TweetFollow Us on Twitter

Fixed Point Math
Volume Number:10
Issue Number:3
Column Tag:Under The Hood

Fixed Point Math For Speed Freaks

Fast fixed math and derived graphics utility routines

By Alexei Lebedev

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

About the author

Several of the author’s free programs, Kubik, Fractal Artist, Tower of Hanoi, as well as some other programs and patches can be downloaded from CompuServe. Author’s e-mail address is 70534,404@compuserve.com. Kubik simulates Rubik’s cube, and Fractal Artist draws some fractals like Mandelbrot Set and Julia Sets. Both Kubik and Fractal Artist (which were built for speed) make use of fixed point arithmetic techniques described here.

In this article we will explore several aspects of Mac programming: fixed point arithmetic in assembly, 3-d transformations, perspective and parallel projections, backplane elimination, offscreen bitmaps, and animation. We’ll discuss details of a set of utility routines, the complete source of which is available in the source files on disk or the online services (see page 2 for details about the online services).

Fixed Point Format

Let’s first build a small library of functions to do fixed point arithmetic. There are several reasons to do this instead of using built-in functions like FixMul and FixDiv. The first and most important is speed - Toolbox functions are slow. Just for comparison, our function for multiplying two Fixed numbers is 3 instructions long and computations are done in registers, whereas FixMul in my LC’s ROM has 47 instructions, and accesses memory many times. [This reasoning changes when it comes to math and the PowerPC. See the Powering Up series to learn more about the new common wisdom. - Ed. stb] The second reason is that we get to choose the precision of the numbers, because we can distribute bit usage between fractional and integer parts of a Fixed number in any way we like. Thus, if we were calculating a Mandelbrot set, we would probably choose 4 bits for the integer part, and 28 for the fraction. For graphics, on the other hand, it makes more sense to split the bits evenly between integer and fractional parts. This lets us use numbers as large as 32767+65535/65536, and fractions as small as 1/65536.

A Fixed number is simply a real number (float) multiplied by a scale in order to get rid of the fractional part. We will use 32-bit fixed point numbers, with the integer part in the higher word, and the fractional part in the lower word. So in our case (f) is scaled by 216 = 65536.

Fixed Point Arithmetic

Fixed numbers can be added (and subtracted) just like long integers. Why? Let n and m be the two numbers we want to add. Then their Fixed equivalents are nf and mf, where is f is, of course, 65536. Adding nf and mf we get (n+m)f, which is n+m expressed in Fixed notation. Let’s apply the same logic to other operations. With multiplication it’s a bit different (no pun intended), because nf*mf = (n*m)f2 has the wrong units. The correct result is (n*m)f. To get it, we simply divide the expression above by f. Note that this is not necessary when a Fixed number is being multiplied by an integer, because nf*m = (n*m)f. This important fact has been omitted in Inside Mac Volume I. As a result, some programmers write lines like fixnum = FixMul(fixnum, FixRatio(5, 1)), when all that is needed is fixnum *= 5 or something similar.

We will now implement multiplication in assembly. We will be using the 68020’s signed multiply instruction muls.l, which has syntax muls.l dx, dy:dz. This multiplies a long word in dx by a long word in dz, splitting the 64-bit result between dy and dz. Note that the registers can overlap, which means that to square a number, you would write muls.l dx,dy:dx.


/* 1 */
asm {
 muls.l d0, d1:d2
 move.w d1, d2 ; join high and low words of the result
 swap   d2; reorder words for correct result
}

The last two instructions divide d1:d2 by 65536, effectively shifting them down 16 bits. Figure 1 illustrates how this is done.

Fig. 1 Multiplying Fixed numbers

Division is slightly less trivial, but still very straight-forward. It uses the signed divide instruction divs.l.


