TweetFollow Us on Twitter

Aug 94 Challenge
Volume Number:10
Issue Number:8
Column Tag:Programmer’s Challenge

Programmer’s Challenge

By Mike Scanlin, Mountain View, CA

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Dumpbytes

When writing programmer utilities like disassemblers, disk editors and memory viewers it’s useful to have around a very fast “dump” routine that takes a bunch of bytes and displays them in hex and ascii. The MPW tool DumpFile encompasses most of the desired functionality. This month’s challenge is to write a fast version of some of the DumpFile functionality.

The prototype of the function you write is:


/* 1 */
unsigned short
DumpBytes(inputBytes, outputText,
 numInputBytes, maxOutputBytes,
 width, grouping)
PtrinputBytes;
PtroutputText;
unsigned short numInputBytes;
unsigned short maxOutputBytes;
unsigned short width;
unsigned short grouping;

inputBytes and outputText are the pointers to the input bytes (which you’re trying to display) and the output text (which is all printable ascii, ready to display). numInputBytes is the number of input bytes you have to work with (more than zero) and maxOutputBytes is the size of the buffer that outputText points to. The return value of the function is the actual number of output bytes created by DumpBytes and will always be less than or equal to maxOutputBytes (or zero if there’s output buffer overflow). Like the DumpFile tool, the width parameter is the number of input bytes to display on each output line (it will be from 1 to 64 with 16 being given more weight than the other values) and grouping is the number of output bytes to group together without intervening spaces (also from 1 to 64 with 1, 2 and 4 being given more wight than the other values). The width parameter will always be a multiple of the grouping parameter.

Here are a few examples (the comments describe the parameters but are not part of the actual output):


/* 2 */
/* width = 8, grouping = 1 */
 0: 23 09 53 74 61 72 74 75 #.Startu
 8: 70 20 2D 20 4D 50 57 20 p.-.MPW.
 10: 53 68 65 6C 6C 20 53 74 Shell.St

/* width = 8, grouping = 8 */
 0: 2309537461727475 #.Startu
 8: 70202D204D505720 p.-.MPW.
 10: 5368656C6C205374 Shell.St

/* width = 9, grouping = 3 */
 0: 230953 746172 747570 #.Startup
 9: 202D20 4D5057 205368 .-.MPW.Sh
 12: 656C6C 205374 617274 ell.Start

Non-printable characters should be represented by a dot ‘.’ in the ascii section of the output. You can print a space character as a space or a dot (your choice). When in doubt on how to handle a certain situation, check the MPW DumpFile tool and do what it does (or something very similar). As always, I’m available for questions in case something is not clear (see the e-mail addresses section).

You should be careful about parameters that will cause you to output more bytes than the maxOutputBytes will allow. If you run out of output buffer space then just fill it up as much as you can and return 0. I won’t be testing the output overflow cases much because the goal of this exercise it to have a very fast hex and ascii displayer. If someone were to actually use the code it is assumed that they would know the context and provide an output buffer that was always large enough (and assert that the return value was not zero).

Two Months Ago Winner

Congratulations to Bob Boonstra (Westford, MA) for reclaiming the title of the Programmer Challenge Champion this month. This month’s win brings his 1st place totals to four, which is more than anyone else. Like Bob, second place winner Allen Stenger (Gardena, CA) also based his solution on Fermat’s algorithm but ended up with an implementation that was not quite as fast as Bob’s. Third place winner Ernst Munter (Kanata, ON, Canada) chose a different route and first implemented his solution in 386 assembly (!) and then wrote some graphics routines to illustrate the behavior of his code in order to help him optimize further. But in the end he says he didn’t have enough time to do as much as he would have liked to his C version.

