TweetFollow Us on Twitter

May 94 Cornfield
Volume Number:10
Issue Number:5
Column Tag:From The Corn Field

Thoughts From The Cornfield

Provocative, perhaps inflammatory, but just say no to assembly language on PowerPC

By Steve Kiene, MindVision Software, Lincoln, Nebraska

About the author

Steve, author of things like Stacker for Macintosh, cares about performance, code size, performance, portability, and performance as much as anyone we know (well, there’s always Mike Scanlin, too). Steve’s recently worked through a number of issues about porting to the PowerPC for performance, and along the way surprised himself with his conclusions. He’s curious about your reaction, so please let us know if they surprise you, too. I can just see our assistant Al holding up a placard with this in big letters: editorial@xplain.com

Writing code in assembly language instead of a high-level language to get performance is fast becoming an historic anachronism. The fierce competition in the 90’s leads to time-to-market battles that cannot be won by the company that insists on writing large chunks of their product in assembly language.

I’ve seen plenty of code whose authors have spent an inordinate amount of time tweaking assembly language instructions to get the most speed out of the code when the real problem was a slow algorithm. It’s the old problem of not seeing the forest for the trees. Careful examination of the algorithm offers more potential for improved performance than coding a bad algorithm in tightly-tuned assembly language. This generally holds true even when the improved algorithm is coded in C.

I took some code a friend had written; he had spent weeks hand-tuning assembly code. I re-examined the algorithms and found a better way to do it. I coded it up in C and the new C code ran fifty times faster on the 68K than the assembly solution had before. Now, it not only performs, it’s portable and more maintainable. After simply recompiling the code for Power Macintosh, its speed doubled. To convert the assembly code would have taken at least a couple of weeks for someone proficient not only in writing PowerPC assembly code, but also good at scheduling the assembly instructions to keep the chip as busy as possible.

Now, with all that said, there are reasons for writing PowerPC assembly language. So, if you have to write part of your program in assembly, make sure it’s the right part and be completely sure you cannot increase the speed by improving the algorithm. There’s little sense in writing assembly language for code that only amounted to 4% of the execution time, but it’s not that hard to find programs that do just that. What was gained by writing the code in assembly language rather than a high-level language?

The release of the Power Macintosh machines has sent many 68K assembly language programmers scrambling to learn the new architecture and its assembly language so that they can continue to performance-program the Macintosh. However, as they are finding out, programming in PowerPC assembly language is much harder than on the 68K Macintosh.

I’ve seen several examples of PowerPC assembly language code that at first glance looks fast but after careful examination the code turns out to run slower than expected. RISCprocessors require understanding the architecture of both the CPU and the memory bus to get good performance, and it’s simply difficult to keep all of the rules and constraints in your head while trying to be creative and write code. Compilers, on the other hand, just don’t care how many rules they have to remember.

Reasons to avoid assembly language

(1) Assembly language code is not easily ported to different instruction set architectures. There are tools which will port 68K assembly to PowerPC assembly, but you run the risk that the architectures are so different a port doesn’t get you the full potential of the new architecture.

(2) Code can be written in a shorter amount of time in a high level language than it can be in assembly. People want to argue this, claiming that bit manipulation routines are too hard to do in C, but it’s just not true. I suspect that if they knew C as well as they knew assembler there would be little or no argument.

(3) It is far easier to make mistakes in assembly than it is in a high level language. High level languages offer abstraction and structure which makes many common assembly language problems simply non-existent.

(4) Code written in assembly is harder to maintain both for the original programmer as well as a different programmer. Because of the fine-grain control you get with assembly language, it is not always easy to follow the flow of the code.

(5) The development tools available for writing assembly language are not advancing at the same rate as those for high level languages. In fact, there are many situations where the tools are getting worse. Apple’s PowerPC Assembler for MPW is not nearly as sophisticated as their 68K Assembler.

Reasons to use assembly language

(1) Highly time-critical code, such as software which interfaces with a piece of hardware which has very specific timing dependencies. Not very common.

(2) Code where space is at a minimum, such as embedded controllers. Generally not applicable to the Macintosh.

(3) Code that is proven to be an unacceptable bottleneck in a specific task.

(4) Places where parameters are passed in specific locations that are not easily accessible to a high level language. [Between the PowerPCruntime architecture, and the protocol conversion that Mixed Mode does for you, this problem essentially goes away on the Power Macintosh - Ed stb]

In all of these instances, there is a need for assembly only in specific places in the code. There is no need to code large parts in assembly.

