TweetFollow Us on Twitter

Fixed Point Math
Volume Number:10
Issue Number:3
Column Tag:Under The Hood

Fixed Point Math For Speed Freaks

Fast fixed math and derived graphics utility routines

By Alexei Lebedev

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

About the author

Several of the author’s free programs, Kubik, Fractal Artist, Tower of Hanoi, as well as some other programs and patches can be downloaded from CompuServe. Author’s e-mail address is 70534,404@compuserve.com. Kubik simulates Rubik’s cube, and Fractal Artist draws some fractals like Mandelbrot Set and Julia Sets. Both Kubik and Fractal Artist (which were built for speed) make use of fixed point arithmetic techniques described here.

In this article we will explore several aspects of Mac programming: fixed point arithmetic in assembly, 3-d transformations, perspective and parallel projections, backplane elimination, offscreen bitmaps, and animation. We’ll discuss details of a set of utility routines, the complete source of which is available in the source files on disk or the online services (see page 2 for details about the online services).

Fixed Point Format

Let’s first build a small library of functions to do fixed point arithmetic. There are several reasons to do this instead of using built-in functions like FixMul and FixDiv. The first and most important is speed - Toolbox functions are slow. Just for comparison, our function for multiplying two Fixed numbers is 3 instructions long and computations are done in registers, whereas FixMul in my LC’s ROM has 47 instructions, and accesses memory many times. [This reasoning changes when it comes to math and the PowerPC. See the Powering Up series to learn more about the new common wisdom. - Ed. stb] The second reason is that we get to choose the precision of the numbers, because we can distribute bit usage between fractional and integer parts of a Fixed number in any way we like. Thus, if we were calculating a Mandelbrot set, we would probably choose 4 bits for the integer part, and 28 for the fraction. For graphics, on the other hand, it makes more sense to split the bits evenly between integer and fractional parts. This lets us use numbers as large as 32767+65535/65536, and fractions as small as 1/65536.

A Fixed number is simply a real number (float) multiplied by a scale in order to get rid of the fractional part. We will use 32-bit fixed point numbers, with the integer part in the higher word, and the fractional part in the lower word. So in our case (f) is scaled by 216 = 65536.

Fixed Point Arithmetic

Fixed numbers can be added (and subtracted) just like long integers. Why? Let n and m be the two numbers we want to add. Then their Fixed equivalents are nf and mf, where is f is, of course, 65536. Adding nf and mf we get (n+m)f, which is n+m expressed in Fixed notation. Let’s apply the same logic to other operations. With multiplication it’s a bit different (no pun intended), because nf*mf = (n*m)f2 has the wrong units. The correct result is (n*m)f. To get it, we simply divide the expression above by f. Note that this is not necessary when a Fixed number is being multiplied by an integer, because nf*m = (n*m)f. This important fact has been omitted in Inside Mac Volume I. As a result, some programmers write lines like fixnum = FixMul(fixnum, FixRatio(5, 1)), when all that is needed is fixnum *= 5 or something similar.

We will now implement multiplication in assembly. We will be using the 68020’s signed multiply instruction muls.l, which has syntax muls.l dx, dy:dz. This multiplies a long word in dx by a long word in dz, splitting the 64-bit result between dy and dz. Note that the registers can overlap, which means that to square a number, you would write muls.l dx,dy:dx.


/* 1 */
asm {
 muls.l d0, d1:d2
 move.w d1, d2 ; join high and low words of the result
 swap   d2; reorder words for correct result
}

The last two instructions divide d1:d2 by 65536, effectively shifting them down 16 bits. Figure 1 illustrates how this is done.

Fig. 1 Multiplying Fixed numbers

Division is slightly less trivial, but still very straight-forward. It uses the signed divide instruction divs.l.


/* 2 */
asm { 
 move.l num1, d2 ; num1 = numerator
 move.l num2, d1 ; num2 = denominator
 beq.s  @bad
 move.w d2, d0   ; split d2 between d2 and d0
 swap   d0
 clr.w  d0
 swap   d2
 ext.l  d2
 divs.l d1, d2:d0
 bra.s  @end
bad:    ; denom = 0
 moveq  #-2, d0
 ror.l  #1, d0
 tst.l  d2
 bgt    @end; is num1 > 0, return 0x7FFFFFFF
 not.l  d0; return 0x80000000
end:  
}

The code first loads the numbers and checks if denominator is 0. If this is the case, it tries to return a number closest to infinity of the same sign as the numerator.

