TweetFollow Us on Twitter

NSort
Volume Number:9
Issue Number:5
Column Tag:Visual programming

NSort

An application of parallelism to increase algorithm speed

By Mark Kauffman, Chico, California

The Future of Programming

I'll never forget my first Christmas after I started back to school as a Computer Science major. I was visiting my in-laws. They had the Orkin Man over to spray for termites. He and I started talking and I told him that I was working on my Bachelors degree in Computer Science.

"Oh, really," he said, "I got my degree in Computer Science in 1962. I used to program for IBM using punched cards."

I was shocked that anyone one with a Computer Science degree would become the "Orkin Man" and swore that it would never happen to me. Things change fast in the technical world. You have to keep your eyes open and stay on your feet if you don't want to be left in the dust. If you are a programmer, make sure that you don't become the "Orkin Man" by staying on top of the latest advances in programming.

Look into the future and imagine what kind of computers we are going to be programming in the year 2000. We are approaching the physical limits of how small and fast we can build a single processor. How can we build faster machines when we reach the speed limits, imposed by physics, of our current hardware? One method of building a computer system that is faster than a system with an individual processor is to build a system with multiple processors and run them in parallel. Parallel processing systems are not wishful thinking. In their book Highly Parallel Computing, Almasi and Gottlieb list over thirty existing different parallel processing architectures (2). Are you ready to start programming these parallel systems? How many languages do you know that can take advantage of a system with more than one processor? We have languages that do just that, available on the Macintosh. One of those languages is Occam, a textual non-object-oriented language that requires the programmer to specify which functions may operate concurrently. Lisp and C have been modified to design parallel processing algorithms using the Paralation Model (Snively 72). Another language, based on the dataflow model of computing and available on the Macintosh, is TGS Systems' Prograph.

Dataflow Architectures & Dataflow Languages

Most of the articles, and even the advertising, I've read about Prograph emphasize that it is a graphical object-oriented language. I was surprised to find that Prograph is also a dataflow language. It is based on a parallel-processor dataflow architecture. Prograph, as a dataflow language, differs from languages like C and Pascal in that it supports concurrent instruction execution at the single program instruction level. Pascal, C, LISP, FORTRAN, BASIC, and other common computer languages are based on the von Neumann architecture: sequential instruction execution modifying the data in memory. Only one instruction can happen at a time.

In the dataflow model of computing, data flows into and out of instructions through input/output terminals. Each instruction may have one or more input and output terminals. An instruction executes whenever all of the data required at its input terminal(s) are available. After execution, the instruction places the result(s) on its output terminal(s). Every instruction with an available processor and data at its inputs will execute concurrently in a dataflow system. Parallelism is implicit in the design of the program. No extra record keeping is required by the programmer. Prograph programs are graphic illustrations of algorithms using the dataflow computing model. Though not yet running on a parallel-processor platform, Prograph is positioned to take advantage of such a system. For the rest of this article let's look at a common computing problem that can be solved much more quickly with an algorithm designed to make use of a parallel-processor architecture, sorting.

Analyzing Algorithm Execution Time

First, let's examine how to determine how fast an algorithm is. Then we will be able to compare NSort, a parallel-processor based sorting algorithm, with the sort algorithms in common use today. To determine how fast an algorithm is, we first find the critical steps in the algorithm. These are steps which are repeated a number of times depending on the number of data to be dealt with, N. Then we count how many times the critical steps must be performed for the algorithm to complete. For example, if our sort algorithm had to compare each number to be sorted with every other number to be sorted, the comparisons would be the critical steps. The number of times the algorithm would have to make these comparisons to complete the sort would be N * N. We would say that our sort ran in time N squared. Increasing the number of data to be sorted from 10 to 1000, a factor of 100, would increase the sort time by a factor of 10000. You've heard of quicksort? What's great about quicksort is that on the average it will sort a large list in time N * Log(base 2)N. With quicksort then, increasing the number of data from 8 to 1024, a factor of 128, would, on the average, increase the sort time by a factor of under 2000. All other sorts that are based on sequential processing also sort in some time which is a multiple of N. In his text, Programming With Data Structures 2, Robert L. Kruse proves that "Any algorithm that sorts a list by comparing keys must, in it's worst case on a list of length N, do at least. . . N*lg(N) + O(N) comparisons of keys." In the next section I will describe an algorithm, NSort, that will consistently sort in time N.

The NSort Algorithm

We humans have the capability to make more than one comparison at a time, so I felt that a reasonable way to develop a sort algorithm that uses parallelism would be to observe human parallelism at work. To develop NSort, I wrote a list of numbers on a dry-erase board and sorted them as quickly as I could. As I sorted, I watched what I did. Here is the list and the procedure I took:

Unsorted List

(7 2 3 9 5 4 6)

Take the first element and make a new list. Now you have two lists: the sorted list, and the unsorted list:

Unsorted List Sorted List

(2 3 9 5 4 6) (7)

Take the first element from the unsorted list again. Where does it belong in the sorted list? Put it there.