How to speed up your code - the old way

The most common way to speed up existing code is to find the parts of the program that are slow and rewrite them in assembly. In the past that may have been a good way to gain more speed. Today, that model is not only outdated, it can backfire. I’ve seen people rewrite their code in PowerPC assembly language only to see it run SLOWER. Do not assume you know more about the processor architecture than the compiler. Unless you understand the instruction scheduling of the processor entirely, you probably can’t out-do a good compiler.

How to speed up your code - the new way

Determine which parts of your program are used the most. If a particular feature takes several minutes to run but is only used once a month, maybe it’s not as important as features which takes ten seconds but are used every five minutes. Watch your customers’ usage patterns. Ask them which parts of the program are annoyingly slow. Ask them why they think those parts are slow. Remember, slowness is subjective. What is slow to a power user may seem perfectly fine to a novice user. Who uses your product, the novice or the power user?

Once you have identified the areas of your software that seem slow, you may want to back up the results with scientific data. Run performance analysis tools to see exactly where in the code things are slow when you perform the tasks that users said were slow. THINK C and CodeWarrior have performance monitoring tools included that work well. MPW has its own performance tools which are adequate. If you are writing code that is not easily interfaced to these tools, I recommend you look at the source code provided for the performance tools in THINK C. It is very easy to adapt this code to monitor the performance of any piece of code.

One thing to remember is that the performance of your software may differ greatly when comparing Power Macintosh to the 68K Macintosh. Performance may also vary quite a bit between specific Macintosh models. Machines with a 32 bit data bus will perform memory intensive operations much faster than machines with a 16 bit data bus.

Now that you have figured out which parts of your program are slow, it is time to decide how to make them faster. The first thing to do is to examine the underlying algorithms of the code. Is there anything fundamental that you can do to speed things up? For example, if you are performing a text search, how do you search through the text? Do you use Munger? Perhaps something like a Boyer-Moore algorithm would be much faster. Remember, the key is to work smarter. Brute force is not the answer - it’s a matter of brains over brawn.

Sometimes simply a small change to your existing algorithm will make things much faster. I sped up a search algorithm I wrote years ago by a factor of three by simply adding two lines of code. Look at your algorithm and examine how it operates with common data that goes through it. Perhaps certain shortcuts can be taken when the most common data runs through it.

If you don’t have many books on fundamental computer algorithms, now is the time to stock up. I am a firm believer that you cannot have enough books on algorithms. At the end of this article I have listed several books that will help broaden and round out your algorithm skills. I highly recommend all of them.

Once you have analyzed the specific parts of your program that are bottlenecks, it is time to look at the architecture of your program as a whole. If your program is rather large you may want to look at it as several modules working together.

Is the underlying architecture of your program going to be a bottleneck? Are there time consuming tasks that can be done in the background at idle time rather than being done while the user must wait? Are you doing network communication synchronously when you could do it asynchronously and give the user their machine back? Are there tasks that need to be performed but don’t need to give immediate feedback to the user? These kinds of tasks are good candidates for idle time processing, additional user feedback, modeless dialog boxes, asynchronous programming, and other methods of helping the user feel as if they are not waiting on your program, or at least aren’t prevented from doing something else while you get your thing done. If you keep the user occupied or help them feel productive while your program is working, they’ll be more patient with whatever performance you have.

How to write the code in Assembly Language

If, after careful examination, you have determined a bottleneck in your program, analyzed the algorithms as best you can, rewritten them to be as efficient as possible, and still it is not fast enough, perhaps it is time to code a small part in assembly. The best place to start is to disassemble compiler- generated code for the routine you want to code in assembly. Look at the code. What is inefficient about it? Are registers constantly being reloaded? Are the registers being used efficiently? Are the instructions scheduled for maximum pipelining? Very often you can take the disassembled code, make a few minor modifications to it and see a very nice speed increase.

Perform accurate timing tests on the code you are optimizing. Unless you completely understand the PowerPC Architecture Manual and the PowerPC 601 User’s Guide, more often than not you will make PowerPC code slower than a good compiler. The bottom line is that it must run faster, not look faster.

Maintain an exact high-level equivalent of the assembly code, and keep it right there in the same file. This way if you port your code to a different architecture, you’ve got what you need to get up and running quickly. In many cases the bottleneck on one machine will not be a bottleneck on another.

