, so for the sake of brevity, we’ll skip the code for CScriptAction::InternalizeScript and CScriptAction::Externalize.

CScriptAction::InternalizeScriptFile

void CScriptAction::InternalizeScriptFile(Environment* ev, 
 ODStorageUnit* storage)
{
    // Storage Unit should already be Focused on HFSFlavor
 unsigned long hfsSize = storage->GetSize(ev);
 if (hfsSize > 0)
 {
    // Get the HFS flavor
 HFSFlavor hfsInfo;
 FW_CByteArray byteArray;
 storage->GetValue(ev, sizeof(HFSFlavor), byteArray);
 byteArray.CopyBuffer(&hfsInfo, sizeof(HFSFlavor));
 
    // Make the file specification
 FW_CFileSpecification fileSpec(hfsInfo.fileSpec);
 
    // Acquire an opened resource file, 
    // will be closed automatically
 FW_CResourceFile resourceFile(fileSpec);
 
    // Acquire an opened resource, 
    // will be released automatically
 FW_CResource resource(resourceFile, 128, 'scpt');
 
    // Copy the resource handle
 fScriptHandle = FW_CMemoryManager::
 CopySystemHandle(resource.GetHandle());
 }
}

Compiled scripts are always stored with the fixed ID 128. This allows us to use the ODF resource subsystem to load the resource instead of reverting to the MacOS toolbox. This is done by simply creating a instance of the FW_CResource class. This class loads the resource in its constructor, and releases the resource in its destructor. It is exception-safe, and works correctly on both Macintosh and Windows. All we need to do to finish internalizing the script is to copy the resource handle and store it inside the fScriptHandle data member.

The CSoundAction::DoIt method executes the script using the static method CScriptAction::LoadAndExecuteScript:


CScriptAction::DoIt

void CScriptAction::DoIt()
{
 if (fScriptHandle != NULL)
 LoadAndExecuteScript(fScriptHandle);
}

CScriptAction::LoadAndExecuteScript

void CScriptAction::LoadAndExecuteScript(Handle scriptData)
{
 AEDesc scriptDesc;
 OSAID scriptID, resultID;
 AEDesc scriptText;
 OSAError error;
 static ComponentInstance gComponent = 0;

 if (!gComponent)
 gComponent = ::OpenDefaultComponent(
 kOSAComponentType, 
 kOSAGenericScriptingComponentSubtype);

    // load the script data
 scriptDesc.descriptorType = typeOSAGenericStorage;
 scriptDesc.dataHandle = scriptData;
 error = ::OSALoad(gComponent, &scriptDesc, 
 kOSAModeNull, &scriptID);
 
 if (error == noErr)
 { 
    // execute the compiled script in the default context
 error = ::OSAExecute(gComponent, 
 scriptID, kOSANullScript, 
 kOSAModeNull, &resultID);
 error = ::OSADispose(gComponent, scriptID);
 error = ::OSADispose(gComponent, resultID);
 }
}

There’s not much to say about this code. LoadAndExcecuteScript is lifted almost verbatim from IM:IAC, pp. 10-16. I haven’t bothered to address the fact that it just lets errors fall on the floor unnoticed, though with the post-1.0d9 additions to exception handling it will be a relatively easy task. All that is necessary is to sprinkle a few calls to FW_FailOnError(error).

That basically completes the description of the action classes. Observant readers will note that I’ve not yet described the two static methods IsInStorage, one each for the classes CSoundAction and CScriptAction. We’ll get to that shortly. Let’s move on to the implementation of the class CBeeperPart.