Here are the code sizes and times. The time1 numbers are the times to factor some 64 bit numbers while the time2 numbers are the times to factor some 32 bit numbers (where highHalf is zero), which was not given much weight when ranking (but it’s interesting to see how some people optimized for this case). Numbers in parens after a person’s name indicate how many times that person has finished in the top 5 places of all previous Programmer Challenges, not including this one:

Name time1 time2 code

Bob Boonstra (9) 5 7 820

Allen Stenger (6) 11 24 896

Ernst Munter 15 2 1190

John Raley 25 186 520

Liber, Anspach, Phillips 436 14 620

Clement Goebel (3) 1094 1 1026

Jim Lloyd (1) 3920 20 4279

Alex Novickis 18800 53 9542

Bob’s code is well commented so I won’t go over it here. Also, for a discussion of Fermat’s factoring algorithm you can check out The Art of Computer Programming, v.2, by Donald Knuth.

One thing that made this problem slightly harder than normal was that you had to work with 64 bit integers. Allen Stenger ended up creating his own set of double-long macros which I’ll give here because they might come in handy some day if you ever have to work with 64 bit integers:


/* 3 */
#define OVERFLOW(x) (0 != (0x80000000 & (x)))

#define DOCARRY(x) { x ## high++; x ## low &= 0x7FFFFFFF;}
 
#define DOBORROW(x) { x ## high--; x ## low &= 0x7FFFFFFF;}
 
#define GT_ZERO(x) ((x ## high >= 0) && (x ## low != 0)) 
#define EQ_ZERO(x) ((x ## high == 0) && (x ## low == 0)) 
#define LT_ZERO(x) ((x ## high < 0)) 

#define INCR(x,a) {if (OVERFLOW(x ## low += a)) DOCARRY(x);}
 
#define DECR(x,a) {if (OVERFLOW(x ## low -= a)) DOBORROW(x);}
 
#define PLUS_EQUALS(x, y) { \
 x ## high += y ## high;  \
 if (OVERFLOW(x ## low += y ## low))\
 DOCARRY(x);}

#define MINUS_EQUALS(x, y) { \
 x ## high -= y ## high;  \
 if (OVERFLOW(x ## low -= y ## low))\
 DOBORROW(x);}

Here’s Bob’s winning solution:

Solution strategy

Factoring is a field which has been the subject of a great deal of research because of the implications for cryptography, especially techniques that depend on the difficulty of factoring very large numbers. Therefore, it is possible that some of these algorithms could be applied to the challenge.

However, in the event that no mathematician specializing in the field chooses to enter the Challenge, this relatively simple solution takes advantage of some of the simplifying conditions in the problem statement:

1) the numbers are relatively small (64 bits, or ~<20 digits)

2) the prime factors are even smaller (32 bits, or ~<10 digits)

This solution depends on no precomputed information. It is based on Fermat's algorithm, described in Knuth Vol II, which is especially well suited to the problem because it is most efficient when the two p, [sorry, the rest of the sentence was missing - Ed stb]

Fermat's algorithm requires ~(p-1)sqrt(n) iterations, where n=u*v and u~=p*sqrt(n), v~=sqrt(n)/p. Other algorithms require half as many iterations, but require more calculation per iteration.

Fermat's algorithm works as follows:

1) Let n - u*v, u and v odd primes.

2) Set a = (u+v)/2 and b = (u-v)/2.

3) Then n = uv = a**2 - b**2

4) Initialize a = trunc(sqrt(n)), b=0, r=a**2-b**2-n

5) Iterate looking for r==0, with an inner loop that keeps a=(u+v)/2 constant and increases b=(u-v)/2 by 1 each iteration until r becomes negative. When this happens, the halfsum a is increased by 1, and the difference loop is repeated.

The algorithm in Knuth uses auxiliary variables x,y for efficiency, where x = 2*a+1 and y = 2*b+1

This works fine in most cases, but causes overflow of a longword when x,y are the full 32-bits in size. So we have augmented the algorithm to deal with this case.

This solution also uses an efficient integer sqrt algorithm due to Ron Hunsinger, and extends that algorithm to 64 bits.


