TweetFollow Us on Twitter

Efficient C
Volume Number:9
Issue Number:8
Column Tag:C Workshop

Efficient C Programming

High-level optimizations

By Mike Scanlin, MacTech Magazine Regular Contributing Author

This article explains and gives examples of how to get better code generation for common operations and constructs in C on the Macintosh. These higher level optimizations will, on average, produce faster and smaller code in other languages as well (C++, Pascal). Some of them will make your code harder to read, more difficult to port, and possibly have a negative performance impact on non-680x0 CPUs. However, for those cases where you’re optimizing your bottlenecks for the 680x0 CPUs, these tricks will help you.

There are several things you can do to your code independent of which language or compiler you’re using in order to improve performance. Let’s start with those.

FILE INPUT/OUTPUT

There are three things to know in order to produce optimal file I/O: (1) always read/write in sector aligned amounts, (2) read/write in as big of chunks as possible and, (3) be sure to disable Apple’s disk cache.

From the Mac file system’s point of view, files are made up of blocks. From a disk driver point of view blocks are made up of sectors. A sector is usually 512 bytes. On large disks a block can be 10K or larger (files are a minimum of 1 block in size). You can get the exact block size by doing a GetVInfo and checking the volumeParam.ioVAlBlkSiz field. Your buffers should be multiples of this amount when reading and writing to that particular volume (and if not, then they should at least be multiples of the sector size) and should begin on a block boundary (or, at a minimum, a sector boundary) within the file. Your reads/writes will be 2x faster if you read/write aligned sectors than if you don’t.

Recently while implementing a virtual memory scheme I had to determine the optimal VM page size for maximum disk throughput (measured in bytes/second). After testing a variety of page sizes on a variety of CPUs and hard disks, I determined that the optimal size was 64K. If you read and write less than 64K at a time you will not be minimizing disk I/O time (and for very small reads and writes you will be paying a significant throughput penalty). Here’s an experiment for the unbelievers: write a little program that writes an 8MB file 512 bytes at a time and then writes another 8MB file 64K at a time. You should find that the 64K at a time case is 8x to 40x faster than the 512 byte at a time case. Then try reading in that 8MB file 512 bytes at a time and then 64K at a time. It should be about 35x to 40x faster for the 64K case (your actual times will depend on your CPU and your hard drive).

Lastly, if you are using large aligned I/O buffers you should turn off Apple’s disk cache for your reads and writes. IM Files pg. 2-95 says that you can do this by setting bit 5 of ioPosMode before a Read or Write call. In those cases where the cache is kicking in, you’ll be 13x faster by forcing it off. For a complete explanation of Apple’s disk cache, see “Apple’s Lame Disk Cache” on pg. 75 of April 1993 MacTech.

OTHER LANGUAGE-INDEPENDENT THINGS

In a previous MacTech article (Sept 1992) I droned on and on about aligning your data structures and stack usage. That’s true in any language on the Mac (because it’s a result of the 680x0 architecture). Do it.

One thing you can do to reduce the calling overhead of your functions is to use fewer parameters. Sometimes you’ll find that a general purpose routine that takes several parameters is being called in a loop where most of the parameters aren’t changing between calls within the loop. In cases like this you should make a parameter block and pass a pointer to the parameter block rather than passing all of the parameters each time. Not only does this make aligned-stack calling easier to implement and maintain but it really reduces the pushing and popping of invariant stack data during your loop. For instance, you could change this prototype:

void   MyWizzyFunction(short wizFactor, long numWizzes, Boolean 
 doWiz, short fudgeFactor, short wizHorz, short wizVert);

to this:

void MyWizzyFunction(WizParamBlockPtr wizPBPtr);

with this parameter block:

typedef struct WizParamBlock {
 long   numWizzes;
 short  wizFactor;
 short  fudgeFactor;
 short  wizHorz;
 short  wizVert;
 BooleandoWiz;
} WizParamBlock, * WizParamBlockPtr;

You’ll save a lot of time from reduced stack operations on each call to MyWizzyFunction.