Unsorted List Sorted List

(3 9 5 4 6) (2 7)

Keep taking the first element from the unsorted list and placing it where it belongs in the sorted list, until the unsorted list is empty.

Unsorted List Sorted List

(9 5 4 6) (2 3 7)

(5 4 6) (2 3 7 9)

(4 6) (2 3 5 7 9)

(6) (2 3 4 5 7 9)

() (2 3 4 5 6 7 9)

We've sorted the list in the same number of steps as there are elements to be sorted, time N. The critical step, that you were able to perform as a parallel operation, was "Where does it (the number detached from the unsorted list) belong in the sorted list?" A computer system with processors running in parallel could do the same thing. You would pass the processors a sorted list of numbers, one list element to each processor. Also pass each processor the single number from the unsorted list to compare with the sorted list. Ask each processor if its list element is less than the number. The collection of processors would then return a list of booleans. Where the booleans changed from TRUE to FALSE is where the number being compared to the elements in the list should be inserted in the sorted list. Let me use the numbers from the above example to demonstrate how this works:

Unsorted List Sorted List

(6) (2 3 4 5 7 9)

You want the processor array to find out where the six belongs in the sorted list. Pass the sorted list to the processor array. Ask the processors in the array if their list element is less than six. The processor array returns the following list:

(TRUE TRUE TRUE TRUE FALSE FALSE)

Now to figure out which element to insert the six in front of, pass this boolean array to the parallel-processor array. Ask, "Who has a FALSE?" The processor array returns the list of processor numbers that are holding FALSE:

(5 6)

From the list of processor numbers returned, only look at the value of the lowest numbered processor. In this example the processor array finds that the six needs to be inserted before the fifth element on the list.

There is one special case to consider. What happens if the number from the unsorted list is bigger than all of the numbers in the sorted list? Say we had used a ten instead of a six in this example. Then the boolean array created by the compare operation would have looked like this:

(TRUE TRUE TRUE TRUE TRUE TRUE)

When you ask the processor array who is holding a false, an empty list is returned. Then you know that the ten has to be inserted after the last item on the sorted list.

Implementation of NSort

Following are the seven prographs (TGS Systems' term for algorithms written in Prograph) of the NSort implementation. For those unfamiliar with Prograph syntax, there is one function per window. Function names are given in the title bars of the windows. As we look at each function, I'll explain its purpose and operation.

First, let's examine the main NSort routine.

This function asks the user to enter a list then tests the input to see that it is a list. If the input is a list it sorts the list and shows the results. Otherwise, the function terminates without showing any results.

The called functions, ask and show are Prograph primitives. They are built into the language. Ask brings up a dialog box requesting input and show brings up a dialog box that displays output. Both primitives' dialog boxes have OK buttons for the user to press. The called function test is not a primitive but is a function supplied by TGS with their Algorithm examples. It checks the data on its input terminal to see that it is a list and that all of the elements of the list are of the same type. Notice the X in a box with the bar above it next to test. This is the Prograph control "Terminate on Failure." If test fails, this control terminates the operation of the function NSort. When test succeeds, nSort sorts the list on its input terminal then passes the result to show.

Now, let's look at nSort. Notice that it doesn't actually do all of the sorting but sets up the sort and calls sort-em to complete the sort.

The nSort method consists of two cases. Case 1:2 (read 1 of 2) performs a Prograph match operation on the input list. The match operation is the line above the set of parenthesis and box with an X inside. This match operation is checking for an empty list, (). If the list is not empty, the match fails and the next case is called. An empty list is not sorted.

Case 2:2 performs the same first step we took when sorting. It takes the left most element off the unsorted list and creates a one element 'sorted' list. These two lists are passed to sort-em which takes items from the unsorted list and inserts them in the right place in the sorted list until the unsorted list is empty. The looping arrows show that both lists are being feed from the output terminals of sort-em back into its input terminals. The looping arrows also represent repeated operations on data by a method.

The first thing sort-em does is another match on the input list. If the match succeeds, the list is empty and the looping around sort-em terminates. When the unsorted list is not empty, sort-em detaches the left most item from the list, and passes the item and the sorted list to find insert location. After determining where to insert the item, it passes the item and the sorted list to the method insert into sorted list to be, you guessed it, inserted into the sorted list.

Now, let's review the operation of find insert location.

This method, find insert location, figures out where to insert the item in the sorted list. It returns a 0 if the item is to be inserted to the far right of the sorted list. Otherwise it returns the location where the item is to be inserted.

