TweetFollow Us on Twitter

Lambda
Volume Number:9
Issue Number:9
Column Tag:Lisp Listener

“The Lambda Lambada: Y Dance?”

Mutual Recursion

By André van Meulebrouck, Chatsworth, California

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

“Mathematics is thought moving in the sphere of complete abstraction from any particular instance of what it is talking about.” - Alfred North Whitehead

Welcome once again to Mutual of Omo Oz Y Old Kingdom (with apologies to the similar named TV series of yesteryears).

In this installment, Lambda, the forbidden (in conventional languages) function, does the lambada-the forbidden (in l-calculus) dance. Film at 11.

In [vanMeule Jun 91] the question was raised as to whether everything needed to create a metacircular interpreter (using combinators) has been given to the reader.

One of the last (if not the last) remaining items not yet presented is mutual recursion, which allows an interpreter’s eval and apply functions to do their curious tango (the “lambda lambada”?!?).

In this article, the derivation of a Y2 function will be shown. Y2 herein will be the sister combinator of Y, to be used for handling mutual recursion (of two functions) in the applicative order. The derivation of Y2 will be done in a similar manner as was done for deriving Y from pass-fact in [vanMeule May 92].

This exercise will hopefully give novel insights into Computer Science and the art of programming. (This is the stuff of Überprogrammers!) This exercise should also give the reader a much deeper understanding of Scheme while developing programming muscles in ways that conventional programming won’t.

Backdrop and motivation

[vanMeule Jun 91] described the minimalist game. The minimalist game is an attempt to program in Scheme using only those features of Scheme that have more or less direct counterparts in l-calculus. The aim of the minimalist game is (among other things):

1) To understand l-calculus and what it has to say about Computer Science.

2) To develop expressive skills. Part of the theory behind the minimalist game is that one’s expressive ability is not so much posited in how many programming constructs one knows, but in how cleverly one wields them. Hence, by deliberately limiting oneself to a restricted set of constructs, one is forced to exercise one’s expressive muscles in ways they would not normally get exercised when one has a large repertoire of constructs to choose from. The maxim here is: “learn few constructs, but learn them well”.

In l-calculus (and hence the minimalist game) there is no recursion. It turns out that recursion is a rather impure contortion in many ways! However, recursion can be simulated by making use of the higher order nature of l-calculus. A higher order function is a function which is either passed as an argument (to another function) or returned as a value. As thrifty as l-calculus is, it does have higher order functions, which is no small thing as very few conventional languages have such a capability, and those that do have it have only a very weak version of it. (This is one of the programming lessons to be learned from playing the minimalist game: The enormous power of higher order functions and the losses conventional languages suffer from not having them.)

Different kinds of recursion

As soon as a language has global functions or procedures and parameter passing provided via a stack discipline, you’ve got recursion! In fact, there is essentially no difference between a procedure calling itself or calling a different function-the same stack machinery that handles the one case will automatically handle the other. (There’s no need for the stack machinery to know nor care whether the user is calling other procedures or the same procedure.)

However, as soon as a language has local procedures, it makes a very big difference if a procedure calls itself! The problem is that when a local procedure sees a call to itself from within itself, by the rules of lexical scoping, it must look for its own definition outside of its own scope! This is because the symbol naming the recursive function is a free variable with respect to the context it occurs in.

; 1
>>> (let ((local-fact 
           (lambda (n)
             (if (zero? n)
                 1
                 (* n (local-fact (1- n)))))))
      (local-fact 5))
ERROR:  Undefined global variable
local-fact

Entering debugger.  Enter ? for help.
debug:> 

This is where letrec comes in.

; 2

>>> (letrec ((local-fact 
              (lambda (n)
                (if (zero? n)
                    1
                    (* n (local-fact (1- n)))))))
      (local-fact 5))
120

To understand what letrec is doing let’s translate it to its semantic equivalent. letrec can be simulated using let and set! [CR 91].