TABLE LOOKUPS

I once met someone who told me that every computer science problem could be reduced to a table lookup. I guess that if your table was unlimited in size this might be true (but then the table initialization time might kill you). Nonetheless, there are many cases where code can be sped up with a relatively small table. The idea is to precompute some data and look it up rather than recalculate it each time through a loop. For example, this code:

!register Byte   n, *xPtr;
register short i, *yPtr;
Byte    x[1000];
short   y[1000];

yPtr = y;
xPtr = x;
i = 1000;
do {
 n = *xPtr++;
 *yPtr++ = n*n + n/5 - 7;
} while (--i);

is much slower than this code:

/* 1 */

register Byte    *tablePtr;
register short tableOffset;
short   table[256];

/* first pre-compute all possible
 * 256 values and store in table
 */
yPtr = table;
i = 0;
do {
 *yPtr++ = i*i + i/5 - 7;
} while (++i < 256);

tablePtr = (Byte *) table;
yPtr = y;
xPtr = x;
i = 1000;
do {
 /* we do manual scaling for speed */
 tableOffset = *xPtr++;
 tableOffset *= sizeof(short);
 /* generates Move (Ax,Dx),(Ay)+ */
 *yPtr++ = *(short *)
 (tablePtr + tableOffset);
} while (--i);

This second version which only requires a 256 element table contains no multiplies or divides. The tableOffset *= sizeof(short) statement compiles down to an Add instruction since sizeof(short) evaluates to 2. The *yPtr++ = ... statement compiles down to Move (Ax,Dx),(Ay)+ which is as optimal as you can do (and what you would have written if you had been writing assembly).

One thing that’s really important to know when using lookup tables is that your table element size needs to be a power of 2 in order to have fast pointer calculations (which can be done with a shift of the index). If you only need 5 bytes per table element then it would be better to pad each element to 8 bytes so that you can shift the index by 3 (times 8) rather than multiplying it by 5 when trying to get a pointer to a given element.

Also, depending on the amount of data involved, you may want to declare the table as a static and let the compiler calculate its values at compile-time.

USE SHIFTS WHEN YOU CAN

This one is obvious enough that most programmers assume that the compiler always does it for them. If you want to divide a value by 8, you might think that this would generate an efficient shift right by 3:

x /= 8;

It’s true that if x is unsigned then MPW and Think do the right thing but if x is signed they generate a divide. The reason is because you can’t shift a negative number to the right to divide by 8 (if the original value is -1 you’ll get -1 as the result, too, because of sign extension). To solve this problem, you should add 7 to x (when it’s negative) before shifting. Use this instead of the above for signed right-shifts by 3:

/* 2 */

if (x < 0)
 x += 7;
x >>= 3;

and use a shift left instead of a multiply when multiplying by a power of 2. Also, there may be brain-dead compilers out there that your code will be ported to some day so you should use the shift operator even when working with unsigned values. It’s a good habit to get into.

USE & INSTEAD OF % WHEN YOU CAN

When moding by powers of 2, you should ‘and’ it by (value - 1) instead. Don’t do this:

x = y % 8;

do this (to save a division):

x = y & (8 - 1);

As before, this may yield incorrect results if y is signed but if the result is just to get the last 3 bits, it works fine. And if you want the remainder of a negative number when divided by 8 (i.e. what mod would return to you if you used it) you can do this to save a divide:

/* 3 */

x = y & (8 - 1);
if (y < 0)
 x += 8;

DON’T USE MULTIPLY

As you know, multiply instructions are expensive on the 680x0 and you should avoid them wherever possible. What you may not know, though, is the extent to which you should avoid them. For instance, some would say that this code:

x *= 20;

is acceptable. However, in a tight loop it would be much better to use:

/* 4 */

temp = x;
temp += x;
temp += temp;
x <<= 4;
x += temp;

It’s not necessarily intuitive that five instructions are better than one but, assuming temp and x are register variables, the times for the above are:

68000: 70 cycles for first one, 30 cycles for second

68030: 28 cycles for first one, 14 cycles for second

68040: 15 cycles for first one, 6 cycles for second

This type of C programming, which I call “writing assembly language with C syntax” requires a detailed knowledge of your compiler and your register variables allocation. It also requires a little knowledge of assembly language which, if you don’t have, would be a good thing to start learning (use Think’s Disassemble command and MPW’s dumpobj to see what the compiler is doing with your C code).

