TweetFollow Us on Twitter

Lambda
Volume Number:9
Issue Number:9
Column Tag:Lisp Listener

“The Lambda Lambada: Y Dance?”

Mutual Recursion

By André van Meulebrouck, Chatsworth, California

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

“Mathematics is thought moving in the sphere of complete abstraction from any particular instance of what it is talking about.” - Alfred North Whitehead

Welcome once again to Mutual of Omo Oz Y Old Kingdom (with apologies to the similar named TV series of yesteryears).

In this installment, Lambda, the forbidden (in conventional languages) function, does the lambada-the forbidden (in l-calculus) dance. Film at 11.

In [vanMeule Jun 91] the question was raised as to whether everything needed to create a metacircular interpreter (using combinators) has been given to the reader.

One of the last (if not the last) remaining items not yet presented is mutual recursion, which allows an interpreter’s eval and apply functions to do their curious tango (the “lambda lambada”?!?).

In this article, the derivation of a Y2 function will be shown. Y2 herein will be the sister combinator of Y, to be used for handling mutual recursion (of two functions) in the applicative order. The derivation of Y2 will be done in a similar manner as was done for deriving Y from pass-fact in [vanMeule May 92].

This exercise will hopefully give novel insights into Computer Science and the art of programming. (This is the stuff of Überprogrammers!) This exercise should also give the reader a much deeper understanding of Scheme while developing programming muscles in ways that conventional programming won’t.

Backdrop and motivation

[vanMeule Jun 91] described the minimalist game. The minimalist game is an attempt to program in Scheme using only those features of Scheme that have more or less direct counterparts in l-calculus. The aim of the minimalist game is (among other things):

1) To understand l-calculus and what it has to say about Computer Science.

2) To develop expressive skills. Part of the theory behind the minimalist game is that one’s expressive ability is not so much posited in how many programming constructs one knows, but in how cleverly one wields them. Hence, by deliberately limiting oneself to a restricted set of constructs, one is forced to exercise one’s expressive muscles in ways they would not normally get exercised when one has a large repertoire of constructs to choose from. The maxim here is: “learn few constructs, but learn them well”.

In l-calculus (and hence the minimalist game) there is no recursion. It turns out that recursion is a rather impure contortion in many ways! However, recursion can be simulated by making use of the higher order nature of l-calculus. A higher order function is a function which is either passed as an argument (to another function) or returned as a value. As thrifty as l-calculus is, it does have higher order functions, which is no small thing as very few conventional languages have such a capability, and those that do have it have only a very weak version of it. (This is one of the programming lessons to be learned from playing the minimalist game: The enormous power of higher order functions and the losses conventional languages suffer from not having them.)

Different kinds of recursion

As soon as a language has global functions or procedures and parameter passing provided via a stack discipline, you’ve got recursion! In fact, there is essentially no difference between a procedure calling itself or calling a different function-the same stack machinery that handles the one case will automatically handle the other. (There’s no need for the stack machinery to know nor care whether the user is calling other procedures or the same procedure.)

However, as soon as a language has local procedures, it makes a very big difference if a procedure calls itself! The problem is that when a local procedure sees a call to itself from within itself, by the rules of lexical scoping, it must look for its own definition outside of its own scope! This is because the symbol naming the recursive function is a free variable with respect to the context it occurs in.

; 1
>>> (let ((local-fact 
           (lambda (n)
             (if (zero? n)
                 1
                 (* n (local-fact (1- n)))))))
      (local-fact 5))
ERROR:  Undefined global variable
local-fact

Entering debugger.  Enter ? for help.
debug:> 

This is where letrec comes in.

; 2

>>> (letrec ((local-fact 
              (lambda (n)
                (if (zero? n)
                    1
                    (* n (local-fact (1- n)))))))
      (local-fact 5))
120

To understand what letrec is doing let’s translate it to its semantic equivalent. letrec can be simulated using let and set! [CR 91].

; 3
>>> (let ((local-fact ‘undefined))
      (begin
       (set! local-fact 
             (lambda (n)
               (if (zero? n)
                   1
                   (* n (local-fact (1- n))))))
       (local-fact 5)))
120

Mutual recursion is slightly different from “regular” recursion: instead of a function calling itself, it calls a different function that then calls the original function. For instance, “foo” and “fido” would be mutually recursive if foo called fido, and fido called foo. The letrec trick will work fine for mutual recursion.