/* 4 */
#pragma options(assign_registers,honor_register)

#define ulong unsigned long
#define ushort unsigned short

#define kLo16Bits 0xFFFF
#define kHiBit 0x80000000UL
#define kLo2Bits 3
#define kLo1Bit 1

/*
Macros RightShift2 and RightShift1 shift a 64-bit value right by 2 and 
1 bits, respectively.
 */
#define RightShift32By2(xL,xH)                            \
{                                                         \
  xL >>= 2;                                               \
  xL |= (xH & kLo2Bits)<<30;                              \
  xH >>= 2;                                               \
}

#define RightShift32By1(xL,xH)                            \
{                                                         \
  xL >>= 1;                                               \
  xL |= (xH & kLo1Bit)<<31;                               \
  xH >>= 1;                                               \
}

/*
Macros Add32To64 (Sub32From64) add (subtract) a 32-bit value to (from) 
a 64-bit value.
 */
#define Add32To64(rL,rH, a)                               \
  temp = rL;                                              \
  if ((rL += a) < temp) ++rH;

#define Add2NPlus1To64(lowR,highR,a)                      \
  Add32To64(lowR,highR,a);                                \
  Add32To64(lowR,highR,a);                                \
  Add32To64(lowR,highR,1);

#define Sub32From64(rL,rH, s)                             \
  temp = rL;                                              \
  if ((rL -= s) > temp) --rH;

#define Sub2NPlus1From64(lowR,highR,s)                    \
  Sub32From64(lowR,highR,s);                              \
  Sub32From64(lowR,highR,s);                              \
  Sub32From64(lowR,highR,1);

//Macros Add64 (Sub64) add (subtract) two 64-bit values.
#define Add64(qL,qH, eL,eH)                               \
  Add32To64(qL,qH,eL);                                    \
  qH += eH;

#define Sub64(qL,qH, eL,eH)                               \
  Sub32From64(qL,qH, eL);                                 \
  qH -= eH;

/*
Macro Square64 multiplies a 32-bit value by itself to produce the square 
as a 64-bit value.  For this solution, we only need to execute this macro 
expansion once.
 */
#define Square64(a,rL,rH,temp)                            \
{                                                         \
  ulong lohi,lolo,hihi;                                   \
  ushort aHi,aLo;                                         \
                                                          \
  aHi = a>>16;                                            \
  aLo = a;                                                \
                                                          \
  rL = (lolo = (ulong)aLo*aLo)&kLo16Bits;                 \
  lohi = (ulong)aLo*aHi;                                  \
                                                          \
  temp = ((lohi&kLo16Bits)<<1) + (lolo>>16);              \
  rL |= temp<<16;                                         \
                                                          \
  temp>>=16;                                              \
  temp += ((hihi = (ulong)aHi*aHi)&kLo16Bits) +           \
                             (lohi>>(16-1));              \
  rH = temp&kLo16Bits;                                    \
                                                          \
  temp>>=16;                                              \
  temp += hihi>>16;                                       \
  rH |= temp<<16;                                         \
}

/*
Macros LessEqualZero64 and EqualZero64 determine if 64-bit (signed) values 
are <= 0 or == 0, respectively.
 */
#define LessEqualZero64(vL,vH)                            \
    ( (0>(long)vH) || ((0==vH) && (0==vL)) )

#define EqualZero64(vL,vH)                                \
     ((0==vL) && (0==vH))

//Macro LessEqual64 determines if one 64-bit quantity is less than or 
equal to another.
#define LessEqual64(uL,uH, vL,vH)                         \
    ( (uH< vH) || ((uH==vH) && (uL<=vL)))

//Function prototypes.
ulong sqrt64 (ulong nLo,ulong nHi);
void Factor64(ulong lowHalf,ulong highHalf,
              ulong *prime1Ptr,ulong *prime2Ptr);
The solution ...
Factor64
void Factor64(lowHalf,highHalf,prime1Ptr,prime2Ptr)
unsigned long lowHalf,highHalf;
unsigned long *prime1Ptr,*prime2Ptr;
{
register ulong x,y,lowR,highR;
register ulong temp;
ulong sqrtN;

/*
Fermat's algorithm (Knuth)

Assume n=u*v, u<v, n odd, u,v odd
Let a=(u+v)/2  b=(u-v)/2  n=a**2-b**2  0<=y<x<=n
Search for a,b that satisfy x**2-y**2-n==0

NOTE:  u,v given as being < 2**32 (fit in one word).  Therefore a,b also 
are < 2**32 (and fit in one word).