; 3
>>> (let ((local-fact ‘undefined))
      (begin
       (set! local-fact 
             (lambda (n)
               (if (zero? n)
                   1
                   (* n (local-fact (1- n))))))
       (local-fact 5)))
120

Mutual recursion is slightly different from “regular” recursion: instead of a function calling itself, it calls a different function that then calls the original function. For instance, “foo” and “fido” would be mutually recursive if foo called fido, and fido called foo. The letrec trick will work fine for mutual recursion.

; 4 

>>> (let ((my-even? ‘undefined)
          (my-odd? ‘undefined))
      (begin
       (set! my-even? 
             (lambda (n)
               (if (zero? n)
                   #t
                   (my-odd? (1- n)))))
       (set! my-odd? 
             (lambda (n)
               (if (zero? n)
                   #f
                   (my-even? (1- n)))))
       (my-even? 80)))
#t

The reason this works is because both functions that had to have mutual knowledge of each other were defined as symbols in a lexical context outside of the context in which the definitions were evaluated.

However, all the above letrec examples rely on being able to modify state. l-calculus doesn’t allow state to be modified. (An aside: since parallel machines have similar problems and restrictions in dealing with state, there is ample motivation for finding non-state oriented solutions to such problems in l-calculus.)

The recursion in local-fact can be ridded by using the Y combinator. However, in the my-even? and my-odd? example the Y trick doesn’t work because in trying to eliminate recursion using Y, the mutual nature of the functions causes us to get into a chicken-before-the-egg dilemma.

It’s clear we need a special kind of Y for this situation. Let’s call it Y2.

The pass-fact trick

[vanMeule May 92] derived the Y combinator in the style of [Gabriel 88] by starting with pass-fact (a version of the factorial function which avoids recursion by passing its own definition as an argument) and massaging it into two parts: a recursionless recursion mechanism and an abstracted version of the factorial function.

Let’s try the same trick for Y2, using my-even? and my-odd? as our starting point.

First, we want to massage my-even? and my-odd? into something that looks like pass-fact. Here’s what our “template” looks like:

; 5 

>>> (define pass-fact 
      (lambda (f n)
        (if (zero? n)
            1 
            (* n (f f (1- n))))))
pass-fact
>>> (pass-fact pass-fact 5)
120

Here’s a version of my-even? and my-odd? modeled after the pass-fact “template”.

; 6 
>>> (define even-odd
      (cons 
       (lambda (function-list)
         (lambda (n)
           (if (zero? n)
               #t
               (((cdr function-list) function-list)
                (1- n)))))
       (lambda (function-list)
         (lambda (n)
           (if (zero? n)
               #f
               (((car function-list) function-list) 
                (1- n)))))))
even-odd
>>> (define pass-even?
      ((car even-odd) even-odd))
pass-even?
>>> (define pass-odd?
      ((cdr even-odd) even-odd))
pass-odd?
>>> (pass-even? 8)
#t

This could derive one crazy!

Now that we know we can use higher order functions to get rid of the mutual recursion in my-even? and my-odd? the next step is to massage out the recursionless mutual recursion mechanism from the definitional parts that came from my-even? and my-odd?. The following is the code of such a derivation, including test cases and comments.

