TweetFollow Us on Twitter

Fixed Point Math
Volume Number:10
Issue Number:3
Column Tag:Under The Hood

Fixed Point Math For Speed Freaks

Fast fixed math and derived graphics utility routines

By Alexei Lebedev

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

About the author

Several of the author’s free programs, Kubik, Fractal Artist, Tower of Hanoi, as well as some other programs and patches can be downloaded from CompuServe. Author’s e-mail address is 70534,404@compuserve.com. Kubik simulates Rubik’s cube, and Fractal Artist draws some fractals like Mandelbrot Set and Julia Sets. Both Kubik and Fractal Artist (which were built for speed) make use of fixed point arithmetic techniques described here.

In this article we will explore several aspects of Mac programming: fixed point arithmetic in assembly, 3-d transformations, perspective and parallel projections, backplane elimination, offscreen bitmaps, and animation. We’ll discuss details of a set of utility routines, the complete source of which is available in the source files on disk or the online services (see page 2 for details about the online services).

Fixed Point Format

Let’s first build a small library of functions to do fixed point arithmetic. There are several reasons to do this instead of using built-in functions like FixMul and FixDiv. The first and most important is speed - Toolbox functions are slow. Just for comparison, our function for multiplying two Fixed numbers is 3 instructions long and computations are done in registers, whereas FixMul in my LC’s ROM has 47 instructions, and accesses memory many times. [This reasoning changes when it comes to math and the PowerPC. See the Powering Up series to learn more about the new common wisdom. - Ed. stb] The second reason is that we get to choose the precision of the numbers, because we can distribute bit usage between fractional and integer parts of a Fixed number in any way we like. Thus, if we were calculating a Mandelbrot set, we would probably choose 4 bits for the integer part, and 28 for the fraction. For graphics, on the other hand, it makes more sense to split the bits evenly between integer and fractional parts. This lets us use numbers as large as 32767+65535/65536, and fractions as small as 1/65536.

A Fixed number is simply a real number (float) multiplied by a scale in order to get rid of the fractional part. We will use 32-bit fixed point numbers, with the integer part in the higher word, and the fractional part in the lower word. So in our case (f) is scaled by 216 = 65536.

Fixed Point Arithmetic

Fixed numbers can be added (and subtracted) just like long integers. Why? Let n and m be the two numbers we want to add. Then their Fixed equivalents are nf and mf, where is f is, of course, 65536. Adding nf and mf we get (n+m)f, which is n+m expressed in Fixed notation. Let’s apply the same logic to other operations. With multiplication it’s a bit different (no pun intended), because nf*mf = (n*m)f2 has the wrong units. The correct result is (n*m)f. To get it, we simply divide the expression above by f. Note that this is not necessary when a Fixed number is being multiplied by an integer, because nf*m = (n*m)f. This important fact has been omitted in Inside Mac Volume I. As a result, some programmers write lines like fixnum = FixMul(fixnum, FixRatio(5, 1)), when all that is needed is fixnum *= 5 or something similar.

We will now implement multiplication in assembly. We will be using the 68020’s signed multiply instruction muls.l, which has syntax muls.l dx, dy:dz. This multiplies a long word in dx by a long word in dz, splitting the 64-bit result between dy and dz. Note that the registers can overlap, which means that to square a number, you would write muls.l dx,dy:dx.


/* 1 */
asm {
 muls.l d0, d1:d2
 move.w d1, d2 ; join high and low words of the result
 swap   d2; reorder words for correct result
}

The last two instructions divide d1:d2 by 65536, effectively shifting them down 16 bits. Figure 1 illustrates how this is done.

Fig. 1 Multiplying Fixed numbers

Division is slightly less trivial, but still very straight-forward. It uses the signed divide instruction divs.l.


/* 2 */
asm { 
 move.l num1, d2 ; num1 = numerator
 move.l num2, d1 ; num2 = denominator
 beq.s  @bad
 move.w d2, d0   ; split d2 between d2 and d0
 swap   d0
 clr.w  d0
 swap   d2
 ext.l  d2
 divs.l d1, d2:d0
 bra.s  @end
bad:    ; denom = 0
 moveq  #-2, d0
 ror.l  #1, d0
 tst.l  d2
 bgt    @end; is num1 > 0, return 0x7FFFFFFF
 not.l  d0; return 0x80000000
end:  
}

The code first loads the numbers and checks if denominator is 0. If this is the case, it tries to return a number closest to infinity of the same sign as the numerator.