CBeeperPart

Earlier, we saw a partial class definition for CBeeperPart. At that time, we were interested in the protocol inherited from FW_CPart; we were only concerned with the protocol related to Actions. Now that we’re ready to talk about the part protocol, it might be worthwhile to see a complete definition for the class CBeeperPart:

class FW_CLASS_ATTR CBeeperPart : public FW_CPart
{
public:
 static const ODValueType kPartKind;

//----------------------------------------------------------
// Initialization/Destruction
//
public:
 CBeeperPart(ODPart* odPart);
 virtual ~CBeeperPart();
 
 virtual void  Initialize(Environment* ev);
 
//----------------------------------------------------------
// Inherited API
//
public:
 virtual FW_CFrame* NewFrame(Environment* ev,
 ODFrame* odFrame,
 FW_CPresentation* presentation,
 FW_Boolean fromStorage);
 
 virtual void InternalizeContent(Environment* ev, 
 ODStorageUnit* storage, 
 FW_CCloneInfo* cloneInfo);
 
 virtual void ExternalizeContent(Environment* ev, 
 ODStorageUnit* storage, 
 FW_CCloneInfo* cloneInfo);

//----------------------------------------------------------
// New API
//
public:
 CAction* GetAction() { return fAction; }
 void   SetAction(CAction* action);

public:
 void   DoAction();

//----------------------------------------------------------
// Data Members
//
private:
 CAction* fAction;
};

Let’s begin with the constructor and destructor of CBeeperPart:

CBeeperPart::CBeeperPart

CBeeperPart::CBeeperPart(ODPart* odPart) :
 FW_CPart(odPart, CBeeperPart::kPartKind),
 fAction(NULL)
{
}

CBeeperPart::~CBeeperPart
CBeeperPart::~CBeeperPart()
{
 delete fAction;
}

The constructor initializes the FW_CPart base class, and initializes the fAction field to NULL. The destructor simply deletes the object pointed to by fAction. Of course, the FW_CPart constructor does quite a bit of work; CBeeperPart inherits a lot of default behavior from its FW_CPart base class. It is beyond the scope of this article to go into the details of the class FW_CPart, but suffice it to say that ODF makes it pretty easy to create a new part by overriding just a few methods, as we’re about to see. The next method is the Initialize method:

CBeeperPart::Initialize

void CBeeperPart::Initialize(Environment* ev)
{
 FW_CPart::Initialize(ev);
 
    // ----- Register our Presentation
 CBeeperSelection *selection = 
 new CBeeperSelection(ev, this);
 RegisterPresentation(ev, kODFBeeperPresentation, 
 TRUE, selection);
}

To initialize the CBeeperPart, we must first call the inherited method to initialize the base class. Next, we create an instance of CBeeperSelection, which is a subclass of FW_CSelection. Selection objects are used to designate the user’s selection for data interchange via any of the interchange mechanisms: copy/paste, drag/drop, or linking. Finally, we register a presentation. Parts may have multiple presentations for displaying their data content. A classic example is a spreadsheet application that can display its data in a tabular array, bar chart, pie chart, etc. Each presentation may have its own selection, so the selection object is owned by the presentation.

CBeeperPart::NewFrame

FW_CFrame* CBeeperPart::NewFrame(Environment* ev,
 ODFrame* frame,
 FW_CPresentation* presentation,
 FW_Boolean storage)
{
 return new CBeeperFrame(ev, frame, presentation, this);
}

NewFrame is a factory method which will be called whenever the part needs a new display frame. If a part supports multiple presentations it would create different kinds of frames, but our Beeper part supports only one simple presentation and creates only one kind of frame.

CBeeperPart::InternalizeContent

void CBeeperPart::InternalizeContent(Environment *ev, 
 ODStorageUnit* storage, 
 FW_CCloneInfo* cloneInfo)
{
 FW_ASSERT(fAction == NULL);
 
 if (CScriptAction::IsInStorage(ev, storage))
 fAction = new CScriptAction();
 else if (CSoundAction::IsInStorage(ev, storage))
 fAction = new CSoundAction();
 
 if (fAction != NULL)
 fAction->Internalize(ev, storage);
}

InternalizeContent is called when the part is being initialized from storage. CBeeperPart determines whether the storage contains a script or a sound, creates the appropriate action object, and then delegates to the action object. Here we finally see the purpose of the two static methods CScriptAction::IsInStorage and CSoundAction::IsInStorage. These methods examine the storage unit to see if they contain the appropriate data type.