DON’T USE ‘FOR’ STATEMENTS

Many people resist this optimization but it falls into the category of convenient syntax vs. efficient syntax. The basic point is that you can always do at least as good as a ‘for’ loop by using a ‘while’ (for 0 or more iterations) or a ‘do-while’ loop (for 1 or more iterations), and in most cases you can do better by not using a ‘for’ loop. (In fact, Wirth removed the ‘FOR’ keyword from his latest language Oberon because he considered it unnecessary.)

Here’s an example. This code:

for (i = 0; i < NUM_LOOPS; i++) {
}

is better as:

/* 5 */

i = NUM_LOOPS;
do {
} while (--i);

because the first one generates:

 Moveq  #0,D7
 Bra.S  @2
@1 <body of loop>
@2 Addq #1,D7
 Cmpi   #NUM_LOOPS,D7
 Blt.S  @1

and the second one generates:

 Moveq  #NUM_LOOPS,D7
@1 <body of loop>
 Subq   #1,D7
 Bne.S  @1

Now, it’s true that I’m comparing apples and oranges a bit here because the first loop counts up and the second loop counts down but the first loop is representative of how I see a lot of inexperienced programmers write their ‘for’ loops. Even if they were to make the optimization of counting down to zero, the do-while loop is still more efficient because of the extra branch instruction at the top of the ‘for’ loop.

As an experiment, try writing your code without ‘for’ loops for a while. I think you’ll find that it often becomes clearer and in many cases it will become more efficient, too.

USE REASONABLE REGISTER VARIABLES

While register variables are certainly a good tool for making your code faster, if you don’t use them right you might be hurting yourself.

When writing an application on the 680x0, you have 3 address registers (pointers) and 5 data registers to play with. Do NOT declare more than that. And if something doesn’t really need to be in a register (because it’s only read from once or twice, for instance) then don’t put it in a register. The time to save, initialize and restore the register will cause a performance hit rather than gain.

The most important thing is to write your functions so that they have a reasonable number of local variables (no more than 3 pointers and 5 non-pointers, ideally). If you just can’t split the function up or use fewer variables then try to use register variables with restricted scope (some subset of the function) so that you can reuse them later in the function for other things.

Even if you don’t use register variables, big functions with lots of locals make it extremely difficult for any compiler to allocate registers efficiently. This applies to many different machines and compilers.

TWO STATEMENTS CAN BE BETTER THAN ONE

Similar to the above trick, there are times when even the simplest statements, such as:

x = 131;

can be improved:

x = 127;
x += 4;

The reason is because the first generates one of the instructions that you should never use when programming on a non-68040:

Move.L  #131,x

That’s a 6-byte instruction which is better replaced with this 4-byte version:

/* 6 */

Moveq   #127,x
Addq    #4,x

On the 68040 you won’t notice any improvement from this optimization because 32-bit immediate operands are one of the optimized addressing modes. But on 680x0s less than the 68040 you will get a size and speed benefit from using the two instruction version (which must be written as two statements; if you do “x = 127 + 4” the compiler will combine the compile-time constants for you).

SOME CONSTANTS GENERATE CODE

It was hard for me to believe it when I first saw it but this code:

#define COUNT    (600 * 60)
register long    x;
x = COUNT;

actually generates a run-time multiply instruction in Think C. The problem is that the result of the 600*60 multiplication is larger than the maximum positive integer. So the assignment at run time is x = -29536 (the 32-bit signed interpretation of an unsigned 16-bit 36000), which is probably not what you want. To get what you probably want, and to eliminate the run-time multiply instruction, add an “L” after the “600” in the #define. That way the compiler treats it as a 32-bit constant and will do the multiply at compile-time.