/* 2 */
asm { 
 move.l num1, d2 ; num1 = numerator
 move.l num2, d1 ; num2 = denominator
 beq.s  @bad
 move.w d2, d0   ; split d2 between d2 and d0
 swap   d0
 clr.w  d0
 swap   d2
 ext.l  d2
 divs.l d1, d2:d0
 bra.s  @end
bad:    ; denom = 0
 moveq  #-2, d0
 ror.l  #1, d0
 tst.l  d2
 bgt    @end; is num1 > 0, return 0x7FFFFFFF
 not.l  d0; return 0x80000000
end:  
}

The code first loads the numbers and checks if denominator is 0. If this is the case, it tries to return a number closest to infinity of the same sign as the numerator.

Rotating -2 (0xFFFFFFFE) one bit to the right gives 0x7FFFFFFF. If numerator > 0, there is nothing to do, because 0x7FFFFFFF is the largest positive Fixed number. If numerator is negative, we return NOT(0xFFFFFFFE), or 0x80000000. Even though this IS the smallest Fixed number, it is not very usable, because -0x80000000 = 0x7FFFFFFF + 1 = 0x80000000! That’s why FixDiv() returns 0x80000001. Naturally, our code can be modified to return 0x80000001. All we have to is change not.l to neg.l. Actually, it not important at all which value is returned. Division by zero should not occur under any circumstances. The compiler, for example, doesn’t include any run time checking for this kind of thing in the code. The macro Divide() (in the file FixedPointMath.h) doesn’t either, because it takes up space. Function DivideCh() in FixedPointMath.c is safer to use, but it takes up more space, and handicaps you with function call overhead.

Let’s look at the mechanism of division. Multiply() and Divide() are two basic operations, using which you can implement many other functions, so it’s important to understand how they work.


/* 3 */
 move.w d2, d0
 swap   d0
 clr.w  d0
 swap   d2
 ext.l  d2

The idea here is to split d2 between d2 and d0, and divide this 64-bit quantity by d1 (it is basically the reverse of Multiply()). The first three instructions put d2.w into the d0.hw. The last two instructions put d2.hw into d2.w. After all of this is done, we can use divs.l d1,d2:d0 to divide the numbers.

Now that we know how division and multiplication work, we can build many more useful functions. For example, a square root function.


/* 4 */
Fixed FixSqrt(register Fixed num)  // uses Newton’s method to find  num
{
 register Fixed s;
 register short i;
 
 s = (num + 65536) >> 1;  //divide by 2
 for (i = 0; i < 6; i++)  //converge six times
 s = (s + Divide(num, s)) >> 1;
 return s;
}

It is the implementation of a well-known formula for finding square roots. It is based on Newton's method. S, (= num), can be calculated to any precision, but since (s+num/s)/2 converges very quickly, I decided that six iterations would be enough (For showing me the algorithm for this function, I would like to thank Alexander Migdal). Adescription of Newton’s method can be found in any high-school level book on mathematics.

As another example, we will consider a function for rounding Fixed to integers. After that we will move on to graphics-related topics. You will find more useful macros in FixedPointMath.h. Since they are all derived from Multiply(), Divide(), or FixRnd(), we will not discuss them here.


/* 5 */
asm {
 swap   d0
 bpl.s  @end
 addq   #1, d0
 bvc.s  @end
 subq   #1, d0
end:
}

This code rounds integers upwards. Note that when n > 0 and n - trunc(n) >= .5, bit 15 is set. After swap, this bit raises the N flag. In this case, we round up by adding 1 to the truncated result. If an overflow occurs, we subtract one

(d0.w (=0x8000) - 1 = 0x7FFF)

Note that this also works when n < 0, because for negative numbers bit 15 means that n - trunc(n) <= -.5. This code can be easily extended to round negative numbers correctly (away from 0), but since it is implemented as a macro, it would be nicer to keep it small (it returns the same result as Toolbox’s FixRound()).