This operation is the key method to sorting in time N. If Prograph were running on a parallel processor system and there were enough processors to perform the list operations simultaneously, NSort would complete in time N.

The only operations left to consider are the two cases of insert into sorted list.

If the insert location is zero, case 1:2 places the item to insert on the far right of the sorted list. If the insert location is not zero, case 1:2 switches to case 2:2. Case 2:2 splits the sorted list in two at the place where the item is to be inserted, converts the item to insert into a list, and then joins all three lists to create the new sorted list. This completes the implementation of NSort with Prograph.

The Challenge

Our challenge as programmers is to learn what processes will benifit from parallelism and how to implement them. Searching and finding the shortest path look like good candidates. Neural network design, another hot topic in computer science today, is another. Using a graphical, parallel language like Prograph should simplifly network design. You would define a single class neuron. You could draw the network topology using Prograph's existing graphical capabilities.

There is a challenge for you hardware gurus too. Build (inexpensive please) NuBus boards with parallel processing capability. It would be nice if they would just plug in and work with a graphical object-oriented language. I've seen that Occam is available on the Macintosh with parallel processing hardware. (Occam is a non-object-oriented parallel-processing textual language that requires the programmer to explicitly state which functions can operate in parallel.) What would it take to convert that hardware for use with Prograph?

If you implement one of these ideas or if you think of others, I'd like to hear about it. Send me e-mail at mkaufman@hairball.ecst.csuchico.edu or write to me at: 254 E. 7th Ave. Chico, CA 95926. Better yet, write an article for MacTech.

References

Almasi, George and Gottlieb, Allan. Highly Parallel Computing. Redwood City: Benjamin/Cummings Publishing Company, Inc., 1989.

Snively, Paul. "The Paralation Model." MacTutor. Nov./Dec. 1992: 72-79.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

PopChar 7.1 - Floating window shows avai...
We're also selling a 5-license family pack for only $25.99! PopChar helps you get the most out of your font collection. With its crystal-clear interface, PopChar X provides a frustration-free way to... Read more
BBEdit 11.1.1 - Powerful text and HTML e...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
Picasa 3.9.139 - Organize, edit, and sha...
Picasa and Picasa Web Albums allows you to organize, edit, and upload your photos to the Web from your computer in quick, simple steps. Arrange your photos into folders and albums and erase their... Read more
Mac DVDRipper Pro 5.0.5 - Copy, backup,...
Mac DVDRipper Pro is the DVD backup solution that lets you protect your DVDs from scratches, save your batteries by reading your movies from your hard disk, manage your collection with just a few... Read more
NetShade 6.2 - Browse privately using an...
This promotion is for NetShade and 1 year of Proxy and VPN services NetShade is an anonymous proxy and VPN app+service for Mac. Unblock your Internet through NetShade's high-speed proxy and VPN... Read more
CrossOver 14.1.3 - Run Windows apps on y...
CrossOver can get your Windows productivity applications and PC games up and running on your Mac quickly and easily. CrossOver runs the Windows software that you need on Mac at home, in the office,... Read more
Little Snitch 3.5.3 - Alerts you about o...
Little Snitch gives you control over your private outgoing data. Track background activity As soon as your computer connects to the Internet, applications often have permission to send any... Read more
OmniGraffle Pro 6.2.3 - Create diagrams,...
OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use... Read more
OmniFocus 2.2 - GTD task manager with iO...
OmniFocus helps you manage your tasks the way that you want, freeing you to focus your attention on the things that matter to you most. Capturing tasks and ideas is always a keyboard shortcut away in... Read more
1Password 5.3.2 - Powerful password mana...
1Password is a password manager that uniquely brings you both security and convenience. It is the only program that provides anti-phishing protection and goes beyond password management by adding Web... Read more