USE POINTERS WITHOUT ARRAY INDEXES

Square brackets [] are usually a sign of inefficiency in C programs. The reason is because of all the index calculations the compiler is going to generate to evaluate them. There are some exceptions to this rule, but not many. For instance, this code:

for (i = 0; i < 100; i++)
 x[i] = blah;

is much better as:

/* 7 */

p = x;
for (i = 0; i < 100; i++)
 *p++ = blah;

because the compiler doesn’t have to calculate the effective address of x[i] each time through the loop.

Likewise, the following code (which is notationally convenient) to append ‘.cp’ to the end of a Pascal string:

char  *name;
name[++*name] = '.';
name[++*name] = 'c';
name[++*name] = 'p';

is much less efficient (and many more bytes) than this code:

/* 8 */

char  *namePtr;
namePtr = name + *name;
*namePtr++ = '.';
*namePtr++ = 'c';
*namePtr++ = 'p';
*name += 3;

USE 16-BIT SIGNED INDEXES

If you find that you must use array addressing with square brackets, you can improve the efficiency by using a signed 16-bit index rather than an unsigned one (of 16 or 32 bits). The reason is because something like this:

x = p[i];

can then be coded as (assuming everything is a register variable and p points to an array of bytes):

Move    (p,i),x

whereas, if i were unsigned you’d get:

Moveq #0,D0
Move    i,D0
Move    (p,D0.L),x

If generating 68020 instructions or higher then this same trick improves efficiency even if p points to an array of 16-bit, 32-bit or 64-bit quantities because most compilers will use the auto-scaling addressing mode:

Move    (p,i*8),x

for example, if p points to a table of 8-byte entries.

DON’T USE PRE-DECREMENTED POINTERS

This one is really only a shortcoming of Think C’s code generation and nothing else. I hope they fix it soon because it drives me nuts. If you do this in Think C:

i = *--p;

you’ll get this code generated:

Subq.L  #2,A4
Move    (A4),D7

instead of the obviously more efficient:

Move    -(A4),D7

If you have a large buffer that you’re walking through backwards then the time penalty for pre-decremented pointers can be significant (and would be a good place to drop in a little in-line asm). The funny thing is that Think is smart about the post incrementing case. i.e., this code:

/* 9 */

i = *p++;

generates the optimal:

Move    (A4)+,D7

I’m not sure why they have this asymmetry in their code generator. Probably a function of shipping deadlines...

EVIL ELSES

In some cases, it’s better to do what appears to be more work. This code:

x = (expr) ? y : z;

or its equivalent:

if (expr)
 x = y;
else
 x = z;

can be made to execute faster and take fewer bytes like this:

/* 10 */

x = z;
if (expr)
 x = y;

The reason is because the unconditional branch instruction generated by the compiler before the else statement is slower than the extra assignment instruction.

TEMPNEWHANDLE IS SLOW

Not too long ago I was asked to investigate why a certain application was running slow. The developers had made several recent changes, one of which was to use temporary memory, and noticed a slow down. I traced one of the problems down to the TempNewHandle call itself. It turns out that it’s 5x slower than NewHandle. Try allocating 80 handles of 64K each with NewHandle and then the same thing with TempNewHandle. The results are a strong argument against using TempNewHandle for places where you do lots of allocations and deallocations (in those cases where you have a choice).

BOOLEAN FLAGS

If you pack several boolean flags into a byte, put your most commonly tested flag in the highest bit position because the compiler will usually generate a Tst.B instruction for you rather than a less efficient Btst #7,<flags> instruction.