3D Transformations

Possibly to your regret, I will not derive formulas for rotating points here. Instead, I will refer you to a book by Leendert Ammeraal, Programming Principles in Computer Graphics, second edition (published by John Wiley & Sons; its price is high, but think of it as the K&R of graphics programming). It is an excellent book, take my word for it. Using elegant C++ code, it implements vector classes, explains matrices, polygon triangulation, Bresenham’s algorithms, and includes a 3d graphics program utilizing z-buffer and other nice things. Here is a function for rotating a point about z-axis:


/* 6 */
void RollPoint(Vector3D *p, short angle)
{
 Fixed sin, cos, xPrime, yPrime;
 
 GetTrigValues(angle, &sin, &cos);
 xPrime = Multiply(p->x, cos) - Multiply(p->y, sin);
 yPrime = Multiply(p->x, sin) + Multiply(p->y, cos);
 p->x = xPrime;
 p->y = yPrime;
}

To demonstrate its correctness, let y be 0. Then after rotation p will have coordinates (x*cos(angle), x*sin(angle)). If on the other hand, we let x be 0, p will be (-y*sin(angle), y*cos(angle)). It’s always nice to have a piece of paper and pencil, because visualizing things is not always easy. Also, in case you didn’t know, a positive angle rotates a point counter-clockwise.

In RollPoint(), GetTrigValues() is used to calculate sine and cosine of an angle. Yes, it appeared previously in MacTutor (“Real-Time 3D Animation”, April/May 1992, Volume 8, No. 1, pp. 12-13). I borrowed it when I was building my 3D library, because I found it useful. You will find its implementation of GetTrigValues() in SineTable.h. The sine table used for look-up is initialized by InitSineTable(). InitSineTable() only builds the table once, storing it in a resource ‘sint’ with id 128.

You will find three other routines in file Transformations.c. They are ScalePoint(), PitchPoint(), and YawPoint(). ScalePoint() multiplies each coordinate of a point by the number you specify. The other two rotate points around x- and y- axes respectively (Yaw is for y, and Pitch is like a pitch modulation wheel in synthesizers: it spins up and down). Note that usually matrices are used for rotating and translating points. The advantage of using matrices is that they “remember” transformations applied to them, so if you teach a matrix three hundred transformations, you could quickly apply it to any other point, and this would be equivalent to doing all these transformations by hand.

Projection

We will now take a quick look at projection. Examine Fig. 2 to get an idea of what’s going on.

Figure 2.

SpaceSize specifies width and height of a rectangle in XY plane which is mapped to the screen. This rectangle (call it spaceR) has 3D coordinates of ((-spaceSize.x, spaceSize.y, 0), (spaceSize.x, spaceSize.y, 0), (spaceSize.x, -spaceSize.y, 0), (-spaceSize.x, -spaceSize.y, 0)). screenCenter is the origin of the 2D coordinate system. It maps to a 3D point (0,0,0), and vice versa. A screen rectangle (viewR) can be specified with ViewPort(). spaceR will be mapped to viewR and vice versa. screenCenter is set to the center of viewR.

Fig. 2 shows the viewing pyramid from the side. The camera is located on the Z axis, and is facing the XY plane. The distance from camera to the screen (eyez) can be changed using a routine SetViewAngle(theta). We calulate distance to the projection screen so that every point (lying in the xy plane) inside the spaceR rectangle is visible. The smaller the angle, the greater its cotangent, the greater eyez, and less noticeable the perspective. Specifying a viewing angle of 0 will result in a divide by zero. Instead, D3toD2par() should be used for parallel projection. A large value of theta will result in distortions and very strong perspective.