; 7
(define my-even?
  (lambda (n)
    (if (zero? n)
        #t
        (my-odd? (1- n)))))
;
(define my-odd?
  (lambda (n)
    (if (zero? n)
        #f
        (my-even? (1- n)))))
;
(my-even? 5)
;
; Get out of global environment-use local environment.
;
(define mutual-even?
  (letrec 
    ((my-even? (lambda (n)
                 (if (zero? n)
                     #t
                     (my-odd? (1- n)))))
     (my-odd? (lambda (n)
                (if (zero? n)
                    #f
                    (my-even? (1- n))))))
    my-even?))
;
(mutual-even? 5)
;
; Get rid of destructive letrec.  Use let instead.
; Make a list of the mutually recursive functions.
;
(define mutual-even?
  (lambda (n)
    (let 
      ((function-list 
        (cons (lambda (functions n) ; even?
                (if (zero? n)
                    #t
                    ((cdr functions) functions 
                                     (1- n))))
              (lambda (functions n) ; odd?
                (if (zero? n)
                    #f
                    ((car functions) functions 
                                     (1- n)))))))
      ((car function-list) function-list n))))
;
(mutual-even? 5)
;
; Curry, and get rid of initial (lambda (n) ...) .
;
(define mutual-even?
  (let 
    ((function-list 
      (cons (lambda (functions) ; even?
              (lambda (n) 
                (if (zero? n)
                    #t
                    (((cdr functions) functions) 
                     (1- n)))))
            (lambda (functions) ; odd?
              (lambda (n) 
                (if (zero? n)
                    #f
                    (((car functions) functions) 
                     (1- n))))))))
    ((car function-list) function-list)))
;
(mutual-even? 5)
;
; Abstract ((cdr functions) functions) out of if, etc..
;
(define mutual-even?
  (let 
    ((function-list 
      (cons (lambda (functions) 
              (lambda (n) 
                ((lambda (f)
                   (if (zero? n)
                       #t
                       (f (1- n))))
                 ((cdr functions) functions))))
            (lambda (functions) 
              (lambda (n) 
                ((lambda (f)
                   (if (zero? n)
                       #f
                       (f (1- n))))
                 ((car functions) functions)))))))
    ((car function-list) function-list)))
;
(mutual-even? 5)
;
; Massage functions into abstracted versions of 
; originals.
;
(define mutual-even?
  (let 
    ((function-list 
      (cons (lambda (functions) 
              (lambda (n) 
                (((lambda (f)
                    (lambda (n)
                      (if (zero? n)
                          #t
                          (f (1- n)))))
                  ((cdr functions) functions))
                 n)))
            (lambda (functions) 
              (lambda (n) 
                (((lambda (f)
                    (lambda (n)
                      (if (zero? n)
                          #f
                          (f (1- n)))))
                  ((car functions) functions))
                 n))))))
    ((car function-list) function-list)))
;
(mutual-even? 5)
;
; Separate abstracted functions out from recursive 
; mechanism.
;
(define mutual-even?
  (let 
    ((abstracted-functions
      (cons (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #t
                    (f (1- n)))))
            (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #f
                    (f (1- n))))))))
    (let 
      ((function-list 
        (cons (lambda (functions) 
                (lambda (n) 
                  (((car abstracted-functions)
                    ((cdr functions) functions))
                   n)))
              (lambda (functions) 
                (lambda (n) 
                  (((cdr abstracted-functions)
                    ((car functions) functions))
                   n))))))
      ((car function-list) function-list))))
;
(mutual-even? 5)
;
; Abstract out variable abstracted-functions in 2nd let.
;
(define mutual-even?
  (let 
    ((abstracted-functions
      (cons (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #t
                    (f (1- n)))))
            (lambda (f)
              (lambda (n)
                (if (zero? n)
                    #f
                    (f (1- n))))))))
    ((lambda (abstracted-functions)
       (let 
         ((function-list 
           (cons (lambda (functions) 
                   (lambda (n) 
                     (((car abstracted-functions)
                       ((cdr functions) functions))
                      n)))
                 (lambda (functions) 
                   (lambda (n) 
                     (((cdr abstracted-functions)
                       ((car functions) functions))
                      n))))))
         ((car function-list) function-list)))
     abstracted-functions)))
;
(mutual-even? 5)
;
; Separate recursion mechanism into separate function.
;
(define y2
  (lambda (abstracted-functions)
    (let 
      ((function-list 
        (cons (lambda (functions) 
                (lambda (n) 
                  (((car abstracted-functions)
                    ((cdr functions) functions))
                   n)))
              (lambda (functions)
                (lambda (n) 
                  (((cdr abstracted-functions)
                    ((car functions) functions))
                   n))))))
      ((car function-list) function-list))))
;
(define mutual-even? 
  (y2
   (cons (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #t
                 (f (1- n)))))
         (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #f
                 (f (1- n))))))))
;
(mutual-even? 5)
;
; y2 has selector built into it-generalize it!
;
(define y2-choose
  (lambda (abstracted-functions)
    (lambda (selector)
      (let 
        ((function-list 
          (cons (lambda (functions) 
                  (lambda (n) 
                    (((car abstracted-functions)
                      ((cdr functions) functions))
                     n)))
                (lambda (functions)
                  (lambda (n) 
                    (((cdr abstracted-functions)
                      ((car functions) functions))
                     n))))))
        ((selector function-list) function-list)))))
;
; Now we can achieve the desired result-defining 
; both mutual-even? and mutual-odd? without recursion.
;
(define mutual-even-odd?
  (y2-choose
   (cons (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #t
                 (f (1- n)))))
         (lambda (f)
           (lambda (n)
             (if (zero? n)
                 #f
                 (f (1- n))))))))
;
(define mutual-even? 
  (mutual-even-odd? car))
;
(define mutual-odd?
  (mutual-even-odd? cdr))  
;
(mutual-even? 5)
(mutual-odd? 5)
(mutual-even? 4)
(mutual-odd? 4)

