TweetFollow Us on Twitter

Lambda
Volume Number:9
Issue Number:9
Column Tag:Lisp Listener

“The Lambda Lambada: Y Dance?”

Mutual Recursion

By André van Meulebrouck, Chatsworth, California

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

“Mathematics is thought moving in the sphere of complete abstraction from any particular instance of what it is talking about.” - Alfred North Whitehead

Welcome once again to Mutual of Omo Oz Y Old Kingdom (with apologies to the similar named TV series of yesteryears).

In this installment, Lambda, the forbidden (in conventional languages) function, does the lambada-the forbidden (in l-calculus) dance. Film at 11.

In [vanMeule Jun 91] the question was raised as to whether everything needed to create a metacircular interpreter (using combinators) has been given to the reader.

One of the last (if not the last) remaining items not yet presented is mutual recursion, which allows an interpreter’s eval and apply functions to do their curious tango (the “lambda lambada”?!?).

In this article, the derivation of a Y2 function will be shown. Y2 herein will be the sister combinator of Y, to be used for handling mutual recursion (of two functions) in the applicative order. The derivation of Y2 will be done in a similar manner as was done for deriving Y from pass-fact in [vanMeule May 92].

This exercise will hopefully give novel insights into Computer Science and the art of programming. (This is the stuff of Überprogrammers!) This exercise should also give the reader a much deeper understanding of Scheme while developing programming muscles in ways that conventional programming won’t.

Backdrop and motivation

[vanMeule Jun 91] described the minimalist game. The minimalist game is an attempt to program in Scheme using only those features of Scheme that have more or less direct counterparts in l-calculus. The aim of the minimalist game is (among other things):

1) To understand l-calculus and what it has to say about Computer Science.

2) To develop expressive skills. Part of the theory behind the minimalist game is that one’s expressive ability is not so much posited in how many programming constructs one knows, but in how cleverly one wields them. Hence, by deliberately limiting oneself to a restricted set of constructs, one is forced to exercise one’s expressive muscles in ways they would not normally get exercised when one has a large repertoire of constructs to choose from. The maxim here is: “learn few constructs, but learn them well”.

In l-calculus (and hence the minimalist game) there is no recursion. It turns out that recursion is a rather impure contortion in many ways! However, recursion can be simulated by making use of the higher order nature of l-calculus. A higher order function is a function which is either passed as an argument (to another function) or returned as a value. As thrifty as l-calculus is, it does have higher order functions, which is no small thing as very few conventional languages have such a capability, and those that do have it have only a very weak version of it. (This is one of the programming lessons to be learned from playing the minimalist game: The enormous power of higher order functions and the losses conventional languages suffer from not having them.)

Different kinds of recursion

As soon as a language has global functions or procedures and parameter passing provided via a stack discipline, you’ve got recursion! In fact, there is essentially no difference between a procedure calling itself or calling a different function-the same stack machinery that handles the one case will automatically handle the other. (There’s no need for the stack machinery to know nor care whether the user is calling other procedures or the same procedure.)

However, as soon as a language has local procedures, it makes a very big difference if a procedure calls itself! The problem is that when a local procedure sees a call to itself from within itself, by the rules of lexical scoping, it must look for its own definition outside of its own scope! This is because the symbol naming the recursive function is a free variable with respect to the context it occurs in.

; 1
>>> (let ((local-fact 
           (lambda (n)
             (if (zero? n)
                 1
                 (* n (local-fact (1- n)))))))
      (local-fact 5))
ERROR:  Undefined global variable
local-fact

Entering debugger.  Enter ? for help.
debug:> 

This is where letrec comes in.

; 2

>>> (letrec ((local-fact 
              (lambda (n)
                (if (zero? n)
                    1
                    (* n (local-fact (1- n)))))))
      (local-fact 5))
120

To understand what letrec is doing let’s translate it to its semantic equivalent. letrec can be simulated using let and set! [CR 91].