Rotating -2 (0xFFFFFFFE) one bit to the right gives 0x7FFFFFFF. If numerator > 0, there is nothing to do, because 0x7FFFFFFF is the largest positive Fixed number. If numerator is negative, we return NOT(0xFFFFFFFE), or 0x80000000. Even though this IS the smallest Fixed number, it is not very usable, because -0x80000000 = 0x7FFFFFFF + 1 = 0x80000000! That’s why FixDiv() returns 0x80000001. Naturally, our code can be modified to return 0x80000001. All we have to is change not.l to neg.l. Actually, it not important at all which value is returned. Division by zero should not occur under any circumstances. The compiler, for example, doesn’t include any run time checking for this kind of thing in the code. The macro Divide() (in the file FixedPointMath.h) doesn’t either, because it takes up space. Function DivideCh() in FixedPointMath.c is safer to use, but it takes up more space, and handicaps you with function call overhead.

Let’s look at the mechanism of division. Multiply() and Divide() are two basic operations, using which you can implement many other functions, so it’s important to understand how they work.


/* 3 */
 move.w d2, d0
 swap   d0
 clr.w  d0
 swap   d2
 ext.l  d2

The idea here is to split d2 between d2 and d0, and divide this 64-bit quantity by d1 (it is basically the reverse of Multiply()). The first three instructions put d2.w into the d0.hw. The last two instructions put d2.hw into d2.w. After all of this is done, we can use divs.l d1,d2:d0 to divide the numbers.

Now that we know how division and multiplication work, we can build many more useful functions. For example, a square root function.


/* 4 */
Fixed FixSqrt(register Fixed num)  // uses Newton’s method to find  num
{
 register Fixed s;
 register short i;
 
 s = (num + 65536) >> 1;  //divide by 2
 for (i = 0; i < 6; i++)  //converge six times
 s = (s + Divide(num, s)) >> 1;
 return s;
}

It is the implementation of a well-known formula for finding square roots. It is based on Newton's method. S, (= num), can be calculated to any precision, but since (s+num/s)/2 converges very quickly, I decided that six iterations would be enough (For showing me the algorithm for this function, I would like to thank Alexander Migdal). Adescription of Newton’s method can be found in any high-school level book on mathematics.

As another example, we will consider a function for rounding Fixed to integers. After that we will move on to graphics-related topics. You will find more useful macros in FixedPointMath.h. Since they are all derived from Multiply(), Divide(), or FixRnd(), we will not discuss them here.


/* 5 */
asm {
 swap   d0
 bpl.s  @end
 addq   #1, d0
 bvc.s  @end
 subq   #1, d0
end:
}

This code rounds integers upwards. Note that when n > 0 and n - trunc(n) >= .5, bit 15 is set. After swap, this bit raises the N flag. In this case, we round up by adding 1 to the truncated result. If an overflow occurs, we subtract one

(d0.w (=0x8000) - 1 = 0x7FFF)

Note that this also works when n < 0, because for negative numbers bit 15 means that n - trunc(n) <= -.5. This code can be easily extended to round negative numbers correctly (away from 0), but since it is implemented as a macro, it would be nicer to keep it small (it returns the same result as Toolbox’s FixRound()).

3D Transformations

Possibly to your regret, I will not derive formulas for rotating points here. Instead, I will refer you to a book by Leendert Ammeraal, Programming Principles in Computer Graphics, second edition (published by John Wiley & Sons; its price is high, but think of it as the K&R of graphics programming). It is an excellent book, take my word for it. Using elegant C++ code, it implements vector classes, explains matrices, polygon triangulation, Bresenham’s algorithms, and includes a 3d graphics program utilizing z-buffer and other nice things. Here is a function for rotating a point about z-axis:


/* 6 */
void RollPoint(Vector3D *p, short angle)
{
 Fixed sin, cos, xPrime, yPrime;
 
 GetTrigValues(angle, &sin, &cos);
 xPrime = Multiply(p->x, cos) - Multiply(p->y, sin);
 yPrime = Multiply(p->x, sin) + Multiply(p->y, cos);
 p->x = xPrime;
 p->y = yPrime;
}

To demonstrate its correctness, let y be 0. Then after rotation p will have coordinates (x*cos(angle), x*sin(angle)). If on the other hand, we let x be 0, p will be (-y*sin(angle), y*cos(angle)). It’s always nice to have a piece of paper and pencil, because visualizing things is not always easy. Also, in case you didn’t know, a positive angle rotates a point counter-clockwise.