Rotating -2 (0xFFFFFFFE) one bit to the right gives 0x7FFFFFFF. If numerator > 0, there is nothing to do, because 0x7FFFFFFF is the largest positive Fixed number. If numerator is negative, we return NOT(0xFFFFFFFE), or 0x80000000. Even though this IS the smallest Fixed number, it is not very usable, because -0x80000000 = 0x7FFFFFFF + 1 = 0x80000000! That’s why FixDiv() returns 0x80000001. Naturally, our code can be modified to return 0x80000001. All we have to is change not.l to neg.l. Actually, it not important at all which value is returned. Division by zero should not occur under any circumstances. The compiler, for example, doesn’t include any run time checking for this kind of thing in the code. The macro Divide() (in the file FixedPointMath.h) doesn’t either, because it takes up space. Function DivideCh() in FixedPointMath.c is safer to use, but it takes up more space, and handicaps you with function call overhead.

Let’s look at the mechanism of division. Multiply() and Divide() are two basic operations, using which you can implement many other functions, so it’s important to understand how they work.


/* 3 */
 move.w d2, d0
 swap   d0
 clr.w  d0
 swap   d2
 ext.l  d2

The idea here is to split d2 between d2 and d0, and divide this 64-bit quantity by d1 (it is basically the reverse of Multiply()). The first three instructions put d2.w into the d0.hw. The last two instructions put d2.hw into d2.w. After all of this is done, we can use divs.l d1,d2:d0 to divide the numbers.

Now that we know how division and multiplication work, we can build many more useful functions. For example, a square root function.


/* 4 */
Fixed FixSqrt(register Fixed num)  // uses Newton’s method to find  num
{
 register Fixed s;
 register short i;
 
 s = (num + 65536) >> 1;  //divide by 2
 for (i = 0; i < 6; i++)  //converge six times
 s = (s + Divide(num, s)) >> 1;
 return s;
}

It is the implementation of a well-known formula for finding square roots. It is based on Newton's method. S, (= num), can be calculated to any precision, but since (s+num/s)/2 converges very quickly, I decided that six iterations would be enough (For showing me the algorithm for this function, I would like to thank Alexander Migdal). Adescription of Newton’s method can be found in any high-school level book on mathematics.

As another example, we will consider a function for rounding Fixed to integers. After that we will move on to graphics-related topics. You will find more useful macros in FixedPointMath.h. Since they are all derived from Multiply(), Divide(), or FixRnd(), we will not discuss them here.


/* 5 */
asm {
 swap   d0
 bpl.s  @end
 addq   #1, d0
 bvc.s  @end
 subq   #1, d0
end:
}

This code rounds integers upwards. Note that when n > 0 and n - trunc(n) >= .5, bit 15 is set. After swap, this bit raises the N flag. In this case, we round up by adding 1 to the truncated result. If an overflow occurs, we subtract one

(d0.w (=0x8000) - 1 = 0x7FFF)

Note that this also works when n < 0, because for negative numbers bit 15 means that n - trunc(n) <= -.5. This code can be easily extended to round negative numbers correctly (away from 0), but since it is implemented as a macro, it would be nicer to keep it small (it returns the same result as Toolbox’s FixRound()).

3D Transformations

Possibly to your regret, I will not derive formulas for rotating points here. Instead, I will refer you to a book by Leendert Ammeraal, Programming Principles in Computer Graphics, second edition (published by John Wiley & Sons; its price is high, but think of it as the K&R of graphics programming). It is an excellent book, take my word for it. Using elegant C++ code, it implements vector classes, explains matrices, polygon triangulation, Bresenham’s algorithms, and includes a 3d graphics program utilizing z-buffer and other nice things. Here is a function for rotating a point about z-axis:


/* 6 */
void RollPoint(Vector3D *p, short angle)
{
 Fixed sin, cos, xPrime, yPrime;
 
 GetTrigValues(angle, &sin, &cos);
 xPrime = Multiply(p->x, cos) - Multiply(p->y, sin);
 yPrime = Multiply(p->x, sin) + Multiply(p->y, cos);
 p->x = xPrime;
 p->y = yPrime;
}

To demonstrate its correctness, let y be 0. Then after rotation p will have coordinates (x*cos(angle), x*sin(angle)). If on the other hand, we let x be 0, p will be (-y*sin(angle), y*cos(angle)). It’s always nice to have a piece of paper and pencil, because visualizing things is not always easy. Also, in case you didn’t know, a positive angle rotates a point counter-clockwise.

In RollPoint(), GetTrigValues() is used to calculate sine and cosine of an angle. Yes, it appeared previously in MacTutor (“Real-Time 3D Animation”, April/May 1992, Volume 8, No. 1, pp. 12-13). I borrowed it when I was building my 3D library, because I found it useful. You will find its implementation of GetTrigValues() in SineTable.h. The sine table used for look-up is initialized by InitSineTable(). InitSineTable() only builds the table once, storing it in a resource ‘sint’ with id 128.