This mechanism for creating an instance of the right action type based upon the contents of the storage unit is a bit simplistic. If we had many action kinds, it would become awkward, and a more extensible mechanism would become desirable. One reasonable choice would be based upon a dictionary mapping known data interchange types to factory functions. However, for the purpose of this example, such an approach is clearly overkill.

Once an action instance is created, we initialize it from the storage unit using the Internalize virtual function.

CBeeperPart::ExternalizeContent

void CBeeperPart::ExternalizeContent(Environment *ev, 
 ODStorageUnit* storage, 
 FW_CCloneInfo* cloneInfo)
{
    // If any kind of property content exists...
 if (storage->Exists(ev, kODPropContents, kODNULL, 0))
 {
 storage->Focus(ev, kODPropContents, 
 kODPosUndefined, kODNULL, 0, kODPosAll);
 storage->Remove(ev);
 }
 storage->AddProperty(ev, kODPropContents);
 if (fAction != NULL)
 fAction->Externalize(ev, storage);
}

ExternalizeContent checks to see if any previous content exists in the storage unit, and if so, removes the old data. It then adds a content property, and delegates the task of externalizing to the Action object. This will result in a call to one of the two methods CSoundAction::Externalize or CSoundAction::Internalize, which we have already seen.

CBeeperPart::DoAction

void CBeeperPart::DoAction()
{
 if (fAction != NULL)
 fAction->DoIt();
}

DoAction is executed whenever the button is pressed via a mechanism that we’ll discuss shortly. DoAction merely forwards the request to the current action object.

CBeeperPart::SetAction

void CBeeperPart::SetAction(CAction *action)
{
 if (action && action!=fAction)
 {
 delete fAction;
 fAction = action;
 }
}

SetAction is used to change the action object. It is called when a client of CBeeperPart wants to change the part’s current action. We’ll see it used by the CBeeperSelection class.

CBeeperFrame

ODF contains a class FW_CFrame which provides a rich definition of the behavior of OpenDoc frames. FW_CFrame inherits behavior from four mixin classes (FW_MEventHandler, FW_MGadgetContainer, FW_MDragDroppable, and FW_MIdle), and has about 100 methods! Despite the size and apparent complexity of FW_CFrame, implementing a subclass is relatively easy; CBeeperFrame overrides only five methods:

class FW_CLASS_ATTR CBeeperFrame : public FW_CFrame, 
 public FW_MReceiver
{
//----------------------------------------------------------
// Initialization/Destruction
//
public:
 CBeeperFrame(Environment* ev, ODFrame* frame, 
 FW_CPresentation* presentation, CBeeperPart* part);     
 virtual ~CBeeperFrame();

//----------------------------------------------------------
// FW_CFrame overrides
//
public:
 virtual void CreateGadgetLayout(Environment* ev, 
 FW_CGadgetInitializer& initializer);

 virtual ODDragResult CanAcceptDrop(Environment* ev, 
 ODDragItemIterator* dragInfo);

 virtual void Draw(Environment* ev, 
 ODFacet* facet, ODShape* invalidShape);

 virtual void FrameShapeChanged(Environment* ev);

//----------------------------------------------------------
// FW_MReceiver overrides
//
public:
 virtual void HandleNotification(
 const FW_CNotification& notification);

//----------------------------------------------------------
// Data Members
//
private:
 CBeeperPart*  fBeeperPart;
 FW_CPushButton* fBeeper;
 ODID   fButtonId;
 FW_CHandleFunctionConnection fConnection;
 ODTypeTokenfButtonNotificationToken;
};

CBeeperFrame includes a button gadget, so it overrides the method CreateGadgetLayout to create the button gadget. CBeeperFrame can accept a drop of either scripts or sounds, so it overrides CanAcceptDrop. It overrides Draw to render itself, and it overrides the FrameShapeChanged notification to update its layout when the frame is resized. Finally, it overrides the HandleNotification method from the mixin class FW_MReceiver so that it can respond to button presses. Let’s now look at the implementation of these methods.