USE ‘ELSE’ WHEN CLIPPING

When clipping a value to a certain range of values, be sure to use an else statement. I’ve seen this code several times:

if (x < MIN_VAL)
 x = MIN_VAL;
if (x > MAX_VAL)
 x = MAX_VAL;

The insertion of a simple ‘else’ keyword before the second ‘if’ will improve performance quite a bit for those cases where x is less than MIN_VAL (because it avoids the second comparison in those cases where you know it’s false):

/* 11 */

if (x < MIN_VAL)
 x = MIN_VAL;
else if (x > MAX_VAL)
 x = MAX_VAL;

USE +=, NO, WAIT, DON’T USE +=

You might think that these two instructions were the same:

Byte    x;

x += x;
x <<= 1;

Or, if not, you might think that one of them would be consistently better than the other. Well, while they are the same functionally, depending on whether or not x is a register variable you can get optimal code with one or the other, but not both.

Let’s look at the code. If x is not a register variable then you get this for the first one (in Think C):

Move.B  nnnn(A6),D0
Add.B   D0,nnnn(A6)

and you get this for the second one:

Move.B  nnnn(A6),D0
Add.B   D0,D0
Move.B  D0,nnnn(A6)

So, as you can see the first one, x += x, is better. However, if x is a register variable then the first one generates:

Move.B  D7,D0
Add.B   D0,D0
Move.B  D0,D7

and the second one generates:

Add.B   D7,D7

And now the second one, x <<= 1, is clearly better. Don’t ask me why (cause I don’t know) but if it bothers you like it does me then write a letter to the Think implementors.

ONE FINAL EXAMPLE

Now that I’ve covered several C optimization tricks, let’s look at an example I encountered last week. Listing 6 of the ‘Principia Off-Screen’ tech note builds a color table from scratch:

/* 12*/

#define kNumColors 256 

CTabHandlenewColors;
short   index;

/* Allocate memory for the color table */
newColors = (CTabHandle)
 NewHandleClear(sizeof(ColorTable) +
 sizeof(ColorSpec) * (kNumColors - 1));

if (newColors != nil) {

 (**newColors).ctSeed = GetCTSeed();
 (**newColors).ctFlags = 0;
 (**newColors).ctSize = kNumColors - 1;

 /* Initialize the table of colors */
 for (index = 0;
 index < kNumColors; index++) {
 (**newColors).ctTable[index].value
 = index;
 (**newColors).ctTable[index].rgb.
 red = someRedValue;
 (**newColors).ctTable[index].rgb.
 green = someGreenValue;
 (**newColors).ctTable[index].rgb.
 blue = someBlueValue;
 }
}

What’s inefficient about it? For starters, it’s a little wasteful to clear all of the bytes with NewHandleClear since the code then proceeds to set every byte in the structure to some known value. Second, it’s wasteful to dereference the newColors handle every time a field of the color table is referenced. Nothing in that code except for the NewHandleClear call is going to move memory so, at a minimum, we should dereference the handle once and use a pointer to the block. Third, the evil square brackets array indexing is used in a place where a post-incrementing pointer would do. Forth, a ‘for’ loop is used where a do-while will suffice.

Here’s a more efficient version of the same code that fixes all of these problems:

/* 13 */

#define kNumColors 256

CTabHandlenewColorsHndl;
CTabPtr newColorsPtr;
short   index, *p;

/* Allocate memory for the color table */
newColorsHndl = (CTabHandle)  NewHandle(sizeof(ColorTable) +
 sizeof(ColorSpec) * (kNumColors - 1));

if (newColorsHndl != nil) {

 newColorsPtr = *newColorsHndl;
 
 newColorsPtr->ctSeed = GetCTSeed();
 newColorsPtr->ctFlags = 0;
 newColorsPtr->ctSize = kNumColors - 1;

 /* Initialize the table of colors */
 p = (short *) newColorsPtr->ctTable;
 index = 0;
 do {
 *p++ = index; /* value */
 *p++ = someRedValue;
 *p++ = someGreenValue;
 *p++ = someBlueValue;
 } while (++index < kNumColors);
}

Now, to be fair, I’m sure the authors of that tech note wrote the code the way they did so that it would be clear to as many people as possible. After all, it is for instructional purposes. So please don’t flame me for picking on them; with the exception of the inefficiencies in the example code, I happen to like that tech note a lot.