You will find three other routines in file Transformations.c. They are ScalePoint(), PitchPoint(), and YawPoint(). ScalePoint() multiplies each coordinate of a point by the number you specify. The other two rotate points around x- and y- axes respectively (Yaw is for y, and Pitch is like a pitch modulation wheel in synthesizers: it spins up and down). Note that usually matrices are used for rotating and translating points. The advantage of using matrices is that they “remember” transformations applied to them, so if you teach a matrix three hundred transformations, you could quickly apply it to any other point, and this would be equivalent to doing all these transformations by hand.

Projection

We will now take a quick look at projection. Examine Fig. 2 to get an idea of what’s going on.

Figure 2.

SpaceSize specifies width and height of a rectangle in XY plane which is mapped to the screen. This rectangle (call it spaceR) has 3D coordinates of ((-spaceSize.x, spaceSize.y, 0), (spaceSize.x, spaceSize.y, 0), (spaceSize.x, -spaceSize.y, 0), (-spaceSize.x, -spaceSize.y, 0)). screenCenter is the origin of the 2D coordinate system. It maps to a 3D point (0,0,0), and vice versa. A screen rectangle (viewR) can be specified with ViewPort(). spaceR will be mapped to viewR and vice versa. screenCenter is set to the center of viewR.

Fig. 2 shows the viewing pyramid from the side. The camera is located on the Z axis, and is facing the XY plane. The distance from camera to the screen (eyez) can be changed using a routine SetViewAngle(theta). We calulate distance to the projection screen so that every point (lying in the xy plane) inside the spaceR rectangle is visible. The smaller the angle, the greater its cotangent, the greater eyez, and less noticeable the perspective. Specifying a viewing angle of 0 will result in a divide by zero. Instead, D3toD2par() should be used for parallel projection. A large value of theta will result in distortions and very strong perspective.


/* 7 */
eyez = spaceSize * cot(theta)
we have

P’ =   P * eyez   screenCenter  =  P * cot(theta) * screenCenter
     (eyez - P.z)  spaceSize                eyez - P.z

void D3toD2(Vector3D *p3D, Point *p2D)
{
 Fixed d = eyez - p3D->z;
   p2D->v = center.y 
 - FixRnd(Divide(Multiply(p3D->y, ratio.y),d));  
   p2D->h = center.x 
 + FixRnd(Divide(Multiply(p3D->x, ratio.x),d));
}

This function implements perspective projection (in Mac’s coordinate system the origin is in the upper-left corner, and y increases downward). Let’s see how parallel projection can be implemented. Since the camera is assumed to be infinitely far away, we take the limit of P’ as eyez approaches . We have


/* 8 */
P’  =    P *  screenCenter
           spaceSize

Another way to see this is note that P’.z no longer contributes (since there is no perspective), so eyez’s cancel.

Fig. 2 shows P’’, P’s image on the screen when using parallel projection. The following piece of code shows its implementation.


/* 9 */
void D3toD2par(Vector3D *p3D, Point *p2D)
{
   p2D->v = center.y - FixRnd(p3D->y * center.y/spaceSize.y);   
   p2D->h = center.x + FixRnd(p3D->x * center.x/spaceSize.x);
}

Back plane elimination

Suppose we have a triangle ABC. The orientation of points ABC is said to be positive if we turn counter-clockwise when visiting points ABC in the specified order. It is zero if A, B, and C lie on the same line, and is negative, if we turn clockwise. As long as we’re talking about convex, closed objects where all of the polygons use the same point ordering, the concept of orientation turns out to be very useful when determining whether a triangle (or some other polygon, provided all of its lie in the same plane) is visible. We say that points with positive (counter-clockwise) orientation lie on a visible plane, otherwise they line on the backplane, and the triangle is not drawn. The following function computes orientation of three points.


/* 10 */
static short visi(Point p1, Point p2, Point p3)
{
 return (long)((p2.v - p1.v) * (p3.h - p1.h)) - 
 (long)((p2.h - p1.h) * (p3.v - p1.v));
}

The result of this function is > 0 if the orientation is positive, < 0 if it negative, and 0 if all three points lie on the same line.

Figure 3

From this figure you see that A x B is a vector which points out of the page if (P1 P2 P3) have positive orientation, and into the page otherwise. The function visi() returns the opposite of (ad - bc) to account for mac’s coordinate system, where y increases downward. In that sense, mac has left-handed coordinate system.

Offscreen Bitmaps

We now come to the easiest part of the discussion.