C1: Set x=2*floor(srt(n))+1,
         y=1,
         r=floor(sqrt(n))**2-n
     x corresponds to 2a+1, y to 2b+1, r to a**2-b**2-n
C2: if r<=0 goto C4
       (algorithm modified to keep r positive)
C3: r=r-y, y=y+2,
     goto C2
C4: if (r==0) terminate with n = p*q,
         p=(x-y)/2, q=(x+y-2)/2
C5: r=r+x, x=x+2,
     goto C3

This solution modifies the algorithm to:
(1) reorder arithmetic on r to keep it positive
(2) extend r to 64 bits when necessary
(3) handle the trivial case where one of the primes is 2.
 */
//Handle the trivial case with an even prime factor.
  if (0 == (lowHalf&1)) {
    *prime1Ptr = 2;
    *prime2Ptr = (lowHalf>>1) | ((highHalf&kLo1Bit)<<31);
    return;
  }
//Compute truncated square root of input 64-bit number.
  sqrtN = temp = sqrt64(lowHalf,highHalf);
  Square64(temp,lowR,highR,y);
//Initialize r to s*s - n, but calculate n-s*s to keep r positive, and 
fix later when it is time
//to add x to r by calculating r = x - (n-s*s).
  Sub64(lowHalf,highHalf, lowR,highR);
//Handle perfect square case.
  if ((0==highHalf) && (0==lowHalf)) {
    *prime1Ptr = *prime2Ptr = sqrtN;
    return;
  }
  y = 1;
  highR = 0;
//Separate out the overflow case where x=2a+1 does not fit into a long 
word.
  if ((temp=sqrtN) >= kHiBit-1) goto doLargeX;
//If sqrt(n) < 0x80000000, then 2*sqrt(n)+1 fits in one long word.  
//Also, n-trunc(sqrt(n))**2 < 2*trunc(sqrt(n)) also fits in a long word.
  x = 1+2*temp;
  lowR = x - lowHalf;
  x += 2;
  do {
C2:
    if (lowR<=y) break;
    lowR -= y;
    y += 2;
  } while (true); /* exit when r<=y */
C4:
  if (y==lowR) {
    *prime1Ptr = (x-y-2)>>1;
    *prime2Ptr = (x+y)>>1;
    return;
  }
  lowR += (x-y);
  y += 2;
//Fall through to modified algorithm if x overflows a long word.
  if ((x += 2) < (ulong)0xFFFFFFFF-2) goto C2;
/*
Adjust x and y to guarantee they will not overflow.  This requires some 
extra arithmetic to add 2*a+1 and subtract 2*b+1, but that is preferable 
to using two longs to represent each of x and y.
 */
  x>>=1;
  y>>=1;
  goto C3L;

doLargeX:
//x=2*a+1 no longer fits in 32 bits, so we sacrifice a little loop efficiency 
and let x=a. //Likewise, we let y=b instead of 2*b+1.
  lowR = x = temp;
  Add32To64(lowR,highR,x);
  Sub64(lowR,highR, lowHalf,highHalf);
  ++x;
  do {
    if ( LessEqualZero64(lowR,highR) ) break;
C3L:
    Sub2NPlus1From64(lowR,highR,y);
    ++y;
  } while (true); /* exit when lowR,highR<=0 */
C4L:
  if ( EqualZero64(lowR,highR)) {
    *prime1Ptr = x-y;
    *prime2Ptr = x+y;
    return;
  }
  Add2NPlus1To64(lowR,highR,x);
  ++x;
  goto C3L;
}

sqrt64
//sqrt_max4pow is the largest power of 4 that can be represented in an 
unsigned long.
#define sqrt_max4pow (1UL << 30)
//undef sqrt_truncate if rounded sqrts are desired; for the factoring 
problem we want
//truncated sqrts.
#define sqrt_truncate