In RollPoint(), GetTrigValues() is used to calculate sine and cosine of an angle. Yes, it appeared previously in MacTutor (“Real-Time 3D Animation”, April/May 1992, Volume 8, No. 1, pp. 12-13). I borrowed it when I was building my 3D library, because I found it useful. You will find its implementation of GetTrigValues() in SineTable.h. The sine table used for look-up is initialized by InitSineTable(). InitSineTable() only builds the table once, storing it in a resource ‘sint’ with id 128.

You will find three other routines in file Transformations.c. They are ScalePoint(), PitchPoint(), and YawPoint(). ScalePoint() multiplies each coordinate of a point by the number you specify. The other two rotate points around x- and y- axes respectively (Yaw is for y, and Pitch is like a pitch modulation wheel in synthesizers: it spins up and down). Note that usually matrices are used for rotating and translating points. The advantage of using matrices is that they “remember” transformations applied to them, so if you teach a matrix three hundred transformations, you could quickly apply it to any other point, and this would be equivalent to doing all these transformations by hand.

Projection

We will now take a quick look at projection. Examine Fig. 2 to get an idea of what’s going on.

Figure 2.

SpaceSize specifies width and height of a rectangle in XY plane which is mapped to the screen. This rectangle (call it spaceR) has 3D coordinates of ((-spaceSize.x, spaceSize.y, 0), (spaceSize.x, spaceSize.y, 0), (spaceSize.x, -spaceSize.y, 0), (-spaceSize.x, -spaceSize.y, 0)). screenCenter is the origin of the 2D coordinate system. It maps to a 3D point (0,0,0), and vice versa. A screen rectangle (viewR) can be specified with ViewPort(). spaceR will be mapped to viewR and vice versa. screenCenter is set to the center of viewR.

Fig. 2 shows the viewing pyramid from the side. The camera is located on the Z axis, and is facing the XY plane. The distance from camera to the screen (eyez) can be changed using a routine SetViewAngle(theta). We calulate distance to the projection screen so that every point (lying in the xy plane) inside the spaceR rectangle is visible. The smaller the angle, the greater its cotangent, the greater eyez, and less noticeable the perspective. Specifying a viewing angle of 0 will result in a divide by zero. Instead, D3toD2par() should be used for parallel projection. A large value of theta will result in distortions and very strong perspective.


/* 7 */
eyez = spaceSize * cot(theta)
we have

P’ =   P * eyez   screenCenter  =  P * cot(theta) * screenCenter
     (eyez - P.z)  spaceSize                eyez - P.z

void D3toD2(Vector3D *p3D, Point *p2D)
{
 Fixed d = eyez - p3D->z;
   p2D->v = center.y 
 - FixRnd(Divide(Multiply(p3D->y, ratio.y),d));  
   p2D->h = center.x 
 + FixRnd(Divide(Multiply(p3D->x, ratio.x),d));
}

This function implements perspective projection (in Mac’s coordinate system the origin is in the upper-left corner, and y increases downward). Let’s see how parallel projection can be implemented. Since the camera is assumed to be infinitely far away, we take the limit of P’ as eyez approaches . We have


/* 8 */
P’  =    P *  screenCenter
           spaceSize

Another way to see this is note that P’.z no longer contributes (since there is no perspective), so eyez’s cancel.

Fig. 2 shows P’’, P’s image on the screen when using parallel projection. The following piece of code shows its implementation.


/* 9 */
void D3toD2par(Vector3D *p3D, Point *p2D)
{
   p2D->v = center.y - FixRnd(p3D->y * center.y/spaceSize.y);   
   p2D->h = center.x + FixRnd(p3D->x * center.x/spaceSize.x);
}

Back plane elimination

Suppose we have a triangle ABC. The orientation of points ABC is said to be positive if we turn counter-clockwise when visiting points ABC in the specified order. It is zero if A, B, and C lie on the same line, and is negative, if we turn clockwise. As long as we’re talking about convex, closed objects where all of the polygons use the same point ordering, the concept of orientation turns out to be very useful when determining whether a triangle (or some other polygon, provided all of its lie in the same plane) is visible. We say that points with positive (counter-clockwise) orientation lie on a visible plane, otherwise they line on the backplane, and the triangle is not drawn. The following function computes orientation of three points.