; 4 

>>> (let ((my-even? ‘undefined)
          (my-odd? ‘undefined))
      (begin
       (set! my-even? 
             (lambda (n)
               (if (zero? n)
                   #t
                   (my-odd? (1- n)))))
       (set! my-odd? 
             (lambda (n)
               (if (zero? n)
                   #f
                   (my-even? (1- n)))))
       (my-even? 80)))
#t

The reason this works is because both functions that had to have mutual knowledge of each other were defined as symbols in a lexical context outside of the context in which the definitions were evaluated.

However, all the above letrec examples rely on being able to modify state. l-calculus doesn’t allow state to be modified. (An aside: since parallel machines have similar problems and restrictions in dealing with state, there is ample motivation for finding non-state oriented solutions to such problems in l-calculus.)

The recursion in local-fact can be ridded by using the Y combinator. However, in the my-even? and my-odd? example the Y trick doesn’t work because in trying to eliminate recursion using Y, the mutual nature of the functions causes us to get into a chicken-before-the-egg dilemma.

It’s clear we need a special kind of Y for this situation. Let’s call it Y2.

The pass-fact trick

[vanMeule May 92] derived the Y combinator in the style of [Gabriel 88] by starting with pass-fact (a version of the factorial function which avoids recursion by passing its own definition as an argument) and massaging it into two parts: a recursionless recursion mechanism and an abstracted version of the factorial function.

Let’s try the same trick for Y2, using my-even? and my-odd? as our starting point.

First, we want to massage my-even? and my-odd? into something that looks like pass-fact. Here’s what our “template” looks like:

; 5 

>>> (define pass-fact 
      (lambda (f n)
        (if (zero? n)
            1 
            (* n (f f (1- n))))))
pass-fact
>>> (pass-fact pass-fact 5)
120

Here’s a version of my-even? and my-odd? modeled after the pass-fact “template”.

; 6 
>>> (define even-odd
      (cons 
       (lambda (function-list)
         (lambda (n)
           (if (zero? n)
               #t
               (((cdr function-list) function-list)
                (1- n)))))
       (lambda (function-list)
         (lambda (n)
           (if (zero? n)
               #f
               (((car function-list) function-list) 
                (1- n)))))))
even-odd
>>> (define pass-even?
      ((car even-odd) even-odd))
pass-even?
>>> (define pass-odd?
      ((cdr even-odd) even-odd))
pass-odd?
>>> (pass-even? 8)
#t

This could derive one crazy!

Now that we know we can use higher order functions to get rid of the mutual recursion in my-even? and my-odd? the next step is to massage out the recursionless mutual recursion mechanism from the definitional parts that came from my-even? and my-odd?. The following is the code of such a derivation, including test cases and comments.