In Conclusion

This article has discussed some alternate methods of speeding up your program execution that are in many ways better than traditional methods used by many programmers. The goal is to maximize your gain and minimize your effort. By working smarter rather than harder, you can have a faster program in less time.

Recommended Books

[1] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT Press, 1990.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.

[3] Saumyendra Sengupta and Paul Edwards. Data Structures in ANSI C. Academic Press, 1991.

[4] Donald Knuth. The Art of Computer Programming, Volumes 1-3. Addison-Wesley, 1973

[5] Daniel H. Greene and Donald E. Knuth. Mathematics for the Analysis of Algorithms., Third Edition Birkhäuser, 1990.

[6] P. D. Eastman. Go, Dog, Go! Random House, 1961.

[7] Manoochehr Azmoodeh. Abstract Data Types and Algorithms, Second Edition. Macmillan, 1990.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Macs Fan Control 1.3.1.0 - Monitor and c...
Macs Fan Control allows you to monitor and control almost any aspect of your computer's fans, with support for controlling fan speed, temperature sensors pane, menu-bar icon, and autostart with... Read more
NetShade 6.3.1 - Browse privately using...
NetShade is an anonymous proxy and VPN app+service for Mac. Unblock your Internet through NetShade's high-speed proxy and VPN servers spanning seven countries. NetShade masks your IP address as you... Read more
Dragon Dictate 4.0.7 - Premium voice-rec...
With Dragon Dictate speech recognition software, you can use your voice to create and edit text or interact with your favorite Mac applications. Far more than just speech-to-text, Dragon Dictate lets... Read more
Persecond 1.0.2 - Timelapse video made e...
Persecond is the easy, fun way to create a beautiful timelapse video. Import an image sequence from any camera, trim the length of your video, adjust the speed and playback direction, and you’re done... Read more
GIMP 2.8.14p2 - Powerful, free image edi...
GIMP is a multi-platform photo manipulation tool. GIMP is an acronym for GNU Image Manipulation Program. The GIMP is suitable for a variety of image manipulation tasks, including photo retouching,... Read more
Sandvox 2.10.2 - Easily build eye-catchi...
Sandvox is for Mac users who want to create a professional looking website quickly and easily. With Sandvox, you don't need to be a Web genius to build a stylish, feature-rich, standards-compliant... Read more
LibreOffice 5.0.1.2 - Free, open-source...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
f.lux 36.1 - Adjusts the color of your d...
f.lux makes the color of your computer's display adapt to the time of day, warm at night and like sunlight during the day. Ever notice how people texting at night have that eerie blue glow? Or wake... Read more
VirtualBox 5.0.2 - x86 virtualization so...
VirtualBox is a family of powerful x86 virtualization products for enterprise as well as home use. Not only is VirtualBox an extremely feature rich, high performance product for enterprise customers... Read more
File Juicer 4.43 - Extract images, video...
File Juicer is a drag-and-drop can opener and data archaeologist. Its specialty is to find and extract images, video, audio, or text from files which are hard to open in other ways. In computer... Read more

ReBoard: Revolutionary Keyboard (Utilit...
ReBoard: Revolutionary Keyboard 1.0 Device: iOS Universal Category: Utilities Price: $1.99, Version: 1.0 (iTunes) Description: Do everything within the keyboard without switching apps! If you are in WhatsApp, how do you schedule a... | Read more »
Tiny Empire (Games)
Tiny Empire 1.1.3 Device: iOS Universal Category: Games Price: $2.99, Version: 1.1.3 (iTunes) Description: Launch cannonballs and blow tiny orcs into thousands of pieces in this intuitive fantasy-themed puzzle shooter! Embark on an... | Read more »
Astropad Mini (Productivity)
Astropad Mini 1.0 Device: iOS iPhone Category: Productivity Price: $4.99, Version: 1.0 (iTunes) Description: *** 50% off introductory price! ​*** Get the high-end experience of a Wacom tablet at a fraction of the price with Astropad... | Read more »
Emo Chorus (Music)
Emo Chorus 1.0.0 Device: iOS Universal Category: Music Price: $1.99, Version: 1.0.0 (iTunes) Description: Realistic Choir simulator ranging from simple Chorus emulation to full ensemble Choir with 128 members. ### introductory offer... | Read more »
Forest Spirit (Games)
Forest Spirit 1.0.5 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.5 (iTunes) Description: | Read more »
Ski Safari 2 (Games)
Ski Safari 2 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: The world's most fantastical, fun, family-friendly skiing game is back and better than ever! Play as Sven's sister Evana, share... | Read more »
Lara Croft GO (Games)
Lara Croft GO 1.0.47768 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.47768 (iTunes) Description: Lara Croft GO is a turn based puzzle-adventure set in a long-forgotten world. Explore the ruins of an ancient... | Read more »
Whispering Willows (Games)
Whispering Willows 1.23 Device: iOS Universal Category: Games Price: $4.99, Version: 1.23 (iTunes) Description: **LAUNCH SALE 50% OFF** - Whispering Willows is on sale for 50% off ($4.99) until September 9th. | Read more »
Calvino Noir (Games)
Calvino Noir 1.1 Device: iOS iPhone Category: Games Price: $3.99, Version: 1.1 (iTunes) Description: The film noir stealth game. Calvino Noir is the exploratory, sneaking adventure through the 1930s European criminal underworld.... | Read more »
Angel Sword (Games)
Angel Sword 1.0 Device: iOS Universal Category: Games Price: $6.99, Version: 1.0 (iTunes) Description: Prepare to adventure in the most epic full scale multiplayer 3D RPG for mobile! Experience amazing detailed graphics in full HD.... | Read more »