WRAPPING IT UP

Many Mac programmers I’ve met have the impression that if you’re programming in a high level language like C that many of the known assembly language peephole optimizations don’t apply or can’t be achieved because the compiler’s code generation is out of your control. While that’s true for some of the low-level tricks, it’s certainly not true for all of them, as we have seen. It’s just a matter of getting to know your compiler better so that you can coerce it to generate the optimal set of instructions. But if you’re writing portable code, these types of CPU-dependent and compiler-dependent optimizations should probably not be used except in the 5% of your code that occupies 80% of the execution time (and even then you’re probably going to want a per-CPU and per-compiler #ifdef so that you get optimal results on all CPUs and with all compilers).

 
AAPL
$111.78
Apple Inc.
-0.87
MSFT
$47.66
Microsoft Corpora
+0.14
GOOG
$516.35
Google Inc.
+5.25

MacTech Search:
Community Search:

Software Updates via MacUpdate

LibreOffice 4.3.5.2 - Free Open Source o...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
CleanApp 5.0.0 Beta 5 - Application dein...
CleanApp is an application deinstaller and archiver.... Your hard drive gets fuller day by day, but do you know why? CleanApp 5 provides you with insights how to reclaim disk space. There are... Read more
Monolingual 1.6.2 - Remove unwanted OS X...
Monolingual is a program for removing unnecesary language resources from OS X, in order to reclaim several hundred megabytes of disk space. It requires a 64-bit capable Intel-based Mac and at least... Read more
NetShade 6.1 - Browse privately using an...
NetShade is an Internet security tool that conceals your IP address on the web. NetShade routes your Web connection through either a public anonymous proxy server, or one of NetShade's own dedicated... Read more
calibre 2.13 - Complete e-library manage...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
Mellel 3.3.7 - Powerful word processor w...
Mellel is the leading word processor for OS X and has been widely considered the industry standard since its inception. Mellel focuses on writers and scholars for technical writing and multilingual... Read more
ScreenFlow 5.0.1 - Create screen recordi...
Save 10% with the exclusive MacUpdate coupon code: AFMacUpdate10 Buy now! ScreenFlow is powerful, easy-to-use screencasting software for the Mac. With ScreenFlow you can record the contents of your... Read more
Simon 4.0 - Monitor changes and crashes...
Simon monitors websites and alerts you of crashes and changes. Select pages to monitor, choose your alert options, and customize your settings. Simon does the rest. Keep a watchful eye on your... Read more
BBEdit 11.0.2 - Powerful text and HTML e...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
ExpanDrive 4.2.1 - Access cloud storage...
ExpanDrive builds cloud storage in every application, acts just like a USB drive plugged into your Mac. With ExpanDrive, you can securely access any remote file server directly from the Finder or... Read more