; 7
(define my-even?
  (lambda (n)
    (if (zero? n)
        #t
        (my-odd? (1- n)))))
;
(define my-odd?
  (lambda (n)
    (if (zero? n)
        #f
        (my-even? (1- n)))))
;
(my-even? 5)
;
; Get out of global environment-use local environment.
;
(define mutual-even?
  (letrec 
    ((my-even? (lambda (n)
                 (if (zero? n)
                     #t
                     (my-odd? (1- n)))))
     (my-odd? (lambda (n)
                (if (zero? n)
                    #f
                    (my-even? (1- n))))))
    my-even?))
;
(mutual-even? 5)
;
; Get rid of destructive letrec.  Use let instead.
; Make a list of the mutually recursive functions.
;
(define mutual-even?
  (lambda (n)
    (let 
      ((function-list 
        (cons (lambda (functions n) ; even?
                (if (zero? n)
                    #t
                    ((cdr functions) functions 
                                     (1- n))))
              (lambda (functions n) ; odd?
                (if (zero? n)
                    #f
                    ((car functions) functions 
                                     (1- n)))))))
      ((car function-list) function-list n))))
;
(mutual-even? 5)
;
; Curry, and get rid of initial (lambda (n) ...) .
;
(define mutual-even?
  (let 
    ((function-list 
      (cons (lambda (functions) ; even?
              (lambda (n) 
                (if (zero? n)
                    #t
                    (((cdr functions) functions) 
                     (1- n)))))
            (lambda (functions) ; odd?
              (lambda (n) 
                (if (zero? n)
                    #f
                    (((car functions) functions) 
                     (1- n))))))))
    ((car function-list) function-list)))
;
(mutual-even? 5)
;
; Abstract ((cdr functions) functions) out of if, etc..
;
(define mutual-even?
  (let 
    ((function-list 
      (cons (lambda (functions) 
              (lambda (n) 
                ((lambda (f)
                   (if (zero? n)
                       #t
                       (f (1- n))))
                 ((cdr functions) functions))))
            (lambda (functions) 
              (lambda (n) 
                ((lambda (f)
                   (if (zero? n)
                       #f
                       (f (1- n))))
                 ((car functions) functions)))))))
    ((car function-list) function-list)))
;
(mutual-even? 5)
;
; Massage functions into abstracted versions of 
; originals.
;
(define mutual-even?
  (let 
    ((function-list 
      (cons (lambda (functions) 
              (lambda (n) 
                (((lambda (f)
                    (lambda (n)
                      (if (zero? n)
                          #t
                          (f (1- n)))))
                  ((cdr functions) functions))
                 n)))
            (lambda (functions) 
              (lambda (n) 
                (((lambda (f)
                    (lambda (n)
                      (if (zero? n)
                          #f
                          (f (1- n)))))
                  ((car functions) functions))
                 n))))))
    ((car function-list) function-list)))
;
(mutual-even? 5)
;
; Separate abstracted functions out from recursive 
; mechanism.
;
(define mutual-even?
  (let 
    ((abstracted-functions
      (cons (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #t
                    (f (1- n)))))
            (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #f
                    (f (1- n))))))))
    (let 
      ((function-list 
        (cons (lambda (functions) 
                (lambda (n) 
                  (((car abstracted-functions)
                    ((cdr functions) functions))
                   n)))
              (lambda (functions) 
                (lambda (n) 
                  (((cdr abstracted-functions)
                    ((car functions) functions))
                   n))))))
      ((car function-list) function-list))))
;
(mutual-even? 5)
;
; Abstract out variable abstracted-functions in 2nd let.
;
(define mutual-even?
  (let 
    ((abstracted-functions
      (cons (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #t
                    (f (1- n)))))
            (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #f
                    (f (1- n))))))))
    ((lambda (abstracted-functions)
       (let 
         ((function-list 
           (cons (lambda (functions) 
                   (lambda (n) 
                     (((car abstracted-functions)
                       ((cdr functions) functions))
                      n)))
                 (lambda (functions) 
                   (lambda (n) 
                     (((cdr abstracted-functions)
                       ((car functions) functions))
                      n))))))
         ((car function-list) function-list)))
     abstracted-functions)))
;
(mutual-even? 5)
;
; Separate recursion mechanism into separate function.
;
(define y2
  (lambda (abstracted-functions)
    (let 
      ((function-list 
        (cons (lambda (functions) 
                (lambda (n) 
                  (((car abstracted-functions)
                    ((cdr functions) functions))
                   n)))
              (lambda (functions)
                (lambda (n) 
                  (((cdr abstracted-functions)
                    ((car functions) functions))
                   n))))))
      ((car function-list) function-list))))
;
(define mutual-even? 
  (y2
   (cons (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #t
                 (f (1- n)))))
         (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #f
                 (f (1- n))))))))
;
(mutual-even? 5)
;
; y2 has selector built into it-generalize it!
;
(define y2-choose
  (lambda (abstracted-functions)
    (lambda (selector)
      (let 
        ((function-list 
          (cons (lambda (functions) 
                  (lambda (n) 
                    (((car abstracted-functions)
                      ((cdr functions) functions))
                     n)))
                (lambda (functions)
                  (lambda (n) 
                    (((cdr abstracted-functions)
                      ((car functions) functions))
                     n))))))
        ((selector function-list) function-list)))))
;
; Now we can achieve the desired result-defining 
; both mutual-even? and mutual-odd? without recursion.
;
(define mutual-even-odd?
  (y2-choose
   (cons (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #t
                 (f (1- n)))))
         (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #f
                 (f (1- n))))))))
;
(define mutual-even? 
  (mutual-even-odd? car))
;
(define mutual-odd?
  (mutual-even-odd? cdr))  
;
(mutual-even? 5)
(mutual-odd? 5)
(mutual-even? 4)
(mutual-odd? 4)

Deriving Mutual Satisfaction

Notice that mutual-even? and mutual-odd? could have been defined using y2 instead of y2-choose, however, the definitional bodies of my-even? and my-odd? would have been repeated in defining mutual-even? and mutual-odd?.

Exercises for the Reader

• Herein Y2 was derived from mutual-even?. Try deriving it instead from pass-even?.

• Question for the Überprogrammer: if evaluation were normal order rather than applicative order, could we use the same version of Y for mutually recursive functions that we used for “regular” recursive functions (thus making a Y2 function unnecessary)?

• Another question: Let’s say we have 3 or more functions which are mutually recursive. What do we need to handle this situation when evaluation is applicative order? What about in normal order? (Note: evaluation in l-calculus is normal order.)