//sqrt64 is based on code posted by Ron Hunsinger to comp.sys.mac.programmer. 
//Modified to handle 64-bit values.
ulong sqrt64 (ulong lowN, ulong highN) {
/*
Compute the integer square root of the integer argument n.  Method is 
to divide n by x computing the quotient x and remainder r.  Notice that 
the divisor x is changing as the quotient x changes.
 Instead of shifting the dividend/remainder left, we shift the quotient/divisor 
right.  The binary point starts at the extreme left, and shifts two bits 
at a time to the extreme right.
 The residue contains n-x**2.  Since (x + 1/2)**2 == x**2 + x + 1/4, 

n - (x + 1/2)**2 == (n - x**2) - (x + 1/4)
 Thus, we can increase x by 1/2 if we decrease (n-x**2) by (x+1/4)
 */
  register ulong lowResidue,highResidue; /* n - x**2 */
  register ulong lowRoot,highRoot;       /* x + 1/4 */
  register ulong half;                   /* 1/2     */
  ulong highhalf,lowhalf,temp;

  lowResidue = lowN;
  if (0 != (highResidue = highN)) {
//This code extends the original algorithm from 32 bits to 64 bits. 
// It parallels the 32-bit code; see below for comments.
    highRoot = sqrt_max4pow; lowRoot = 0;
    while (highRoot>highResidue)
      RightShift32By2(lowRoot,highRoot);
    Sub64(lowResidue,highResidue, lowRoot,highRoot);
//The binary point for half is now in the high order of two 32-bit words 

//representing the 64-bit value.
    lowhalf = lowRoot; highhalf = highRoot;
    RightShift32By2(lowhalf,highhalf);
    Add64(lowRoot,highRoot, lowhalf,highhalf);
    if (0==highhalf) goto sqrt2;
    half = highhalf<<1;
    do {
      if (LessEqual64(lowRoot,highRoot,lowResidue,highResidue))
      {
        highResidue -= highRoot;
        highRoot += half;
      }
      if (0 == (half>>=2)) {
        half = sqrt_max4pow<<1;
        goto sqrt2a;
      }
      highRoot -= half;
      highRoot >>= 1;
    } while (true);
sqrt2:
//The binary point for half is now in the lower of the two 32-bit words 

//representing the 64-bit value.
    half = lowhalf<<1;
    do {
      if ((0==highResidue) && (0==highRoot)) goto sqrt3;
      if (LessEqual64(lowRoot,highRoot,lowResidue,
                            highResidue)) {
        Sub64(lowResidue,highResidue, lowRoot,highRoot);
        Add32To64(lowRoot,highRoot,half);
      }
      half >>= 2;
sqrt2a:
      Sub32From64(lowRoot,highRoot,half);
      RightShift32By1(lowRoot,highRoot);
    } while (half);
  } else /* if (0 == highResidue) */ {
#ifndef sqrt_truncate
    if (lowResidue <= 12)
      return (0x03FFEA94 >> (lowResidue *= 2)) & 3;
#else
    if (lowResidue <= 15)
      return (0xFFFEAA54 >> (lowResidue *= 2)) & 3;
#endif
    lowRoot = sqrt_max4pow;
    while (lowRoot>lowResidue) lowRoot>>=2;

//Decrease (n-x**2) by (0+1/4)
    lowResidue -= lowRoot;
//1/4, with binary point shifted right 2
    half = lowRoot >> 2;
//x=1.  (lowRoot is now (x=1)+1/4.)
    lowRoot += half;
//1/2, properly aligned
    half <<= 1;

//Normal loop (there is at least one iteration remaining)
    do {
sqrt3:
      if (lowRoot <= lowResidue) {
// Whenever we can, decrease (n-x**2) by (x+1/4)
        lowResidue -= lowRoot;
        lowRoot += half;
      }
//Shift binary point 2 places right
      half >>= 2;
//x{+1/2}+1/4 - 1/8 == x{+1/2}+1/8
      lowRoot -= half;
//2x{+1}+1/4, shifted right 2 places
      lowRoot >>= 1;
//When 1/2 == 0, bin point is at far right
    } while (half);
  }
#ifndef sqrt_truncate
  if (lowRoot < lowResidue) ++lowRoot;
#endif