; 3
>>> (let ((local-fact ‘undefined))
      (begin
       (set! local-fact 
             (lambda (n)
               (if (zero? n)
                   1
                   (* n (local-fact (1- n))))))
       (local-fact 5)))
120

Mutual recursion is slightly different from “regular” recursion: instead of a function calling itself, it calls a different function that then calls the original function. For instance, “foo” and “fido” would be mutually recursive if foo called fido, and fido called foo. The letrec trick will work fine for mutual recursion.

; 4 

>>> (let ((my-even? ‘undefined)
          (my-odd? ‘undefined))
      (begin
       (set! my-even? 
             (lambda (n)
               (if (zero? n)
                   #t
                   (my-odd? (1- n)))))
       (set! my-odd? 
             (lambda (n)
               (if (zero? n)
                   #f
                   (my-even? (1- n)))))
       (my-even? 80)))
#t

The reason this works is because both functions that had to have mutual knowledge of each other were defined as symbols in a lexical context outside of the context in which the definitions were evaluated.

However, all the above letrec examples rely on being able to modify state. l-calculus doesn’t allow state to be modified. (An aside: since parallel machines have similar problems and restrictions in dealing with state, there is ample motivation for finding non-state oriented solutions to such problems in l-calculus.)

The recursion in local-fact can be ridded by using the Y combinator. However, in the my-even? and my-odd? example the Y trick doesn’t work because in trying to eliminate recursion using Y, the mutual nature of the functions causes us to get into a chicken-before-the-egg dilemma.

It’s clear we need a special kind of Y for this situation. Let’s call it Y2.

The pass-fact trick

[vanMeule May 92] derived the Y combinator in the style of [Gabriel 88] by starting with pass-fact (a version of the factorial function which avoids recursion by passing its own definition as an argument) and massaging it into two parts: a recursionless recursion mechanism and an abstracted version of the factorial function.

Let’s try the same trick for Y2, using my-even? and my-odd? as our starting point.

First, we want to massage my-even? and my-odd? into something that looks like pass-fact. Here’s what our “template” looks like:

; 5 

>>> (define pass-fact 
      (lambda (f n)
        (if (zero? n)
            1 
            (* n (f f (1- n))))))
pass-fact
>>> (pass-fact pass-fact 5)
120

Here’s a version of my-even? and my-odd? modeled after the pass-fact “template”.

; 6 
>>> (define even-odd
      (cons 
       (lambda (function-list)
         (lambda (n)
           (if (zero? n)
               #t
               (((cdr function-list) function-list)
                (1- n)))))
       (lambda (function-list)
         (lambda (n)
           (if (zero? n)
               #f
               (((car function-list) function-list) 
                (1- n)))))))
even-odd
>>> (define pass-even?
      ((car even-odd) even-odd))
pass-even?
>>> (define pass-odd?
      ((cdr even-odd) even-odd))
pass-odd?
>>> (pass-even? 8)
#t

This could derive one crazy!

Now that we know we can use higher order functions to get rid of the mutual recursion in my-even? and my-odd? the next step is to massage out the recursionless mutual recursion mechanism from the definitional parts that came from my-even? and my-odd?. The following is the code of such a derivation, including test cases and comments.