MooVee - Your Movies Guru (Entertainmen...
MooVee - Your Movies Guru 1.0 Device: iOS iPhone Category: Entertainment Price: $1.99, Version: 1.0 (iTunes) Description: MooVee helps you effortlessly manage your movies, on your iPhone. | Read more »
Geometry Wars 3: Dimensions (Games)
Geometry Wars 3: Dimensions 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: Enjoy the next chapter in the award-winning Geometry Wars franchise and enjoy stunning, console-quality... | Read more »
CHAOS RINGS Ⅲ (Games)
CHAOS RINGS Ⅲ 1.0.0 Device: iOS Universal Category: Games Price: $19.99, Version: 1.0.0 (iTunes) Description: The newest addition to the popular smartphone RPG series is finally here! ・CHAOS RINGS Overview | Read more »
The Popular Insight Series of Travel Gui...
Getting around in a country when you can't understand the primary language can be tough. Fortunately there are several options available to help wold travellers with the important stuff like giving directions to a cab driver or asking where the... | Read more »
Desktop Dungeons is Now on the iPad Desp...
Desktop Dungeons has been a well-loved roguelike on PC for quite some time, and now it's finally available for the iPad! Just the iPad, though. Sorry iPhone users. [Read more] | Read more »
Moleskine Timepage – Calendar for iCloud...
Moleskine Timepage – Calendar for iCloud, Google & Exchange 1.0 Device: iOS iPhone Category: Productivity Price: $4.99, Version: 1.0 (iTunes) Description: The most elegant calendar for your pocket and wrist, Timepage is a... | Read more »
QuizUp Gets Social in its New Update
Plain Vanilla Corp has released a new and improved version of their popular trivia game, QuizUp. The app now emphasizes social play so you can challenge friends from all over the world. [Read more] | Read more »
The Deep (Games)
The Deep 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Swipe Controls Delve into the deep in this retro rogue-like! Swipe to move your diver around and keep away from the enemies as you... | Read more »
Sproggiwood (Games)
Sproggiwood 1.2.8 Device: iOS Universal Category: Games Price: $9.99, Version: 1.2.8 (iTunes) Description: Sproggiwood was developed for devices with at least 1GB of RAM. We recommend you only download Sproggiwood if your device... | Read more »
Battle of Gods: Ascension (Games)
Battle of Gods: Ascension 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: TURN-BASED TACTICAL COMBATFight tactical battles against the forces of Hades! In Battle of Gods: Ascension you play... | Read more »

Price Scanner via MacPrices.net

Apple refurbished 2014 13-inch Retina MacBook...
The Apple Store has Apple Certified Refurbished 2014 13″ Retina MacBook Pros available for up to $400 off original MSRP, starting at $979. An Apple one-year warranty is included with each model, and... Read more
What Would the ideal Apple Productivity Platf...
For the past four years I’ve kept a foot in both the Mac and iPad camps respectively. my daily computing hours divided about 50/50 between the two devices with remarkable consistency. However, there’... Read more
PageMeUp 1.2.1 Ten Dollar Page Layout Applica...
Paris, France-based Softobe, an OS X software development company, has announced that their PageMeUp v. 1.2.1, is available on the Mac App Store for $9.99. The license can be installed on up to 5... Read more
Eight New Products For USB Type-C Application...
Fresco Logic, specialists in advanced connectivity technologies and ICs, has introduced two new product families targeting the Type-C connector recently introduced across a number of consumer... Read more
Scripps National Spelling Bee Launches Buzzwo...
Scripps National Spelling Bee fans can monitor the action at the 2015 Spelling Bee with the new Buzzworthy app for iOS, Android and Windows mobile devices. The free Buzzworthy app provides friendly... Read more
13-inch 2.5GHz MacBook Pro on sale for $120 o...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $979 including free shipping plus NY sales tax only. Their price is $120 off MSRP, and it’s the lowest price for this model (except for Apple’... Read more
27-inch 3.3GHz 5K iMac on sale for $1899, $10...
B&H Photo has the new 27″ 3.3GHz 5K iMac on sale for $1899.99 including free shipping plus NY tax only. Their price is $100 off MSRP. Read more
Save up to $50 on iPad Air 2, NY tax only, fr...
B&H Photo has iPad Air 2s on sale for up to $50 off MSRP including free shipping plus NY sales tax only: - 16GB iPad Air 2 WiFi: $469 $30 off - 64GB iPad Air 2 WiFi: $549.99 $50 off - 128GB iPad... Read more
Updated Mac Price Trackers
We’ve updated our Mac Price Trackers with the latest information on prices, bundles, and availability on systems from Apple’s authorized internet/catalog resellers: - 15″ MacBook Pros - 13″ MacBook... Read more
New 13-inch 2.9GHz Retina MacBook Pro on sale...
B&H Photo has the 13″ 2.9GHz/512GB Retina MacBook Pro on sale for $1699.99 including free shipping plus NY tax only. Their price is $100 off MSRP, and it’s the lowest price for this model from... Read more

Jobs Board

Program Manager, *Apple* Community Support...
**Job Summary** Apple Support Communities ( discussions. apple .com) helps customers get the most from their Apple products and services by providing access to Read more
Senior Data Scientist, *Apple* Retail - Onl...
**Job Summary** Apple Retail - Online sells Apple products to customers around the world. In addition to selling Apple products with unique services such as iPad Read more
*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
*Apple* Watch SW Application Project Manager...
**Job Summary** The Apple Watch software team is looking for an Application Engineering Project Manager to work on new projects for Apple . The successful candidate Read more
Engineering Manager for *Apple* Maps on the...
…the Maps App Team get to take part in just about any new feature in Apple Maps, often contributing a majority of the feature work. In our day-to-day engineering work, we Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.