//Return value guaranteed to be correctly rounded (or truncated)
    return lowRoot;
}







  
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Microsoft Remote Desktop 8.0.16 - Connec...
With Microsoft Remote Desktop, you can connect to a remote PC and your work resources from almost anywhere. Experience the power of Windows with RemoteFX in a Remote Desktop client designed to help... Read more
Spotify 1.0.4.90. - Stream music, create...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
djay Pro 1.1 - Transform your Mac into a...
djay Pro provides a complete toolkit for performing DJs. Its unique modern interface is built around a sophisticated integration with iTunes and Spotify, giving you instant access to millions of... Read more
Vivaldi 1.0.118.19 - Lightweight browser...
Vivaldi browser. In 1994, two programmers started working on a web browser. Our idea was to make a really fast browser, capable of running on limited hardware, keeping in mind that users are... Read more
Stacks 2.6.11 - New way to create pages...
Stacks is a new way to create pages in RapidWeaver. It's a plugin designed to combine drag-and-drop simplicity with the power of fluid layout. Features: Fluid Layout: Stacks lets you build pages... Read more
xScope 4.1.3 - Onscreen graphic measurem...
xScope is powerful set of tools that are ideal for measuring, inspecting, and testing on-screen graphics and layouts. Its tools float above your desktop windows and can be accessed via a toolbar,... Read more
Cyberduck 4.7 - FTP and SFTP browser. (F...
Cyberduck is a robust FTP/FTP-TLS/SFTP browser for the Mac whose lack of visual clutter and cleverly intuitive features make it easy to use. Support for external editors and system technologies such... Read more
Labels & Addresses 1.7 - Powerful la...
Labels & Addresses is a home and office tool for printing all sorts of labels, envelopes, inventory labels, and price tags. Merge-printing capability makes the program a great tool for holiday... Read more
teleport 1.2.1 - Use one mouse/keyboard...
teleport is a simple utility to let you use one single mouse and keyboard to control several of your Macs. Simply reach the edge of your screen, and your mouse teleports to your other Mac! The... Read more
Apple iMovie 10.0.8 - Edit personal vide...
With an all-new design, Apple iMovie lets you enjoy your videos like never before. Browse your clips more easily, instantly share your favorite moments, and create beautiful HD movies and Hollywood-... Read more

Use Batting Average and the Apple Watch...
Batting Average, by Pixolini, is designed to help you manage your statistics. Every time you go to bat, you can use your Apple Watch to track  your swings, strikes, and hits. [Read more] | Read more »
Celebrate Studio Pango's 3rd Annive...
It is time to party, Pangoland pals! Studio Pango is celebrating their 3rd birthday and their gift to you is a new update to Pangoland. [Read more] | Read more »
Become the World's Most Important D...
Must Deliver, by cherrypick games, is a top-down endless-runner witha healthy dose of the living dead. [Read more] | Read more »
SoundHound + LiveLyrics is Making its De...
SoundHound Inc. has announced that SoundHound + LiveLyrics, will be one of the first third-party apps to hit the Apple Watch. With  SoundHound you'll be able to tap on your watch and have the app recognize the music you are listening to, then have... | Read more »
Adobe Joins the Apple Watch Lineup With...
A whole tidal wave of apps are headed for the Apple Watch, and Adobe has joined in with 3 new ways to enhance your creativity and collaborate with others. The watch apps pair with iPad/iPhone apps to give you total control over your Adobe projects... | Read more »
Z Steel Soldiers, Sequel to Kavcom'...
Kavcom has released Z Steel Soldiers, which continues the story of the comedic RTS originally created by the Bitmap Brothers. [Read more] | Read more »
Seene Lets You Create 3D Images With You...
Seene, by Obvious Engineering, is a 3D capture app that's meant to allow you to create visually stunning 3D images with a tap of your finger, and then share them as a 3D photo, video or gif. [Read more] | Read more »
Lost Within - Tips, Tricks, and Strategi...
Have you just downloaded Lost Within and are you in need of a guiding hand? While it’s not the toughest of games out there you might still want some helpful tips to get you started. [Read more] | Read more »
Entertain Your Pet With Your Watch With...
The Petcube Camera is a device that lets you use live video to check in on your pet, talk to them, and play with them using a laser pointer - all while you're away. And the Petcube app is coming to the Apple Watch, so you'll be able to hang out with... | Read more »
Now You Can Manage Your Line2 Calls With...
You'll be able to get your Line2 cloud phone service on the Apple Watch very soon. The watch app can send and receive messages using hands-free voice dictation, or by selecting from a list of provided responses. [Read more] | Read more »