CBeeperFrame::CBeeperFrame

CBeeperFrame::CBeeperFrame(Environment* ev, 
 ODFrame* frame, 
 FW_CPresentation* presentation, 
 CBeeperPart* part) :
 FW_CFrame(ev, frame, presentation, part),
 fBeeperPart(part),
 fBeeper(NULL),
 fButtonId(0),
 fConnection(this),
 fButtonNotificationToken(0)
{
 fConnection.Connect();
 this->AddToFocusSet(ev,part->GetClipboardFocusToken(ev));
 SetDroppable(ev, TRUE);
}

The constructor initializes the base class and data members, and then sets up the notification connection, prepares to receive data from the clipboard, and registers itself as being interested in receiving data through drag-and-drop.

CBeeperFrame::~CBeeperFrame
CBeeperFrame::~CBeeperFrame()
{
 FW_CInterest interest(fBeeper, fButtonNotificationToken);
 fConnection.RemoveInterest(interest);
}

The destructor removes the notification connection.

CBeeperFrame::CreateGadgetLayout

void CBeeperFrame::CreateGadgetLayout(Environment* ev, 
 FW_CGadgetInitializer& initializer)
{
 FW_CDynamicString label("Beep");
 
 FW_CRect frameRect;
 this->GetFrameShapeBounds(ev, frameRect);

 fBeeper = FW_NEW(FW_CPushButton, 
 (ev, initializer, this, fButtonId, 
 frameRect[FW_kTopLeft], frameRect[FW_kBotRight],
 label));
 fBeeper->SetDefault(ev, false);

 fButtonNotificationToken = 
 fBeeper->GetButtonPressedNotificationToken(ev);
 FW_CInterest interest(fBeeper, fButtonNotificationToken);
 fConnection.AddInterest(interest);
}

CreateGadgetLayout creates a button of type FW_CPushButton, and then establishes its interest in receiving notifications for button clicks. The notification subsystem is a general-purpose mechanism for establishing event dependencies between objects. Objects may serve as Notifiers and Receivers. In our case, the push-button is a notifier, and the frame is the receiver. The FW_CInterest object establishes an interest in a particular kind of notification, in this case button pressed notifications. Adding the interest to the connection object establishes the connection. Once we establish the connection, button presses will result in the receiver’s HandleNotification method (see below) being called.

CBeeperFrame::CanAcceptDrop

ODDragResult CBeeperFrame::CanAcceptDrop(Environment* ev, 
 ODDragItemIterator* dragInfo)
{
 ODDragResult acceptDrop = 
 FW_CFrame::CanAcceptDrop(ev, dragInfo);

 if (!acceptDrop)
 {
 for (ODStorageUnit *dragSU = dragInfo->First(ev); 
 dragSU != NULL; 
 dragSU = dragInfo->Next(ev))
 {
 if (CSoundAction::IsInStorage(ev, dragSU))
 return TRUE;
 if (CScriptAction::IsInStorage(ev, dragSU))
 return TRUE;
 }
 }

 return acceptDrop;
}

CanAcceptDrop iterates over the storage units of the OpenDoc drag item, looking for one that contains recognizable data. If it finds either a sound or a script, CanAcceptDrop returns true.

CBeeperFrame::Draw
void CBeeperFrame::Draw(Environment* ev, 
 ODFacet* facet, 
 ODShape* invalidShape)
{
 FW_CFacetContext fc(ev, facet, invalidShape);
 
    // Just erase and assume gadgets will draw
 FW_CRect invalidRect;
 fc.GetClipRect(invalidRect);
 FW_CRectShape::RenderRect(fc, invalidRect, 
 FW_kFill, FW_kWhiteEraseInk);
}

The only rendering that a CBeeperFrame needs to explicitly do is to erase; the PushButton gadget will draw itself.