/* 11 */
Boolean NewBitMap(BitMap *theBitMap, Rect *theRect)
{
 theBitMap->rowBytes = (((theRect->right 
 - theRect->left)+15)/16)*2;
 theBitMap->baseAddr = NewPtr((long)(theRect->bottom 
 - theRect->top) 
 * theBitMap->rowBytes);
 theBitMap->bounds = *theRect;
 return (!MemErr);
}

This function is straight-forward. rowBytes is calculated so it is even (as required by QuickDraw). Then NewBitMap allocates a block to hold the bit image. It returns true if everything is OK, otherwise it returns false.

Here is a piece of code from the OffscreenPort function, which allocates an offscreen port, and associates it with a bitmap, pointer to which is passed as a parameter:


/* 12 */
 OpenPort(newPort);
 newPort->portBits = *theBitMap;
 newPort->portRect = theBitMap->bounds;
 RectRgn(newPort->visRgn, &newPort->portRect);
 ClipRect(&newPort->portRect);
 EraseRect(&newPort->portRect);

We use RectRgn() to set new port’s visRgn to its portRect in case it happens to be larger than the screen. As to animation, it is all done by the CopyBits() call in the main() function.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

iDefrag 5.1.7 - Disk defragmentation and...
iDefrag helps defragment and optimize your disk for improved performance. Features include: Supports HFS and HFS+ (Mac OS Extended). Supports case sensitive and journaled filesystems. Supports... Read more
TrailRunner 3.8.832 - Route planning for...
TrailRunner is the perfect companion for runners, bikers, hikers, and all people wandering under the sky. Plan routes on a geographical map. Import GPS or workout recordings and journalize your... Read more
VOX 2.8.14 - Music player that supports...
VOX just sounds better! The beauty is in its simplicity, yet behind the minimal exterior lies a powerful music player with a ton of features and support for all audio formats you should ever need.... Read more
WhiteCap 6.6 - Visual plug-in for iTunes...
WhiteCap is a sleek and sophisticated music visualizer and screensaver that features futuristic, wireframe mesh visuals with dynamic backgrounds and colors. WhiteCap contains thousands of visual... Read more
VueScan 9.5.65 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
Carbon Copy Cloner 4.1.13 - Easy-to-use...
Carbon Copy Cloner backups are better than ordinary backups. Suppose the unthinkable happens while you're under deadline to finish a project: your Mac is unresponsive and all you hear is an ominous,... Read more
TrailRunner 3.8.831 - Route planning for...
TrailRunner is the perfect companion for runners, bikers, hikers, and all people wandering under the sky. Plan routes on a geographical map. Import GPS or workout recordings and journalize your... Read more
Quicken 4.4.2 - Complete personal financ...
Quicken makes managing your money easier than ever. Whether paying bills, upgrading from Windows, enjoying more reliable downloads, or getting expert product help, Quicken's new and improved features... Read more
Adobe Illustrator CC 2017 21.0.2 - Profe...
Illustrator CC 2017 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Illustrator customer). Adobe Illustrator CC 2017 is the industry... Read more
Paparazzi! 1.0b2 - Make user-defined siz...
Paparazzi! is a small utility for OS X that makes screenshots of webpages. This very simple tool takes screenshots of websites which do not fit on one screen. You specify the desired width, minimal... Read more

5 dastardly difficult roguelikes like th...
Edmund McMillen's popular roguelike creation The Binding of Isaac: Rebirth has finally crawled onto mobile devices. It's a grotesque dual-stick shooter that tosses you into an endless, procedurally generated basement as you, the pitiable Isaac,... | Read more »
Last week on PocketGamer
Welcome to a weekly feature looking back on the past seven days of coverage on our sister website, PocketGamer. It’s taken a while for 2017 to really get going, at least when it comes to the world of portable gaming. Thank goodness, then, for... | Read more »
ROME: Total War - Barbarian Invasion set...
To the delight of mobile strategy fans, Feral Interactive released ROME: Total War just a few months ago. Now the game's expansion, Barbarian Invasion is marching onto iPads as a standalone release. [Read more] | Read more »
Yuri (Games)
Yuri 1.0 Device: iOS iPhone Category: Games Price: $3.99, Version: 1.0 (iTunes) Description: It's night. Yuri opens his eyes. He wakes up in a strange forest.The small, courageous explorer rides on his bed on casters in this... | Read more »
Space schmup Xenoraid launches on the Ap...
10Tons Xenoraid is out today on the App Store, bringing some high-speed space action to your mobile gadgets just in time for the weekend. The company's last premium title, another sci-fi game titled Neon Chrome, did quite well for itself, so... | Read more »
Star Wars: Force Arena Beginner's G...
Star Wars: Force Arena joined the populous ranks of Star Wars games on mobile today. It's a two-lane MOBA starring many familiar faces from George Lucas's famed sci-fi franchise. As with most games of this nature, Force Arena can be a little obtuse... | Read more »
Mysterium: The Board Game (Games)
Mysterium: The Board Game 1.0 Device: iOS Universal Category: Games Price: $6.99, Version: 1.0 (iTunes) Description: The official adaptation of the famous board game Mysterium! | Read more »
Sonny (Games)
Sonny 1.0.4 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.4 (iTunes) Description: Reimagined for iOS, cult-hit RPG Sonny brings challenging turn-based combat that requires strategy and mastery of each new skill to... | Read more »
Towaga (Games)
Towaga 1.0 Device: iOS iPhone Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: "It has been foretold that a masked being would stand atop the legendary Towaga Temple, dwelling among shadows to fulfil The Black Moon... | Read more »
Bubble Witch 3 Saga Guide: How to get th...
King's bringing its fairytale bubble-popping puzzler back for its 3rd outing in Bubble Witch 3 Saga. If you're familiar with the series, not much has changed here on the surface level, though you'll likely be pleased with the improvements. If you'... | Read more »