; 7
(define my-even?
  (lambda (n)
    (if (zero? n)
        #t
        (my-odd? (1- n)))))
;
(define my-odd?
  (lambda (n)
    (if (zero? n)
        #f
        (my-even? (1- n)))))
;
(my-even? 5)
;
; Get out of global environment-use local environment.
;
(define mutual-even?
  (letrec 
    ((my-even? (lambda (n)
                 (if (zero? n)
                     #t
                     (my-odd? (1- n)))))
     (my-odd? (lambda (n)
                (if (zero? n)
                    #f
                    (my-even? (1- n))))))
    my-even?))
;
(mutual-even? 5)
;
; Get rid of destructive letrec.  Use let instead.
; Make a list of the mutually recursive functions.
;
(define mutual-even?
  (lambda (n)
    (let 
      ((function-list 
        (cons (lambda (functions n) ; even?
                (if (zero? n)
                    #t
                    ((cdr functions) functions 
                                     (1- n))))
              (lambda (functions n) ; odd?
                (if (zero? n)
                    #f
                    ((car functions) functions 
                                     (1- n)))))))
      ((car function-list) function-list n))))
;
(mutual-even? 5)
;
; Curry, and get rid of initial (lambda (n) ...) .
;
(define mutual-even?
  (let 
    ((function-list 
      (cons (lambda (functions) ; even?
              (lambda (n) 
                (if (zero? n)
                    #t
                    (((cdr functions) functions) 
                     (1- n)))))
            (lambda (functions) ; odd?
              (lambda (n) 
                (if (zero? n)
                    #f
                    (((car functions) functions) 
                     (1- n))))))))
    ((car function-list) function-list)))
;
(mutual-even? 5)
;
; Abstract ((cdr functions) functions) out of if, etc..
;
(define mutual-even?
  (let 
    ((function-list 
      (cons (lambda (functions) 
              (lambda (n) 
                ((lambda (f)
                   (if (zero? n)
                       #t
                       (f (1- n))))
                 ((cdr functions) functions))))
            (lambda (functions) 
              (lambda (n) 
                ((lambda (f)
                   (if (zero? n)
                       #f
                       (f (1- n))))
                 ((car functions) functions)))))))
    ((car function-list) function-list)))
;
(mutual-even? 5)
;
; Massage functions into abstracted versions of 
; originals.
;
(define mutual-even?
  (let 
    ((function-list 
      (cons (lambda (functions) 
              (lambda (n) 
                (((lambda (f)
                    (lambda (n)
                      (if (zero? n)
                          #t
                          (f (1- n)))))
                  ((cdr functions) functions))
                 n)))
            (lambda (functions) 
              (lambda (n) 
                (((lambda (f)
                    (lambda (n)
                      (if (zero? n)
                          #f
                          (f (1- n)))))
                  ((car functions) functions))
                 n))))))
    ((car function-list) function-list)))
;
(mutual-even? 5)
;
; Separate abstracted functions out from recursive 
; mechanism.
;
(define mutual-even?
  (let 
    ((abstracted-functions
      (cons (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #t
                    (f (1- n)))))
            (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #f
                    (f (1- n))))))))
    (let 
      ((function-list 
        (cons (lambda (functions) 
                (lambda (n) 
                  (((car abstracted-functions)
                    ((cdr functions) functions))
                   n)))
              (lambda (functions) 
                (lambda (n) 
                  (((cdr abstracted-functions)
                    ((car functions) functions))
                   n))))))
      ((car function-list) function-list))))
;
(mutual-even? 5)
;
; Abstract out variable abstracted-functions in 2nd let.
;
(define mutual-even?
  (let 
    ((abstracted-functions
      (cons (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #t
                    (f (1- n)))))
            (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #f
                    (f (1- n))))))))
    ((lambda (abstracted-functions)
       (let 
         ((function-list 
           (cons (lambda (functions) 
                   (lambda (n) 
                     (((car abstracted-functions)
                       ((cdr functions) functions))
                      n)))
                 (lambda (functions) 
                   (lambda (n) 
                     (((cdr abstracted-functions)
                       ((car functions) functions))
                      n))))))
         ((car function-list) function-list)))
     abstracted-functions)))
;
(mutual-even? 5)
;
; Separate recursion mechanism into separate function.
;
(define y2
  (lambda (abstracted-functions)
    (let 
      ((function-list 
        (cons (lambda (functions) 
                (lambda (n) 
                  (((car abstracted-functions)
                    ((cdr functions) functions))
                   n)))
              (lambda (functions)
                (lambda (n) 
                  (((cdr abstracted-functions)
                    ((car functions) functions))
                   n))))))
      ((car function-list) function-list))))
;
(define mutual-even? 
  (y2
   (cons (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #t
                 (f (1- n)))))
         (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #f
                 (f (1- n))))))))
;
(mutual-even? 5)
;
; y2 has selector built into it-generalize it!
;
(define y2-choose
  (lambda (abstracted-functions)
    (lambda (selector)
      (let 
        ((function-list 
          (cons (lambda (functions) 
                  (lambda (n) 
                    (((car abstracted-functions)
                      ((cdr functions) functions))
                     n)))
                (lambda (functions)
                  (lambda (n) 
                    (((cdr abstracted-functions)
                      ((car functions) functions))
                     n))))))
        ((selector function-list) function-list)))))
;
; Now we can achieve the desired result-defining 
; both mutual-even? and mutual-odd? without recursion.
;
(define mutual-even-odd?
  (y2-choose
   (cons (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #t
                 (f (1- n)))))
         (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #f
                 (f (1- n))))))))
;
(define mutual-even? 
  (mutual-even-odd? car))
;
(define mutual-odd?
  (mutual-even-odd? cdr))  
;
(mutual-even? 5)
(mutual-odd? 5)
(mutual-even? 4)
(mutual-odd? 4)