CBeeperFrame::HandleNotification

void CBeeperFrame::HandleNotification(
 const FW_CNotification& notification)
{
 const FW_CButtonPressedNotification& buttonPressed =
 (FW_CButtonPressedNotification&) notification;
 
 if (buttonPressed.GetButtonId() == fButtonId)
 {
 fBeeperPart->DoAction();
 }
}

This method is inherited from FW_MReceiver, and is called by the notification subsystem. This method first checks to ensure that it is receiving notification from the correct button, and then forwards the action request to the part (which will forward the request to the current CAction object).

CBeeperFrame::FrameShapeChanged

void CBeeperFrame::FrameShapeChanged(Environment* ev)
{
 FW_CFrame::FrameShapeChanged(ev);

    // Resize the Beeper to fit the new frame size
 FW_CRect frameRect;
 this->GetFrameShapeBounds(ev, frameRect);
 fBeeper->SetSize(ev, frameRect.BotRight());

    // Redraw the entire frame
 this->Invalidate(ev);
}

When the frame shape changes, the frame simply resizes the push-button to take up the entire frame.

CBeeperSelection

The ODF class FW_CSelection is an abstract base class used by ODF to represent the user’s active selection of data. A Copy command will copy this data to the clipboard, drag operations copy or move the selected data, etc. FW_CSelection defines four pure virtual methods that must be overridden; FW_CBeeperSelection defines these and overrides two more. As it turns out, the “selection” of a Beeper part is always the entire data content, so the implementation of these methods is especially simple; most don’t do anything.

class FW_CLASS_ATTR CBeeperPart;

class FW_CLASS_ATTR CBeeperSelection : public FW_CSelection
{
//----------------------------------------------------------
// Initialization/Destruction
//
public:
 CBeeperSelection(Environment* ev,
 CBeeperPart* beeperPart);
 virtual ~CBeeperSelection();
 
//----------------------------------------------------------
// Inherited API
//
public:
 virtual void CloseSelection(Environment* ev);
 virtual FW_Boolean ClearSelection(Environment* ev, 
 FW_ClearSelection clearAfter);
 virtual FW_Boolean IsEmpty(Environment* ev) const;
 virtual void SelectAll(Environment* ev);

 virtual void DoExternalizeSelection(Environment* ev, 
 ODStorageUnit* storage, 
 FW_CCloneInfo* cloneInfo);

 virtual FW_Boolean DoInternalizeSelection(Environment* ev, 
 ODStorageUnit* storage, 
 FW_CCloneInfo* cloneInfo);
 
//----------------------------------------------------------
// Data Members
//
private:
 CBeeperPart* fBeeperPart;
};

CBeeperSelection::CBeeperSelection

CBeeperSelection::CBeeperSelection(Environment* ev, 
 CBeeperPart* beeperPart) :
 FW_CSelection(ev, FALSE, FALSE),
 fBeeperPart(beeperPart)
{
}

The CBeeperSelection constructor simply initializes its base classes and caches away a pointer to the part.

CBeeperSelection::~CBeeperSelection

CBeeperSelection::~CBeeperSelection()
{
}

The destructor doesn’t need to do anything.

CBeeperSelection::CloseSelection

void CBeeperSelection::CloseSelection(Environment* ev)
{
}

In our case, closing a selection is a no-op...

CBeeperSelection::ClearSelection

FW_Boolean CBeeperSelection::ClearSelection(Environment* ev, 
 FW_ClearSelection clearAfter)
{
 return FALSE; // Do nothing
}

...as is clearing the selection.

CBeeperSelection::IsEmpty

FW_Boolean CBeeperSelection::IsEmpty(Environment* ev) const
{
 return (fBeeperPart->GetAction() == NULL);
}

A CBeeperSelection is empty if it does not have an action.