Price Scanner via MacPrices.net

Opera Announces Neon Concept Browser For Mac
Opera is inviting users to get a glimpse of what Opera for computers could become with its Opera Neon browser concept. Each Opera Neon feature is described as “an alternate reality” for the Opera... Read more
Tellini Releases TabView 3.0 Missing Tool fo...
Tellini has announced the release of TabView 3.0. TabView has been the first macOS viewer for PowerTab tablatures. PowerTab is a well-known and widely adopted tablature editor for Windows systems and... Read more
13-inch 1.6GHz/128GB MacBook Air on sale for...
Overstock.com has the 1.6GHz/128GB 13″ MacBook Air on sale for $130 off MSRP including free shipping: - 13″ 1.6GHz/128GB MacBook Air (MMGF2LL/A): $869.99 $130 off MSRP Their price is the lowest... Read more
12-inch 32GB Space Gray iPad Pro on sale for...
B&H Photo has 12″ Space Gray 32GB WiFi Apple iPad Pros on sale for $55 off MSRP including free shipping. B&H charges sales tax in NY only: - 12″ Space Gray 32GB WiFi iPad Pro: $744.44 $55 off... Read more
9-inch 32GB Space Gray iPad Pro on sale for $...
B&H Photo has the 9.7″ 32GB Space Gray Apple iPad Pro on sale for $549 for a limited time. Shipping is free, and B&H charges NY sales tax only. Read more
Apple iMacs on sale for up to $120 off MSRP,...
B&H Photo has 21″ and 27″ Apple iMacs on sale for up to $120 off MSRP, each including free shipping plus NY sales tax only: - 27″ 3.3GHz iMac 5K: $2199 $100 off MSRP - 27″ 3.2GHz/1TB Fusion iMac... Read more
Apple refurbished Apple TVs available for up...
Apple has Certified Refurbished 32GB and 64GB Apple TVs available for up to $30 off the cost of new models. Apple’s standard one-year warranty is included with each model, and shipping is free: -... Read more
1.4GHz Mac mini, refurbished, available for $...
The Apple Store has Apple Certified Refurbished 1.4GHz Mac minis available for $419. Apple’s one-year warranty is included, and shipping is free. Their price is $80 off MSRP, and it’s the lowest... Read more
16GB iPad Air 2, Apple refurbished, available...
Apple has Certified Refurbished 16GB iPad Air 2s available for $319 including free shipping. A standard Apple one-year is included. Their price is $60 off original MSRP for this model. Read more
Mac Pros on sale for $200 off MSRP, refurbish...
B&H Photo has Mac Pros on sale for $200 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2799, $200 off MSRP - 3.5GHz 6-core Mac Pro: $3799, $200... Read more

Jobs Board

*Apple* Retail - Multiple Positions- Crows N...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* & PC Desktop Support Technician...
Apple & PC Desktop Support Technician job in Los Angeles, CA Introduction: We have immediate job openings for several Desktop Support Technicians with one of our Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Premier Retailer - PT Service Specia...
DescriptionSimply Mac is the largest premier retailer for Apple products and solutions. At Simply Mac we are all Apple , all the time. Same products. Same prices. Read more
*Apple* Premier Retailer - Service Manager -...
DescriptionSimply Mac is the largest premier retailer for Apple products and solutions. At Simply Mac we are all Apple , all the time. Same products. Same prices. Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.