Deriving Mutual Satisfaction

Notice that mutual-even? and mutual-odd? could have been defined using y2 instead of y2-choose, however, the definitional bodies of my-even? and my-odd? would have been repeated in defining mutual-even? and mutual-odd?.

Exercises for the Reader

• Herein Y2 was derived from mutual-even?. Try deriving it instead from pass-even?.

• Question for the Überprogrammer: if evaluation were normal order rather than applicative order, could we use the same version of Y for mutually recursive functions that we used for “regular” recursive functions (thus making a Y2 function unnecessary)?

• Another question: Let’s say we have 3 or more functions which are mutually recursive. What do we need to handle this situation when evaluation is applicative order? What about in normal order? (Note: evaluation in l-calculus is normal order.)

Looking Ahead

Creating a “minimalist” (i.e., combinator based) metacircular interpreter might now be possible if we can tackle the problem of manipulating state!

Thanks to:

The local great horned owls that watch over everything from on high; regularly letting fellow “night owls” know that all is well by bellowing their calming, reassuring “Who-w-h-o-o” sounds.

Bugs/infelicities due to: burning too much midnite oil!

Bibliography and References

[CR 91] William Clinger and Jonathan Rees (editors). “Revised4 Report on the Algorithmic Language Scheme”, LISP Pointers, SIGPLAN Special Interest Publication on LISP, Volume IV, Number 3, July-September, 1991. ACM Press.

[Gabriel 88] Richard P. Gabriel. “The Why of Y”, LISP Pointers, Vol. II, Number 2, October-November-December, 1988.

[vanMeule May 91] André van Meulebrouck. “A Calculus for the Algebraic-like Manipulation of Computer Code” (Lambda Calculus), MacTutor, Anaheim, CA, May 1991.

[vanMeule Jun 91] André van Meulebrouck. “Going Back to Church” (Church numerals.), MacTutor, Anaheim, CA, June 1991.

[vanMeule May 92] André van Meulebrouck. “Deriving Miss Daze Y”, (Deriving Y), MacTutor, Los Angeles, CA, April/May 1992.