CBeeperSelection::SelectAll

void CBeeperSelection::SelectAll(Environment* ev)
{
}

The Beeper’s data is always selected, so there’s nothing to do.

CBeeperSelection::DoExternalizeSelection

void CBeeperSelection::DoExternalizeSelection(
 Environment* ev, 
 ODStorageUnit* storage, 
 FW_CCloneInfo* cloneInfo)
{
 CAction *action = fBeeperPart->GetAction();
 if (action)
 {
 storage->AddProperty(ev, kODPropContents);
 action->Externalize(ev, storage);
 }
}

DoExternalizeSelection isn’t a no-op, but it is still trivial; We merely forward the operation onto the action object.

CBeeperSelection::DoInternalizeSelection

FW_Boolean CBeeperSelection::DoInternalizeSelection(
 Environment* ev,
 ODStorageUnit* storage, 
 FW_CCloneInfo* cloneInfo)
{
 FW_Boolean internalized = FALSE;
 
 CAction *action = NULL;
 if (CScriptAction::IsInStorage(ev, storage))
 action = new CScriptAction();
 else if (CSoundAction::IsInStorage(ev, storage))
 action = new CSoundAction();
 
 if (action != NULL)
 {
 action->Internalize(ev, storage);
 fBeeperPart->SetAction(action);
 fBeeperPart->Changed(ev);
 internalized = true;
 }

 return internalized;
}

DoInternalizeSelection is slightly more complicated. It should look familiar, since there is not much difference between this method and the CBeeperPart::InternalizeContent method. We simply determine type of data to internalize, create the appropriate action object, initialize it with the data, and then ask the part to make it be the current action object.

What Have We Done?

You’ve now seen all the custom code needed to create our enhanced Beeper part. It is not really a complete part yet; it is missing some obvious features that a truly useful Beeper should have, not the least of which is a better name!

One key feature that the Beeper needs is the ability to change the title of the button. If you look back over the code, you’ll see that the button title is hard-coded to be Beep inside the method CBeeperFrame::CreateGadgetLayout. A real part would allow the default title to be specified from a resource, and provide some simple means of changing the title. One possibility is to allow dropping a text clipping as the means of setting the title. Another possibility is to set the button title to the name of the file dropped onto the button. No doubt you can think of other features that a button-as-part should have, such as a visual style more interesting than the simple rounded-rectangle.

If you look past these shortcomings, I believe it’s fair to say that this example is a pretty impressive demonstration of the power of OpenDoc and ODF. With only a small amount of code, we have created a truly reusable software component. I’m not talking about the code-level reuse that we were able to achieve by using ODF, which is no small matter. I’m instead talking of the much more dramatic reuse achieved by high-level componentization. The ODFBeeper part is a component that can be reused without needing a single additional line of C++ code. End users with just a modest understanding of AppleScript could use the ODFBeeper component to create applications customized to their needs.

Clearly, the ODFBeeper component by itself, or even combined with a container part like ODFDraw, would not significantly empower end-users. We need quite a few more components before we’ll see such a dramatic shift. However, considering how easy it was to create this component, it doesn’t take much imagination to believe that we could soon have a wide assortment of powerful components.

Wrapping Up

With that uplifting vision of the future, it’s time for me to tie a bow around this article and ship it. One of my goals for this article was to give you a taste of what it’s like to develop for OpenDoc with ODF. Hopefully it’s left you thirsting for more. If you’d like more information about ODF, send a note to odfseed@apple.com; or feel free to write to me.