Deriving Mutual Satisfaction

Notice that mutual-even? and mutual-odd? could have been defined using y2 instead of y2-choose, however, the definitional bodies of my-even? and my-odd? would have been repeated in defining mutual-even? and mutual-odd?.

Exercises for the Reader

• Herein Y2 was derived from mutual-even?. Try deriving it instead from pass-even?.

• Question for the Überprogrammer: if evaluation were normal order rather than applicative order, could we use the same version of Y for mutually recursive functions that we used for “regular” recursive functions (thus making a Y2 function unnecessary)?

• Another question: Let’s say we have 3 or more functions which are mutually recursive. What do we need to handle this situation when evaluation is applicative order? What about in normal order? (Note: evaluation in l-calculus is normal order.)

Looking Ahead

Creating a “minimalist” (i.e., combinator based) metacircular interpreter might now be possible if we can tackle the problem of manipulating state!

Thanks to:

The local great horned owls that watch over everything from on high; regularly letting fellow “night owls” know that all is well by bellowing their calming, reassuring “Who-w-h-o-o” sounds.

Bugs/infelicities due to: burning too much midnite oil!

Bibliography and References

[CR 91] William Clinger and Jonathan Rees (editors). “Revised4 Report on the Algorithmic Language Scheme”, LISP Pointers, SIGPLAN Special Interest Publication on LISP, Volume IV, Number 3, July-September, 1991. ACM Press.

[Gabriel 88] Richard P. Gabriel. “The Why of Y”, LISP Pointers, Vol. II, Number 2, October-November-December, 1988.

[vanMeule May 91] André van Meulebrouck. “A Calculus for the Algebraic-like Manipulation of Computer Code” (Lambda Calculus), MacTutor, Anaheim, CA, May 1991.

[vanMeule Jun 91] André van Meulebrouck. “Going Back to Church” (Church numerals.), MacTutor, Anaheim, CA, June 1991.

[vanMeule May 92] André van Meulebrouck. “Deriving Miss Daze Y”, (Deriving Y), MacTutor, Los Angeles, CA, April/May 1992.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