Latest Forum Discussions

See All

Make your own Tribez Figures (and More)...
Make your own Tribez Figures (and More) with Toyze Posted by Jessica Fisher on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
So Many Holiday iOS Sales Oh My Goodness...
The holiday season is in full-swing, which means a whole lot of iOS apps and games are going on sale. A bunch already have, in fact. Naturally this means we’re putting together a hand-picked list of the best discounts and sales we can find in order... | Read more »
It’s Bird vs. Bird in the New PvP Mode f...
It’s Bird vs. Bird in the New PvP Mode for Angry Birds Epic Posted by Jessica Fisher on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Telltale Games and Mojang Announce Minec...
Telltale Games and Mojang Announce Minecraft: Story Mode – A Telltale Games Series Posted by Jessica Fisher on December 19th, 2014 [ permalink ] | Read more »
WarChest and Splash Damage Annouce Their...
WarChest and Splash Damage Annouce Their New Game: Tempo Posted by Jessica Fisher on December 19th, 2014 [ permalink ] WarChest Ltd and Splash Damage Ltd are teaming up again to work | Read more »
BulkyPix Celebrates its 6th Anniversary...
BulkyPix Celebrates its 6th Anniversary with a Bunch of Free Games Posted by Jessica Fisher on December 19th, 2014 [ permalink ] BulkyPix has | Read more »
Indulge in Japanese cuisine in Cooking F...
Indulge in Japanese cuisine in Cooking Fever’s new sushi-themed update Posted by Simon Reed on December 19th, 2014 [ permalink ] Lithuanian developer Nordcurrent has yet again updated its restaurant simulat | Read more »
Badland Daydream Level Pack Arrives to C...
Badland Daydream Level Pack Arrives to Celebrate 20 Million Downloads Posted by Ellis Spice on December 19th, 2014 [ permalink ] | Read more »
Far Cry 4, Assassin’s Creed Unity, Desti...
Far Cry 4, Assassin’s Creed Unity, Destiny, and Beyond – AppSpy Takes a Look at AAA Companion Apps Posted by Rob Rich on December 19th, 2014 [ permalink ] These day | Read more »
A Bunch of Halfbrick Games Are Going Fre...
A Bunch of Halfbrick Games Are Going Free for the Holidays Posted by Ellis Spice on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »

Price Scanner via MacPrices.net

Invaluable Launches New Eponymously -Named A...
Invaluable, the world’s largest online live auction marketplace, hhas announced the official launch of the Invaluable app for iPad, now available for download in the iTunes App Store. Invaluable... Read more
IDC Reveals Worldwide Mobile Enterprise Appli...
International Data Corporation (IDC) last week hosted the IDC FutureScape: Worldwide Mobile Enterprise Applications and Solutions 2015 Predictions Web conference. The session provided organizations... Read more
The Apple Store offering free next-day shippi...
The Apple Store is now offering free next-day shipping on all in stock items if ordered before 12/23/14 at 10:00am PT. Local store pickup is also available within an hour of ordering for any in stock... Read more
It’s 1992 Again At Sony Pictures, Except For...
Techcrunch’s John Biggs interviewed a Sony Pictures Entertainment (SPE) employee, who quite understandably wished to remain anonymous, regarding post-hack conditions in SPE’s L.A office, explaining “... Read more
Holiday sales this weekend: MacBook Pros for...
 B&H Photo has new MacBook Pros on sale for up to $300 off MSRP as part of their Holiday pricing. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1699... Read more
Holiday sales this weekend: MacBook Airs for...
B&H Photo has 2014 MacBook Airs on sale for up to $120 off MSRP, for a limited time, for the Thanksgiving/Christmas Holiday shopping season. Shipping is free, and B&H charges NY sales tax... Read more
Holiday sales this weekend: iMacs for up to $...
B&H Photo has 21″ and 27″ iMacs on sale for up to $200 off MSRP including free shipping plus NY sales tax only. B&H will also include a free copy of Parallels Desktop software: - 21″ 1.4GHz... Read more
Holiday sales this weekend: Mac minis availab...
B&H Photo has new 2014 Mac minis on sale for up to $80 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 1.4GHz Mac mini: $459 $40 off MSRP - 2.6GHz Mac mini: $629 $70 off MSRP... Read more
Holiday sales this weekend: Mac Pros for up t...
B&H Photo has Mac Pros on sale for up to $500 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2599, $400 off MSRP - 3.5GHz 6-core Mac Pro: $3499, $... Read more
Save up to $400 on MacBooks with Apple Certif...
The Apple Store has Apple Certified Refurbished 2014 MacBook Pros and MacBook Airs available for up to $400 off the cost of new models. An Apple one-year warranty is included with each model, and... Read more

Jobs Board

*Apple* Store Leader Program (US) - Apple, I...
…Summary Learn and grow as you explore the art of leadership at the Apple Store. You'll master our retail business inside and out through training, hands-on experience, Read more
Project Manager, *Apple* Financial Services...
**Job Summary** Apple Financial Services (AFS) offers consumers, businesses and educational institutions ways to finance Apple purchases. We work with national and Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.