 
AAPL
$501.02
Apple Inc.
+2.34
MSFT
$34.83
Microsoft Corpora
+0.34
GOOG
$895.87
Google Inc.
+13.86

MacTech Search:
Community Search:

Software Updates via MacUpdate

Apple Canon Laser Printer Drivers 2.11 -...
Apple Canon Laser Printer Drivers is the latest Canon Laser printing and scanning software for Mac OS X 10.6, 10.7 and 10.8. For information about supported printer models, see this page.Version 2.11... Read more
Apple Java for Mac OS X 10.6 Update 17 -...
Apple Java for Mac OS X 10.6 delivers improved security, reliability, and compatibility by updating Java SE 6.Version Update 17: Java for Mac OS X 10.6 Update 17 delivers improved security,... Read more
Arq 3.3 - Online backup (requires Amazon...
Arq is online backup for the Mac using Amazon S3 and Amazon Glacier. It backs-up and faithfully restores all the special metadata of Mac files that other products don't, including resource forks,... Read more
Apple Java 2013-005 - For OS X 10.7 and...
Apple Java for OS X 2013-005 delivers improved security, reliability, and compatibility by updating Java SE 6 to 1.6.0_65. On systems that have not already installed Java for OS X 2012-006, this... Read more
DEVONthink Pro 2.7 - Knowledge base, inf...
Save 10% with our exclusive coupon code: MACUPDATE10 DEVONthink Pro is your essential assistant for today's world, where almost everything is digital. From shopping receipts to important research... Read more
VirtualBox 4.3.0 - x86 virtualization so...
VirtualBox is a family of powerful x86 virtualization products for enterprise as well as home use. Not only is VirtualBox an extremely feature rich, high performance product for enterprise customers... Read more
Merlin 2.9.2 - Project management softwa...
Merlin is the only native network-based collaborative Project Management solution for Mac OS X. This version offers many features propelling Merlin to the top of Mac OS X professional project... Read more
Eye Candy 7.1.0.1191 - 30 professional P...
Eye Candy renders realistic effects that are difficult or impossible to achieve in Photoshop alone, such as Fire, Chrome, and the new Lightning. Effects like Animal Fur, Smoke, and Reptile Skin are... Read more
Sound Studio 4.6.6 - Robust audio record...
Sound Studio lets you easily record and professionally edit audio on your Mac.Easily rip vinyls and digitize cassette tapes or record lectures and voice memos. Prepare for live shows with live... Read more
DiskAid 6.4.2 - Use your iOS device as a...
DiskAid is the ultimate Transfer Tool for accessing the iPod, iPhone or iPad directly from the desktop. Access Data such as: Music, Video, Photos, Contacts, Notes, Call History, Text Messages (SMS... Read more

PROVERBidioms Paints English Sayings in...
PROVERBidioms Paints English Sayings in a Picture for Users to Find Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
OmniFocus 2 for iPhone Review
OmniFocus 2 for iPhone Review By Carter Dotson on October 16th, 2013 Our Rating: :: OMNIPOTENTiPhone App - Designed for the iPhone, compatible with the iPad OmniFocus 2 for iPhone is a task management app for people who absolutely... | Read more »
Ingress – Google’s Augmented-Reality Gam...
Ingress – Google’s Augmented-Reality Game to Make its Way to iOS Next Year Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
CSR Classics is Full of Ridiculously Pre...
CSR Classics is Full of Ridiculously Pretty Classic Automobiles Posted by Rob Rich on October 16th, 2013 [ permalink ] | Read more »
Costume Quest Review
Costume Quest Review By Blake Grundman on October 16th, 2013 Our Rating: :: SLIGHTLY SOURUniversal App - Designed for iPhone and iPad This bite sized snack lacks the staying power to appeal beyond the haunting season.   | Read more »
Artomaton – The AI Painter is an Artific...
Artomaton – The AI Painter is an Artificial Artistic Intelligence That Paints From Photos You’ve Taken Posted by Andrew Stevens on October 16th, 2013 [ | Read more »
Hills of Glory 3D Review
Hills of Glory 3D Review By Carter Dotson on October 16th, 2013 Our Rating: :: BREACHED DEFENSEUniversal App - Designed for iPhone and iPad Hills of Glory 3D is the most aggravating kind of game: one with good ideas but sloppy... | Read more »
FitStar: Tony Gonzalez Adds New 7 Minute...
FitStar: Tony Gonzalez Adds New 7 Minute Workout Program for Those Who Are in a Hurry Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
PUMATRAC Review
PUMATRAC Review By Angela LaFollette on October 16th, 2013 Our Rating: :: INSIGHTFULiPhone App - Designed for the iPhone, compatible with the iPad PUMATRAC not only provides runners with stats, it also motivates them with insights... | Read more »
Flipcase Turns the iPhone 5c Case into a...
Flipcase Turns the iPhone 5c Case into a Game of Connect Four Posted by Andrew Stevens on October 15th, 2013 [ permalink ] | Read more »