 
AAPL
$524.94
Apple Inc.
+5.93
MSFT
$40.01
Microsoft Corpora
-0.39
GOOG
$536.10
Google Inc.
-20.44

MacTech Search:
Community Search:

Software Updates via MacUpdate

VMware Fusion 6.0.3 - Run Windows apps a...
VMware Fusion allows you to create a Virtual Machine on your Mac and run Windows (including Windows 8.1) and Windows software on your Mac. Run your favorite Windows applications alongside Mac... Read more
Tweetbot 1.5.1 - Popular iOS twitter cli...
Tweetbot is a full-featured OS X Twitter client with a lot of personality. Whether it's the meticulously-crafted interface, sounds and animation, or features like multiple timelines and column views... Read more
Mac DVDRipper Pro 4.1.7 - Copy, backup,...
Mac DVDRipper Pro is the DVD backup solution that lets you protect your DVDs from scratches, save your batteries by reading your movies from your hard disk, manage your collection with just a few... Read more
PDFpenPro 6.2 - Advanced PDF toolkit for...
PDFpenPro allows users to edit PDF's easily. Add text, images and signatures. Fill out PDF forms. Merge or split PDF documents. Reorder and delete pages. Even correct text and edit graphics! Create... Read more
PDFpen 6.2 - Edit and annotate PDFs with...
PDFpen allows users to easily edit PDF's. Add text, images and signatures. Fill out PDF forms. Merge or split PDF documents. Reorder and delete pages. Even correct text and edit graphics! Features... Read more
Monolingual 1.5.9 - Remove unwanted OS X...
Monolingual is a program for removing unnecesary language resources from OS X, in order to reclaim several hundred megabytes of disk space. It requires a 64-bit capable Intel-based Mac and at least... Read more
Maya 2015 - Professional 3D modeling and...
Maya is an award-winning software and powerful, integrated 3D modeling, animation, visual effects, and rendering solution. Because Maya is based on an open architecture, all your work can be scripted... Read more
Starcraft II: Wings of Liberty 1.1.1.180...
Download the patch by launching the Starcraft II game and downloading it through the Battle.net connection within the app. Starcraft II: Wings of Liberty is a strategy game played in real-time. You... Read more
Sibelius 7.5.0 - Music notation solution...
Sibelius is the world's best-selling music notation software for Mac. It is as intuitive to use as a pen, yet so powerful that it does most things in less than the blink of an eye. The demo includes... Read more
Typinator 5.9 - Speedy and reliable text...
Typinator turbo-charges your typing productivity. Type a little. Typinator does the rest. We've all faced projects that require repetitive typing tasks. With Typinator, you can store commonly used... Read more

Latest Forum Discussions

See All

This Week at 148Apps: April 14-18, 2014
Spring Into Our App Reviews   | Read more »
Have a Special Dead Trigger 2 Easter Bas...
Have a Special Dead Trigger 2 Easter Basket Full of Goodies, Courtesy of Madfinger Games Posted by Rob Rich on April 18th, 2014 [ permalink ] Dead Trigger 2 | Read more »
Almost All of Playdek’s Library is on Sa...
Almost All of Playdek’s Library is on Sale Right Now, and You Should Check it Out Posted by Rob Rich on April 18th, 2014 [ permalink ] Playdek has released quite a few great iOS ports of board and card games over the years, and now most of them... | Read more »
Zynga Launches Brand New Farmville Exper...
Zynga Launches Brand New Farmville Experience with Farmville 2: Country Escape Posted by Tre Lawrence on April 18th, 2014 [ permalink ] | Read more »
David. Review
David. Review By Cata Modorcea on April 18th, 2014 Our Rating: :: MINIMALISTIC IN A DIFFERENT WAYUniversal App - Designed for iPhone and iPad David is a minimalistic game wrapped inside of a soothing atmosphere in which the hero... | Read more »
Eyefi Unveils New Eyefi Cloud Service Th...
Eyefi Unveils New Eyefi Cloud Service That Allows Users to Share Media Across Personal Devices Posted by Tre Lawrence on April 18th, 2014 [ permalink ] | Read more »
Tales from the Dragon Mountain: The Lair...
Tales from the Dragon Mountain: The Lair Review By Jennifer Allen on April 18th, 2014 Our Rating: :: STEADY ADVENTURINGiPad Only App - Designed for the iPad Treading a safe path, Tales from the Dragon Mountain: The Lair is a... | Read more »
Yahoo Updates Flickr App with Advanced E...
Yahoo Updates Flickr App with Advanced Editing Features and More Posted by Tre Lawrence on April 18th, 2014 [ permalink ] | Read more »
My Incredible Body - A Kid's App to...
My Incredible Body - A Kid's App to Learn about the Human Body 1.1.00 Device: iOS Universal Category: Education Price: $2.99, Version: 1.1.00 (iTunes) Description: Wouldn’t it be cool to look inside yourself and see what was going on... | Read more »
Trials Frontier Review
Trials Frontier Review By Carter Dotson on April 18th, 2014 Our Rating: :: A ROUGH LANDINGUniversal App - Designed for iPhone and iPad Trials Frontier finally brings the famed stunt racing franchise to mobile, but how much does its... | Read more »