Looking Ahead

Creating a “minimalist” (i.e., combinator based) metacircular interpreter might now be possible if we can tackle the problem of manipulating state!

Thanks to:

The local great horned owls that watch over everything from on high; regularly letting fellow “night owls” know that all is well by bellowing their calming, reassuring “Who-w-h-o-o” sounds.

Bugs/infelicities due to: burning too much midnite oil!

Bibliography and References

[CR 91] William Clinger and Jonathan Rees (editors). “Revised4 Report on the Algorithmic Language Scheme”, LISP Pointers, SIGPLAN Special Interest Publication on LISP, Volume IV, Number 3, July-September, 1991. ACM Press.

[Gabriel 88] Richard P. Gabriel. “The Why of Y”, LISP Pointers, Vol. II, Number 2, October-November-December, 1988.

[vanMeule May 91] André van Meulebrouck. “A Calculus for the Algebraic-like Manipulation of Computer Code” (Lambda Calculus), MacTutor, Anaheim, CA, May 1991.

[vanMeule Jun 91] André van Meulebrouck. “Going Back to Church” (Church numerals.), MacTutor, Anaheim, CA, June 1991.

[vanMeule May 92] André van Meulebrouck. “Deriving Miss Daze Y”, (Deriving Y), MacTutor, Los Angeles, CA, April/May 1992.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

WhiteCap 6.7.1 - Visual plug-in for iTun...
WhiteCap is a sleek and sophisticated music visualizer and screensaver that features futuristic, wireframe mesh visuals with dynamic backgrounds and colors. WhiteCap contains thousands of visual... Read more
DiskMaker X 6.0 rc5 - Make a bootable OS...
DiskMaker X (was Lion DiskMaker) helps you to build a bootable drive from the official OS X installer app (the one you download from the Mac App Store). It detects the OS X Install program with... Read more
Lyn 1.9 - Lightweight image browser and...
Lyn is a fast, lightweight image browser and viewer designed for photographers, graphic artists, and Web designers. Featuring an extremely versatile and aesthetically pleasing interface, it delivers... Read more
WhiteCap 6.7.1 - Visual plug-in for iTun...
WhiteCap is a sleek and sophisticated music visualizer and screensaver that features futuristic, wireframe mesh visuals with dynamic backgrounds and colors. WhiteCap contains thousands of visual... Read more
DiskMaker X 6.0 rc5 - Make a bootable OS...
DiskMaker X (was Lion DiskMaker) helps you to build a bootable drive from the official OS X installer app (the one you download from the Mac App Store). It detects the OS X Install program with... Read more
Lyn 1.9 - Lightweight image browser and...
Lyn is a fast, lightweight image browser and viewer designed for photographers, graphic artists, and Web designers. Featuring an extremely versatile and aesthetically pleasing interface, it delivers... Read more
MacFamilyTree 8.2.1 - Create and explore...
MacFamilyTree gives genealogy a facelift: modern, interactive, convenient and fast. Explore your family tree and your family history in a way generations of chroniclers before you would have loved.... Read more
LaunchBar 6.9 - Powerful file/URL/email...
LaunchBar is an award-winning productivity utility that offers an amazingly intuitive and efficient way to search and access any kind of information stored on your computer or on the Web. It provides... Read more
LaunchBar 6.9 - Powerful file/URL/email...
LaunchBar is an award-winning productivity utility that offers an amazingly intuitive and efficient way to search and access any kind of information stored on your computer or on the Web. It provides... Read more
MacFamilyTree 8.2.1 - Create and explore...
MacFamilyTree gives genealogy a facelift: modern, interactive, convenient and fast. Explore your family tree and your family history in a way generations of chroniclers before you would have loved.... Read more