WhiteCap 6.6 - Visual plug-in for iTunes...
WhiteCap is a sleek and sophisticated music visualizer and screensaver that features futuristic, wireframe mesh visuals with dynamic backgrounds and colors. WhiteCap contains thousands of visual... Read more
VOX 2.8.14 - Music player that supports...
VOX just sounds better! The beauty is in its simplicity, yet behind the minimal exterior lies a powerful music player with a ton of features and support for all audio formats you should ever need.... Read more
Paparazzi! 1.0b2 - Make user-defined siz...
Paparazzi! is a small utility for OS X that makes screenshots of webpages. This very simple tool takes screenshots of websites which do not fit on one screen. You specify the desired width, minimal... Read more
Carbon Copy Cloner 4.1.13 - Easy-to-use...
Carbon Copy Cloner backups are better than ordinary backups. Suppose the unthinkable happens while you're under deadline to finish a project: your Mac is unresponsive and all you hear is an ominous,... Read more
TrailRunner 3.8.832 - Route planning for...
TrailRunner is the perfect companion for runners, bikers, hikers, and all people wandering under the sky. Plan routes on a geographical map. Import GPS or workout recordings and journalize your... Read more
VueScan 9.5.65 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
Adobe Illustrator CC 2017 21.0.2 - Profe...
Illustrator CC 2017 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Illustrator customer). Adobe Illustrator CC 2017 is the industry... Read more
iDefrag 5.1.7 - Disk defragmentation and...
iDefrag helps defragment and optimize your disk for improved performance. Features include: Supports HFS and HFS+ (Mac OS Extended). Supports case sensitive and journaled filesystems. Supports... Read more
Quicken 4.4.2 - Complete personal financ...
Quicken makes managing your money easier than ever. Whether paying bills, upgrading from Windows, enjoying more reliable downloads, or getting expert product help, Quicken's new and improved features... Read more
iDefrag 5.1.7 - Disk defragmentation and...
iDefrag helps defragment and optimize your disk for improved performance. Features include: Supports HFS and HFS+ (Mac OS Extended). Supports case sensitive and journaled filesystems. Supports... Read more

5 dastardly difficult roguelikes like th...
Edmund McMillen's popular roguelike creation The Binding of Isaac: Rebirth has finally crawled onto mobile devices. It's a grotesque dual-stick shooter that tosses you into an endless, procedurally generated basement as you, the pitiable Isaac,... | Read more »
Last week on PocketGamer
Welcome to a weekly feature looking back on the past seven days of coverage on our sister website, PocketGamer. It’s taken a while for 2017 to really get going, at least when it comes to the world of portable gaming. Thank goodness, then, for... | Read more »
ROME: Total War - Barbarian Invasion set...
To the delight of mobile strategy fans, Feral Interactive released ROME: Total War just a few months ago. Now the game's expansion, Barbarian Invasion is marching onto iPads as a standalone release. [Read more] | Read more »
Yuri (Games)
Yuri 1.0 Device: iOS iPhone Category: Games Price: $3.99, Version: 1.0 (iTunes) Description: It's night. Yuri opens his eyes. He wakes up in a strange forest.The small, courageous explorer rides on his bed on casters in this... | Read more »
Space schmup Xenoraid launches on the Ap...
10Tons Xenoraid is out today on the App Store, bringing some high-speed space action to your mobile gadgets just in time for the weekend. The company's last premium title, another sci-fi game titled Neon Chrome, did quite well for itself, so... | Read more »
Star Wars: Force Arena Beginner's G...
Star Wars: Force Arena joined the populous ranks of Star Wars games on mobile today. It's a two-lane MOBA starring many familiar faces from George Lucas's famed sci-fi franchise. As with most games of this nature, Force Arena can be a little obtuse... | Read more »
Mysterium: The Board Game (Games)
Mysterium: The Board Game 1.0 Device: iOS Universal Category: Games Price: $6.99, Version: 1.0 (iTunes) Description: The official adaptation of the famous board game Mysterium! | Read more »
Sonny (Games)
Sonny 1.0.4 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.4 (iTunes) Description: Reimagined for iOS, cult-hit RPG Sonny brings challenging turn-based combat that requires strategy and mastery of each new skill to... | Read more »
Towaga (Games)
Towaga 1.0 Device: iOS iPhone Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: "It has been foretold that a masked being would stand atop the legendary Towaga Temple, dwelling among shadows to fulfil The Black Moon... | Read more »
Bubble Witch 3 Saga Guide: How to get th...
King's bringing its fairytale bubble-popping puzzler back for its 3rd outing in Bubble Witch 3 Saga. If you're familiar with the series, not much has changed here on the surface level, though you'll likely be pleased with the improvements. If you'... | Read more »