Price Scanner via MacPrices.net

Intel Compute Stick: A New Mini-Computing For...
The Intel Compute Stick, a new pocket-sized computer based on a quad-core Intel Atom processor running Windows 8.1 with Bing, is available now through Intel Authorized Dealers across much of the... Read more
Heal to Launch First One-Touch House Call Doc...
Santa Monica, California based Heal, a pioneer in on-demand personal health care services — will offer the first one-touch, on-demand house call doctor app for the Apple Watch. Heal’s Watch app,... Read more
Mac Notebooks: Avoiding MagSafe Power Adapter...
Apple Support says proper usage, care, and maintenance of Your Mac notebook’s MagSafe power adapter can substantially increase the the adapter’s service life. Of course, MagSafe itself is an Apple... Read more
12″ Retina MacBook In Shootout With Air And P...
BareFeats’ rob-ART morgan has posted another comparison of the 12″ MacBook with other Mac laptops, noting that the general goodness of all Mac laptops can make which one to purchase a tough decision... Read more
FileMaker Go for iPad and iPhone: Over 1.5 Mi...
FileMaker has announced that its FileMaker Go for iPad and iPhone app has surpassed 1.5 million downloads from the iTunes App Store. The milestone confirms the continued popularity of the FileMaker... Read more
Sale! 13-inch 2.7GHz Retina MacBook Pro for $...
 Best Buy has the new 2015 13″ 2.7GHz/128GB Retina MacBook Pro on sale for $1099 – $200 off MSRP. Choose free shipping or free local store pickup (if available). Price for online orders only, in-... Read more
Minimalist MacBook Confirms Death of Steve Jo...
ReadWrite’s Adriana Lee has posted a eulogy for the “Digital Hub” concept Steve Jobs first proposed back in 2001, declaring the new 12-inch MacBook with its single, over-subscribed USB-C port to be... Read more
13-inch 2.7GHz Retina MacBook Pro for $1234 w...
Adorama has the 13″ 2.7GHz/128GB Retina MacBook Pro in stock for $1234.99 ($65 off MSRP) including free shipping plus a free LG external DVD/CD optical drive. Adorama charges sales tax in NY & NJ... Read more
13-inch 2.5GHz MacBook Pro available for $999...
 Adorama has the 13-inch 2.5GHz MacBook Pro on sale for $999 including free shipping plus NY & NJ sales tax only. Their price is $100 off MSRP. Read more
Save up to $600 with Apple refurbished Mac Pr...
The Apple Store is offering Apple Certified Refurbished Mac Pros for up to $600 off the cost of new models. An Apple one-year warranty is included with each Mac Pro, and shipping is free. The... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Support Technician IV - Jack Henry a...
Job Description Jack Henry & Associates is seeking an Apple Support Technician. This position while acting independently, ensures the proper day-to-day control of Read more
*Apple* Client Systems Solution Specialist -...
…drive revenue and profit in assigned sales segment and/or region specific to the Apple brand and product sets. This person will work directly with CDW Account Managers Read more
*Apple* Software Support - Casper (Can work...
…experience . Full knowledge of Mac OS X and prior . Mac OSX / Server . Apple Remote Desktop . Process Documentation . Ability to prioritize multiple tasks in a fast pace Read more
*Apple* Software Support - Xerox Corporation...
…Imaging experience Full knowledge of Mac OS X and prior Mac OSX / Server Apple Remote Desktop Process Documentation Ability to prioritize multiple tasks in a fast pace Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.