Latest Forum Discussions

See All

This War of Mine gets a new ending and m...
This War of Mine just got a big new update, featuring free DLC that adds a new ending to the game, among other exciting changes. The update is celebrating the game's two-year release anniversary. Apart from the new ending, which will be quite... | Read more »
Summon eight new heroes in Fire Emblem H...
Nintendo keeps coming at us with Fire Emblem Heroes updates, and it doesn't look like that trend is stopping anytime soon. The folks behind the game have just announced the new War of the Clerics Voting Gauntlet, expected to start next Tuesday. [... | Read more »
The best deals on the App Store this wee...
iOS publishers are pulling out all the stops this week -- there's a huge number of seriously great games at discounted prices this week. Let's not waste any time and get right down to business. [Read more] | Read more »
The House of da Vinci (Games)
The House of da Vinci 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Enter The House of Da Vinci, a new must-try 3D puzzle adventure game. Solve mechanical puzzles, discover hidden... | Read more »
Solve the disappearance of history’s gre...
Blue Brain Games invites you to indulge in an immersive hands-on 3D puzzle adventure in similar vein to The Room series, with its debut release The House of Da Vinci. Set during the historic period of the Italian Renaissance (when Leonardo himself... | Read more »
Age of Rivals (Games)
Age of Rivals 3.3 Device: iOS Universal Category: Games Price: $.99, Version: 3.3 (iTunes) Description: Deep civilization-building strategy in a fast-paced card game! | Read more »
Panthera Frontier (Games)
Panthera Frontier 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: | Read more »
Angry Birds Evolution beginner's gu...
Angry Birds changes things up a fair bit in its latest iteration, Angry Birds Evolution. The familiar sling-shot physics mechanics are still there, but the game now features team-based gameplay, RPG elements, and a new top-down view. With all of... | Read more »
Sega Forever is for the retro game fans
Sega is launching a new retro games service titled Sega Forever, in a move that's sure to delight games enthusiasts with a bit of nostalgia. Sega's releasing five classic games for free. The titles include Sonic the Hedgehog, Phantasy Star II,... | Read more »
The Little Acre (Games)
The Little Acre 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: | Read more »

Price Scanner via MacPrices.net

ABBYY TextGrabber 6 for iOS Implements Instan...
ABBYY has announced the release of TextGrabber 6.0.0, an important feature update to the company’s productivity app developed for iOS and Android devices. TextGrabber 6.0 now offers Real-Time... Read more
vPhone, First Smartphone That Can’t Be Lost,...
Austin, Texas based Hypori has introduced the vPhone, a virtual smartphone that affords every business user the benefits of separate work and personal phones, conveniently delivered on a single... Read more
Save this weekend with 2016 refurbished MacBo...
Apple has dropped prices on Certified Refurbished 2016 15″ and 13″ MacBook Pros by as much as $590 off original MSRP. An Apple one-year warranty is included with each model, and shipping is free: -... Read more
New 27-inch 3.4GHz iMac on sale for $1699, sa...
MacMall has the new 2017 27″ 3.4GHz iMac (MNE92LL/A) in stock and on sale for $1699 including free shipping. Their price is $100 off MSRP. Read more
Clearance 2016 MacBook Pros available for up...
B&H Photo has clearance 2016 13″ and 15″ MacBook Pros in stock today and on sale for up to $400 off original MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: - 15″ 2.7GHz... Read more
Apple Ranks 9th In comScore Top 50 U.S. Digit...
comScore, Inc. has released its monthly ranking of U.S. online activity at the top digital media properties for May 2017 based on data from comScore Media Metrix Multi-Platform. * Entity has... Read more
10.5-inch iPad Pros available for up to $20 o...
B&H Photo has the new 2017 10.5″ iPad Pros available for up to $20 off MSRP including free shipping plus NY & NJ sales tax only: - 64GB iPad Pro WiFi: $649 - 256GB iPad Pro WiFi: $749 - 512GB... Read more
Three Off-The-Beaten-Track iOS Apps That Dese...
One of the great things about using iPads and iPhones is the vast selection of apps available for most anything you want or need to do. The three outlined in this article have been in my core app... Read more
Apple No. 1 Spot In Gartner Top 100 Vendors i...
Gartner, Inc. has unveiled the top global 100 vendors in IT in 2016 based on their revenue across IT (excluding communication services) and component market segments. In the Gartner Global Top 100:... Read more
Clearance iMacs available for up to $300 off...
B&H Photo has clearance 21″ and 27″ Apple iMacs available starting at $949, each including free shipping plus NY & NJ sales tax only: - 27″ 3.3GHz iMac 5K: $1999 $300 off original MSRP - 27″... Read more

Jobs Board

*Apple* News Product Marketing Mgr., Publish...
…organizational consensus on strategy and vision for publisher tools, authoring, and Apple News Format.Carries this strategy and vision across the organization to Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Security Data Analyst - *Apple* Information...
…data sources need to be collected to allow Information Security to better protect Apple employees and customers from a wide range of threats.Act as the subject matter Read more
Lead *Apple* Solutions Consultant - Apple I...
…integrity, and trust.Success Metrics/Key Performance Indicators:Quantitative* Year over Year growth in Apple Product and Beyond the Box sales in the assigned Point of Read more
*Apple* Solutions Consultant till v%u00E5r...
…ethics, integrity, and trust.Success Metrics/Key Performance Indicators:QuantitativeYear over Year growth in Apple Product and Beyond the Box sales in the assigned Point Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.