Price Scanner via MacPrices.net

New 2016 13-inch MacBook Pros on sale for up...
B&H Photo has the new 2016 13″ MacBook Pros in stock today and on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.9GHz/512GB Touch Bar MacBook Pro... Read more
New 15-inch Touch Bar MacBook Pros in stock a...
B&H Photo has the new 2016 15″ Apple Touch Bar MacBook Pros in stock today and on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.7GHz Touch Bar... Read more
Opera Announces Neon Concept Browser For Mac
Opera is inviting users to get a glimpse of what Opera for computers could become with its Opera Neon browser concept. Each Opera Neon feature is described as “an alternate reality” for the Opera... Read more
Tellini Releases TabView 3.0 Missing Tool fo...
Tellini has announced the release of TabView 3.0. TabView has been the first macOS viewer for PowerTab tablatures. PowerTab is a well-known and widely adopted tablature editor for Windows systems and... Read more
13-inch 1.6GHz/128GB MacBook Air on sale for...
Overstock.com has the 1.6GHz/128GB 13″ MacBook Air on sale for $130 off MSRP including free shipping: - 13″ 1.6GHz/128GB MacBook Air (MMGF2LL/A): $869.99 $130 off MSRP Their price is the lowest... Read more
12-inch 32GB Space Gray iPad Pro on sale for...
B&H Photo has 12″ Space Gray 32GB WiFi Apple iPad Pros on sale for $55 off MSRP including free shipping. B&H charges sales tax in NY only: - 12″ Space Gray 32GB WiFi iPad Pro: $744.44 $55 off... Read more
9-inch 32GB Space Gray iPad Pro on sale for $...
B&H Photo has the 9.7″ 32GB Space Gray Apple iPad Pro on sale for $549 for a limited time. Shipping is free, and B&H charges NY sales tax only. Read more
Apple iMacs on sale for up to $120 off MSRP,...
B&H Photo has 21″ and 27″ Apple iMacs on sale for up to $120 off MSRP, each including free shipping plus NY sales tax only: - 27″ 3.3GHz iMac 5K: $2199 $100 off MSRP - 27″ 3.2GHz/1TB Fusion iMac... Read more
Apple refurbished Apple TVs available for up...
Apple has Certified Refurbished 32GB and 64GB Apple TVs available for up to $30 off the cost of new models. Apple’s standard one-year warranty is included with each model, and shipping is free: -... Read more
1.4GHz Mac mini, refurbished, available for $...
The Apple Store has Apple Certified Refurbished 1.4GHz Mac minis available for $419. Apple’s one-year warranty is included, and shipping is free. Their price is $80 off MSRP, and it’s the lowest... Read more

Jobs Board

*Apple* Premier Retailer - Service Technicia...
DescriptionSimply Mac is the largest premier retailer for Apple products and solutions. At Simply Mac we are all Apple , all the time. Same products. Same prices. Read more
*Apple* Premier Retailer - Service Technicia...
DescriptionSimply Mac is the largest premier retailer for Apple products and solutions. At Simply Mac we are all Apple , all the time. Same products. Same prices. Read more
*Apple* Premier Retailer - Service Manager -...
DescriptionSimply Mac is the largest premier retailer for Apple products and solutions. At Simply Mac we are all Apple , all the time. Same products. Same prices. Read more
*Apple* Retail - Multiple Positions- Crows N...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* & PC Desktop Support Technician...
Apple & PC Desktop Support Technician job in Los Angeles, CA Introduction: We have immediate job openings for several Desktop Support Technicians with one of our Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.