/* 7 */
eyez = spaceSize * cot(theta)
we have

P’ =   P * eyez   screenCenter  =  P * cot(theta) * screenCenter
     (eyez - P.z)  spaceSize                eyez - P.z

void D3toD2(Vector3D *p3D, Point *p2D)
{
 Fixed d = eyez - p3D->z;
   p2D->v = center.y 
 - FixRnd(Divide(Multiply(p3D->y, ratio.y),d));  
   p2D->h = center.x 
 + FixRnd(Divide(Multiply(p3D->x, ratio.x),d));
}

This function implements perspective projection (in Mac’s coordinate system the origin is in the upper-left corner, and y increases downward). Let’s see how parallel projection can be implemented. Since the camera is assumed to be infinitely far away, we take the limit of P’ as eyez approaches . We have


/* 8 */
P’  =    P *  screenCenter
           spaceSize

Another way to see this is note that P’.z no longer contributes (since there is no perspective), so eyez’s cancel.

Fig. 2 shows P’’, P’s image on the screen when using parallel projection. The following piece of code shows its implementation.


/* 9 */
void D3toD2par(Vector3D *p3D, Point *p2D)
{
   p2D->v = center.y - FixRnd(p3D->y * center.y/spaceSize.y);   
   p2D->h = center.x + FixRnd(p3D->x * center.x/spaceSize.x);
}

Back plane elimination

Suppose we have a triangle ABC. The orientation of points ABC is said to be positive if we turn counter-clockwise when visiting points ABC in the specified order. It is zero if A, B, and C lie on the same line, and is negative, if we turn clockwise. As long as we’re talking about convex, closed objects where all of the polygons use the same point ordering, the concept of orientation turns out to be very useful when determining whether a triangle (or some other polygon, provided all of its lie in the same plane) is visible. We say that points with positive (counter-clockwise) orientation lie on a visible plane, otherwise they line on the backplane, and the triangle is not drawn. The following function computes orientation of three points.


/* 10 */
static short visi(Point p1, Point p2, Point p3)
{
 return (long)((p2.v - p1.v) * (p3.h - p1.h)) - 
 (long)((p2.h - p1.h) * (p3.v - p1.v));
}

The result of this function is > 0 if the orientation is positive, < 0 if it negative, and 0 if all three points lie on the same line.

Figure 3

From this figure you see that A x B is a vector which points out of the page if (P1 P2 P3) have positive orientation, and into the page otherwise. The function visi() returns the opposite of (ad - bc) to account for mac’s coordinate system, where y increases downward. In that sense, mac has left-handed coordinate system.

Offscreen Bitmaps

We now come to the easiest part of the discussion.


/* 11 */
Boolean NewBitMap(BitMap *theBitMap, Rect *theRect)
{
 theBitMap->rowBytes = (((theRect->right 
 - theRect->left)+15)/16)*2;
 theBitMap->baseAddr = NewPtr((long)(theRect->bottom 
 - theRect->top) 
 * theBitMap->rowBytes);
 theBitMap->bounds = *theRect;
 return (!MemErr);
}

This function is straight-forward. rowBytes is calculated so it is even (as required by QuickDraw). Then NewBitMap allocates a block to hold the bit image. It returns true if everything is OK, otherwise it returns false.

Here is a piece of code from the OffscreenPort function, which allocates an offscreen port, and associates it with a bitmap, pointer to which is passed as a parameter:


/* 12 */
 OpenPort(newPort);
 newPort->portBits = *theBitMap;
 newPort->portRect = theBitMap->bounds;
 RectRgn(newPort->visRgn, &newPort->portRect);
 ClipRect(&newPort->portRect);
 EraseRect(&newPort->portRect);

We use RectRgn() to set new port’s visRgn to its portRect in case it happens to be larger than the screen. As to animation, it is all done by the CopyBits() call in the main() function.