Price Scanner via MacPrices.net

Updated MacBook Price Trackers
We’ve updated our MacBook Price Trackers with the latest information on prices, bundles, and availability on MacBook Airs, MacBook Pros, and the MacBook Pros with Retina Displays from Apple’s... Read more
13-inch Retina MacBook Pros on sale for up to...
B&H Photo has the 13″ 2.5GHz Retina MacBook Pro on sale for $1399 including free shipping. Their price is $100 off MSRP. They have the 13″ 2.6GHz Retina MacBook Pro on sale for $1580 which is $... Read more
AppleCare Protection Plans on sale for up to...
B&H Photo has 3-Year AppleCare Warranties on sale for up to $105 off MSRP including free shipping plus NY sales tax only: - Mac Laptops 15″ and Above: $244 $105 off MSRP - Mac Laptops 13″ and... Read more
Apple’s 64-bit A7 Processor: One Step Closer...
PC Pro’s Darien Graham-Smith reported that Canonical founder and Ubuntu Linux creator Mark Shuttleworth believes Apple intends to follow Ubuntu’s lead and merge its desktop and mobile operating... Read more
MacBook Pro First, Followed By iPad At The En...
French site Info MacG’s Florian Innocente says he has received availability dates and order of arrival for the next MacBook Pro and the iPad from the same contact who had warned hom of the arrival of... Read more
Chart: iPad Value Decline From NextWorth
With every announcement of a new Apple device, serial upgraders begin selling off their previous models – driving down the resale value. So, with the Oct. 22 Apple announcement date approaching,... Read more
SOASTA Survey: What App Do You Check First in...
SOASTA Inc., the leader in cloud and mobile testing announced the results of its recent survey showing which mobile apps are popular with smartphone owners in major American markets. SOASTA’s survey... Read more
Apple, Samsung Reportedly Both Developing 12-...
Digitimes’ Aaron Lee and Joseph Tsai report that Apple and Samsung Electronics are said to both be planning to release 12-inch tablets, and that Apple is currently cooperating with Quanta Computer on... Read more
Apple’s 2011 MacBook Pro Lineup Suffering Fro...
Appleinsider’s Shane Cole says that owners of early-2011 15-inch and 17-inch MacBook Pros are reporting issues with those models’ discrete AMD graphics processors, which in some cases results in the... Read more
Global Notebook Shipments To Grow Less Than 3...
Digitimes Research’s Joanne Chien reports that Taiwan’s notebook shipments grew only 2.5% sequentially, and dropped 8.6% year-over-year in the third quarter despite the fact that notebook ODMs have... Read more

Jobs Board

Senior Mac / *Apple* Systems Engineer - 318...
318 Inc, a top provider of Apple solutions is seeking a new Senior Apple Systems Engineer to be based out of our Santa Monica, California location. We are a Read more
*Apple* Retail - Manager - Apple Inc. (Unite...
Job Summary Keeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, you’re a master of them all. In the store’s fast-paced, Read more
*Apple* Solutions Consultant - Apple (United...
**Job Summary** Apple Solutions Consultant (ASC) - Retail Representatives Apple Solutions Consultants are trained by Apple on selling Apple -branded products Read more
Associate *Apple* Solutions Consultant - Ap...
**Job Summary** The Associate ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The Associate ASC's role is to Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.