Price Scanner via MacPrices.net

iPad Air 2 on sale for up to $100 off MSRP
Best Buy has iPad Air 2s on sale for up to $100 off MSRP on their online store for a limited time. Choose free shipping or free local store pickup (if available). Sale prices available for online... Read more
MacBook Airs on sale for $100 off MSRP
Best Buy has MacBook Airs on sale for $100 off MSRP on their online store. Choose free shipping or free local store pickup (if available). Sale prices for online orders only, in-store prices may vary... Read more
Big Grips Lift Handle For iPad Air and iPad A...
KEM Ventures, Inc. which pioneered the extra-large, super-protective iPad case market with the introduction of Big Grips Frame and Stand in 2011, is launching Big Grips Lift featuring a new super-... Read more
Samsung Launches Galaxy Tab S2, Its Most Powe...
Samsung Electronics America, Inc. has announced the U.S. release of the Galaxy Tab S2, its thinnest, lightest, ultra-fast tablet. Blending form and function, elegant design and multitasking power,... Read more
Tablet Screen Sizes Expanding as iPad Pro App...
Larger screen sizes are gaining favor as the tablet transforms into a productivity device, with shipments growing 185 percent year-over-year in 2015. According to a new Strategy Analytics’ Tablet... Read more
Today Only: Save US$50 on Adobe Elements 13;...
Keep the memories. lose the distractions. Summer’s winding down and it’s time to turn almost perfect shots into picture perfect memories with Elements 13. And get the power to edit both photos and... Read more
1.4GHz Mac mini on sale for $449, save $50
Best Buy has the 1.4GHz Mac mini on sale for $50 off MSRP on their online store. Choose free shipping or free local store pickup (if available). Price for online orders only, in-store price may vary... Read more
12-inch 1.1GHz Gold MacBook on sale for $1149...
B&H Photo has the 12″ 1.1GHz Gold Retina MacBook on sale for $1149.99 including free shipping plus NY sales tax only. Their price is $150 off MSRP, and it’s the lowest price available for this... Read more
27-inch 3.3GHz 5K iMac on sale for $1849, sav...
Best Buy has the 27″ 3.3GHz 5K iMac on sale for $1849.99. Their price is $150 off MSRP, and it’s the lowest price available for this model. Choose free shipping or free local store pickup (if... Read more
Worldwide Tablet Shipments Expected to Declin...
Does Apple badly need a touchscreen convertible/hybrid laptop MacBook? Yes, judging from a new market forecast from the International Data Corporation (IDC) Worldwide Quarterly Tablet Tracker, which... Read more

Jobs Board

*Apple* Music, Business Operations - Apple (...
**Job Summary** This role in Apple Music and in iTunes is working with…the songs that we all enjoy listening to in Apple Music. Your job will be to work wit Read more
Hardware Systems Integration Engineer - *App...
**Job Summary** We are seeking an enthusiastic electrical engineer for the Apple Watch team. This is a design engineering position that entails working with Read more
Engineering Project Manager - *Apple* TV -...
**Job Summary** The iTunes Apps project management team oversees iTunes, Apple TV, DRM and iOS Applications. We are looking for a project manager to help manage and Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail Online Store: Customer Insigh...
**Job Summary** Apple Retail (Online Store) is seeking an experienced e-commerce analytics professional to join the Customer Insights Team. The Web e-Commerce Analyst Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.