 
AAPL
$501.11
Apple Inc.
+2.43
MSFT
$34.64
Microsoft Corpora
+0.15
GOOG
$898.03
Google Inc.
+16.02

MacTech Search:
Community Search:

Software Updates via MacUpdate

CrossOver 12.5.1 - Run Windows apps on y...
CrossOver can get your Windows productivity applications and PC games up and running on your Mac quickly and easily. CrossOver runs the Windows software that you need on Mac at home, in the office,... Read more
Paperless 2.3.1 - Digital documents mana...
Paperless is a digital documents manager. Remember when everyone talked about how we would soon be a paperless society? Now it seems like we use paper more than ever. Let's face it - we need and we... Read more
Apple HP Printer Drivers 2.16.1 - For OS...
Apple HP Printer Drivers includes the latest HP printing and scanning software for Mac OS X 10.6, 10.7 and 10.8. For information about supported printer models, see this page.Version 2.16.1: This... Read more
Yep 3.5.1 - Organize and manage all your...
Yep is a document organization and management tool. Like iTunes for music or iPhoto for photos, Yep lets you search and view your documents in a comfortable interface, while offering the ability to... Read more
Apple Canon Laser Printer Drivers 2.11 -...
Apple Canon Laser Printer Drivers is the latest Canon Laser printing and scanning software for Mac OS X 10.6, 10.7 and 10.8. For information about supported printer models, see this page.Version 2.11... Read more
Apple Java for Mac OS X 10.6 Update 17 -...
Apple Java for Mac OS X 10.6 delivers improved security, reliability, and compatibility by updating Java SE 6.Version Update 17: Java for Mac OS X 10.6 Update 17 delivers improved security,... Read more
Arq 3.3 - Online backup (requires Amazon...
Arq is online backup for the Mac using Amazon S3 and Amazon Glacier. It backs-up and faithfully restores all the special metadata of Mac files that other products don't, including resource forks,... Read more
Apple Java 2013-005 - For OS X 10.7 and...
Apple Java for OS X 2013-005 delivers improved security, reliability, and compatibility by updating Java SE 6 to 1.6.0_65. On systems that have not already installed Java for OS X 2012-006, this... Read more
DEVONthink Pro 2.7 - Knowledge base, inf...
Save 10% with our exclusive coupon code: MACUPDATE10 DEVONthink Pro is your essential assistant for today's world, where almost everything is digital. From shopping receipts to important research... Read more
VirtualBox 4.3.0 - x86 virtualization so...
VirtualBox is a family of powerful x86 virtualization products for enterprise as well as home use. Not only is VirtualBox an extremely feature rich, high performance product for enterprise customers... Read more

Briquid Gets Updated with New Undo Butto...
Briquid Gets Updated with New Undo Button, Achievements, and Leaderboards, on Sale for $0.99 Posted by Andrew Stevens on October 16th, 2013 [ | Read more »
Halloween – iLovecraft Brings Frightenin...
Halloween – iLovecraft Brings Frightening Stories From Author H.P. | Read more »
The Blockheads Creator David Frampton Gi...
The Blockheads Creator David Frampton Gives a Postmortem on the Creation Process of the Game Posted by Andrew Stevens on October 16th, 2013 [ permalink ] Hey, a | Read more »
Sorcery! Enhances the Gameplay in Latest...
Sorcery! | Read more »
It Came From Australia: Tiny Death Star
NimbleBit and Disney have teamed up to make Star Wars: Tiny Death Star, a Star Wars take on Tiny Tower. Right now, the game is in testing in Australia (you will never find a more wretched hive of scum and villainy) but we were able to sneak past... | Read more »
FIST OF AWESOME Review
FIST OF AWESOME Review By Rob Rich on October 16th, 2013 Our Rating: :: TALK TO THE FISTUniversal App - Designed for iPhone and iPad A totalitarian society of bears is only the tip of the iceberg in this throwback brawler.   | Read more »
PROVERBidioms Paints English Sayings in...
PROVERBidioms Paints English Sayings in a Picture for Users to Find Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
OmniFocus 2 for iPhone Review
OmniFocus 2 for iPhone Review By Carter Dotson on October 16th, 2013 Our Rating: :: OMNIPOTENTiPhone App - Designed for the iPhone, compatible with the iPad OmniFocus 2 for iPhone is a task management app for people who absolutely... | Read more »
Ingress – Google’s Augmented-Reality Gam...
Ingress – Google’s Augmented-Reality Game to Make its Way to iOS Next Year Posted by Andrew Stevens on October 16th, 2013 [ permalink ] | Read more »
CSR Classics is Full of Ridiculously Pre...
CSR Classics is Full of Ridiculously Pretty Classic Automobiles Posted by Rob Rich on October 16th, 2013 [ permalink ] | Read more »