/* 10 */
static short visi(Point p1, Point p2, Point p3)
{
 return (long)((p2.v - p1.v) * (p3.h - p1.h)) - 
 (long)((p2.h - p1.h) * (p3.v - p1.v));
}

The result of this function is > 0 if the orientation is positive, < 0 if it negative, and 0 if all three points lie on the same line.

Figure 3

From this figure you see that A x B is a vector which points out of the page if (P1 P2 P3) have positive orientation, and into the page otherwise. The function visi() returns the opposite of (ad - bc) to account for mac’s coordinate system, where y increases downward. In that sense, mac has left-handed coordinate system.

Offscreen Bitmaps

We now come to the easiest part of the discussion.


/* 11 */
Boolean NewBitMap(BitMap *theBitMap, Rect *theRect)
{
 theBitMap->rowBytes = (((theRect->right 
 - theRect->left)+15)/16)*2;
 theBitMap->baseAddr = NewPtr((long)(theRect->bottom 
 - theRect->top) 
 * theBitMap->rowBytes);
 theBitMap->bounds = *theRect;
 return (!MemErr);
}

This function is straight-forward. rowBytes is calculated so it is even (as required by QuickDraw). Then NewBitMap allocates a block to hold the bit image. It returns true if everything is OK, otherwise it returns false.

Here is a piece of code from the OffscreenPort function, which allocates an offscreen port, and associates it with a bitmap, pointer to which is passed as a parameter:


/* 12 */
 OpenPort(newPort);
 newPort->portBits = *theBitMap;
 newPort->portRect = theBitMap->bounds;
 RectRgn(newPort->visRgn, &newPort->portRect);
 ClipRect(&newPort->portRect);
 EraseRect(&newPort->portRect);

We use RectRgn() to set new port’s visRgn to its portRect in case it happens to be larger than the screen. As to animation, it is all done by the CopyBits() call in the main() function.

 
AAPL
$111.78
Apple Inc.
-0.87
MSFT
$47.66
Microsoft Corpora
+0.14
GOOG
$516.35
Google Inc.
+5.25

MacTech Search:
Community Search:

Software Updates via MacUpdate

LibreOffice 4.3.5.2 - Free Open Source o...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
CleanApp 5.0.0 Beta 5 - Application dein...
CleanApp is an application deinstaller and archiver.... Your hard drive gets fuller day by day, but do you know why? CleanApp 5 provides you with insights how to reclaim disk space. There are... Read more
Monolingual 1.6.2 - Remove unwanted OS X...
Monolingual is a program for removing unnecesary language resources from OS X, in order to reclaim several hundred megabytes of disk space. It requires a 64-bit capable Intel-based Mac and at least... Read more
NetShade 6.1 - Browse privately using an...
NetShade is an Internet security tool that conceals your IP address on the web. NetShade routes your Web connection through either a public anonymous proxy server, or one of NetShade's own dedicated... Read more
calibre 2.13 - Complete e-library manage...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
Mellel 3.3.7 - Powerful word processor w...
Mellel is the leading word processor for OS X and has been widely considered the industry standard since its inception. Mellel focuses on writers and scholars for technical writing and multilingual... Read more
ScreenFlow 5.0.1 - Create screen recordi...
Save 10% with the exclusive MacUpdate coupon code: AFMacUpdate10 Buy now! ScreenFlow is powerful, easy-to-use screencasting software for the Mac. With ScreenFlow you can record the contents of your... Read more
Simon 4.0 - Monitor changes and crashes...
Simon monitors websites and alerts you of crashes and changes. Select pages to monitor, choose your alert options, and customize your settings. Simon does the rest. Keep a watchful eye on your... Read more
BBEdit 11.0.2 - Powerful text and HTML e...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
ExpanDrive 4.2.1 - Access cloud storage...
ExpanDrive builds cloud storage in every application, acts just like a USB drive plugged into your Mac. With ExpanDrive, you can securely access any remote file server directly from the Finder or... Read more