Price Scanner via MacPrices.net

Deal Alert! 13-inch MacBook Pro on sale for $...
Best Buy has the 13″ 2.5GHz MacBook Pro on sale for $999.99 on their online store. Choose free shipping or free instant local store pickup (if available). Their price is $200 off MSRP. Price is valid... Read more
Free HopTo 2.2 Helps Enhance Your Productivit...
The HopTo app helps you do more on your iPad by providing more and easier adaccess to files and documents. Version 2.2 adds Egnyte and HopTo’s Mac OSX File Connector. If you already have the hopTo... Read more
National Distracted Driving Awareness Month:...
As the country recognizes National Distracted Driving Awareness Month, Sprint is reminding wireless consumers to focus on driving while behind the wheel, to not text or email while driving, and to... Read more
13-inch 2.4GHz Retina MacBook Pro available f...
Abt has the 13″ 2.4GHz 128GB Retina MacBook Pro available for $1229 including free shipping. Their price is $70 off MSRP. Read more
iMacs on sale for up to $160 off MSRP this we...
Best Buy has iMacs on sale for up to $160 off MSRP for a limited time. Choose free home shipping or free instant local store pickup (if available). Prices are valid for online orders only, in-store... Read more
iPad Airs on sale this weekend for up to $100...
Best Buy has WiFi iPad Airs on sale for $50 off MSRP and WiFi + Cellular iPad Airs on sale for $100 off MSRP on their online store for a limited time, with prices now starting at $449. Choose free... Read more
Apple restocks refurbished Mac minis starting...
The Apple Store has restocked Apple Certified Refurbished Mac minis for up to $150 off the cost of new models. Apple’s one-year warranty is included with each mini, and shipping is free: - 2.5GHz Mac... Read more
Hyundai Brings Apple CarPlay To The 2015 Sona...
Hyundai Motor America has announced it will bring Apple CarPlay functionality to the 2015 Sonata. CarPlay is pitched as a smarter, safer and easier way to use iPhone in the car and gives iPhone users... Read more
Updated iPads Coming Sooner Than We Had Thoug...
MacRumors, cites KGI securities analyst Ming Chi Kuo, well-respected as an Apple product prognisticator, saying that Apple will introduce an upgraded iPad Air and iPad mini in 2014/Q3, meaning the... Read more
Toshiba Unveils New High And Low End Laptop M...
Toshiba has announced new laptop models covering both the high-end and low-end of the notebook computer spectrum. Toshiba 4K Ultra HD Laptop Toshiba’s new Satellite P55t features one of the world’s... Read more

Jobs Board

Position Opening at *Apple* - Apple (United...
…customers purchase our products, you're the one who helps them get more out of their new Apple technology. Your day in the Apple Store is filled with a range of Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
*Apple* Inc. Research Data Specialist - Appl...
…of Worldwide Market Research & Intelligence. The team is responsible for conducting Apple branded consumer market research. It is also responsible for analyzing data Read more
*Apple* Automotive Parts Department position...
Apple Automotive is one of the fastest growing dealer…and it shows. Consider making the switch to the Apple Automotive Group today! At Apple Automotive, we Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.