Price Scanner via MacPrices.net

Apple Store Canada offers refurbished 11-inch...
 The Apple Store Canada has Apple Certified Refurbished 2013 11″ MacBook Airs available starting at CDN$ 849. Save up to $180 off the cost of new models. An Apple one-year warranty is included with... Read more
Updated MacBook Price Trackers
We’ve updated our MacBook Price Trackers with the latest information on prices, bundles, and availability on MacBook Airs, MacBook Pros, and the MacBook Pros with Retina Displays from Apple’s... Read more
13-inch Retina MacBook Pros on sale for up to...
B&H Photo has the 13″ 2.5GHz Retina MacBook Pro on sale for $1399 including free shipping. Their price is $100 off MSRP. They have the 13″ 2.6GHz Retina MacBook Pro on sale for $1580 which is $... Read more
AppleCare Protection Plans on sale for up to...
B&H Photo has 3-Year AppleCare Warranties on sale for up to $105 off MSRP including free shipping plus NY sales tax only: - Mac Laptops 15″ and Above: $244 $105 off MSRP - Mac Laptops 13″ and... Read more
Apple’s 64-bit A7 Processor: One Step Closer...
PC Pro’s Darien Graham-Smith reported that Canonical founder and Ubuntu Linux creator Mark Shuttleworth believes Apple intends to follow Ubuntu’s lead and merge its desktop and mobile operating... Read more
MacBook Pro First, Followed By iPad At The En...
French site Info MacG’s Florian Innocente says he has received availability dates and order of arrival for the next MacBook Pro and the iPad from the same contact who had warned hom of the arrival of... Read more
Chart: iPad Value Decline From NextWorth
With every announcement of a new Apple device, serial upgraders begin selling off their previous models – driving down the resale value. So, with the Oct. 22 Apple announcement date approaching,... Read more
SOASTA Survey: What App Do You Check First in...
SOASTA Inc., the leader in cloud and mobile testing announced the results of its recent survey showing which mobile apps are popular with smartphone owners in major American markets. SOASTA’s survey... Read more
Apple, Samsung Reportedly Both Developing 12-...
Digitimes’ Aaron Lee and Joseph Tsai report that Apple and Samsung Electronics are said to both be planning to release 12-inch tablets, and that Apple is currently cooperating with Quanta Computer on... Read more
Apple’s 2011 MacBook Pro Lineup Suffering Fro...
Appleinsider’s Shane Cole says that owners of early-2011 15-inch and 17-inch MacBook Pros are reporting issues with those models’ discrete AMD graphics processors, which in some cases results in the... Read more

Jobs Board

*Apple* Retail - Manager - Apple (United Sta...
Job SummaryKeeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, youre a master of them all. In the stores fast-paced, dynamic Read more
*Apple* Support / *Apple* Technician / Mac...
Apple Support / Apple Technician / Mac Support / Mac Set up / Mac TechnicianMac Set up and Apple Support technicianThe person we are looking for will have worked Read more
Senior Mac / *Apple* Systems Engineer - 318...
318 Inc, a top provider of Apple solutions is seeking a new Senior Apple Systems Engineer to be based out of our Santa Monica, California location. We are a Read more
*Apple* Retail - Manager - Apple Inc. (Unite...
Job Summary Keeping an Apple Store thriving requires a diverse set of leadership skills, and as a Manager, you’re a master of them all. In the store’s fast-paced, Read more
*Apple* Solutions Consultant - Apple (United...
**Job Summary** Apple Solutions Consultant (ASC) - Retail Representatives Apple Solutions Consultants are trained by Apple on selling Apple -branded products Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.