Latest Forum Discussions

See All

Make your own Tribez Figures (and More)...
Make your own Tribez Figures (and More) with Toyze Posted by Jessica Fisher on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
So Many Holiday iOS Sales Oh My Goodness...
The holiday season is in full-swing, which means a whole lot of iOS apps and games are going on sale. A bunch already have, in fact. Naturally this means we’re putting together a hand-picked list of the best discounts and sales we can find in order... | Read more »
It’s Bird vs. Bird in the New PvP Mode f...
It’s Bird vs. Bird in the New PvP Mode for Angry Birds Epic Posted by Jessica Fisher on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Telltale Games and Mojang Announce Minec...
Telltale Games and Mojang Announce Minecraft: Story Mode – A Telltale Games Series Posted by Jessica Fisher on December 19th, 2014 [ permalink ] | Read more »
WarChest and Splash Damage Annouce Their...
WarChest and Splash Damage Annouce Their New Game: Tempo Posted by Jessica Fisher on December 19th, 2014 [ permalink ] WarChest Ltd and Splash Damage Ltd are teaming up again to work | Read more »
BulkyPix Celebrates its 6th Anniversary...
BulkyPix Celebrates its 6th Anniversary with a Bunch of Free Games Posted by Jessica Fisher on December 19th, 2014 [ permalink ] BulkyPix has | Read more »
Indulge in Japanese cuisine in Cooking F...
Indulge in Japanese cuisine in Cooking Fever’s new sushi-themed update Posted by Simon Reed on December 19th, 2014 [ permalink ] Lithuanian developer Nordcurrent has yet again updated its restaurant simulat | Read more »
Badland Daydream Level Pack Arrives to C...
Badland Daydream Level Pack Arrives to Celebrate 20 Million Downloads Posted by Ellis Spice on December 19th, 2014 [ permalink ] | Read more »
Far Cry 4, Assassin’s Creed Unity, Desti...
Far Cry 4, Assassin’s Creed Unity, Destiny, and Beyond – AppSpy Takes a Look at AAA Companion Apps Posted by Rob Rich on December 19th, 2014 [ permalink ] These day | Read more »
A Bunch of Halfbrick Games Are Going Fre...
A Bunch of Halfbrick Games Are Going Free for the Holidays Posted by Ellis Spice on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »

Price Scanner via MacPrices.net

The Apple Store offering free next-day shippi...
The Apple Store is now offering free next-day shipping on all in stock items if ordered before 12/23/14 at 10:00am PT. Local store pickup is also available within an hour of ordering for any in stock... Read more
It’s 1992 Again At Sony Pictures, Except For...
Techcrunch’s John Biggs interviewed a Sony Pictures Entertainment (SPE) employee, who quite understandably wished to remain anonymous, regarding post-hack conditions in SPE’s L.A office, explaining “... Read more
Holiday sales this weekend: MacBook Pros for...
 B&H Photo has new MacBook Pros on sale for up to $300 off MSRP as part of their Holiday pricing. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1699... Read more
Holiday sales this weekend: MacBook Airs for...
B&H Photo has 2014 MacBook Airs on sale for up to $120 off MSRP, for a limited time, for the Thanksgiving/Christmas Holiday shopping season. Shipping is free, and B&H charges NY sales tax... Read more
Holiday sales this weekend: iMacs for up to $...
B&H Photo has 21″ and 27″ iMacs on sale for up to $200 off MSRP including free shipping plus NY sales tax only. B&H will also include a free copy of Parallels Desktop software: - 21″ 1.4GHz... Read more
Holiday sales this weekend: Mac minis availab...
B&H Photo has new 2014 Mac minis on sale for up to $80 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 1.4GHz Mac mini: $459 $40 off MSRP - 2.6GHz Mac mini: $629 $70 off MSRP... Read more
Holiday sales this weekend: Mac Pros for up t...
B&H Photo has Mac Pros on sale for up to $500 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2599, $400 off MSRP - 3.5GHz 6-core Mac Pro: $3499, $... Read more
Save up to $400 on MacBooks with Apple Certif...
The Apple Store has Apple Certified Refurbished 2014 MacBook Pros and MacBook Airs available for up to $400 off the cost of new models. An Apple one-year warranty is included with each model, and... Read more
Save up to $300 on Macs, $30 on iPads with Ap...
Purchase a new Mac or iPad at The Apple Store for Education and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free,... Read more
iOS and Android OS Targeted by Man-in-the-Mid...
Cloud services security provider Akamai Technologies, Inc. has released, through the company’s Prolexic Security Engineering & Research Team (PLXsert), a new cybersecurity threat advisory. The... Read more

Jobs Board

*Apple* Store Leader Program (US) - Apple, I...
…Summary Learn and grow as you explore the art of leadership at the Apple Store. You'll master our retail business inside and out through training, hands-on experience, Read more
Project Manager, *Apple* Financial Services...
**Job Summary** Apple Financial Services (AFS) offers consumers, businesses and educational institutions ways to finance Apple purchases. We work with national and Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.