TweetFollow Us on Twitter

Voxels
Volume Number:9
Issue Number:3
Column Tag:C Workshop

What are Voxels?

A hobbyist level overview of voxels, voxel space and Phong shading

By Geoffrey Clements, Chelmsford, Massachusetts

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

About the author

Geoffrey Clements can be reached on internet at clementsg@gw1.hanscom.af.mil.

Introduction

The medical industry is studying ways of viewing medical imagery on the computer. Doctors are using computer graphics to plan operations before going into the operating room. In fact, entire operations are dry run on the computer, before the doctor lifts a knife.

To create the data for a medical image, a radiologist will take a series of computer aided tomography (CAT) scan images at different depths. The images are lined up in order of depth to form a three dimensional representation of the object being scanned. Each data point in this three dimensional cube is called a voxel. The cube of voxels are called a voxel space. Think of a voxel as a measure of the density of matter at that point. You can also think of a voxel as a “volume pixel”.

In this article we’ll draw a sphere that appears three dimensional using the techniques used to draw medical imagery. I chose a sphere to make the problem simpler to understand. But first we’ll check out how a medical image is generated.

A viewing window defines the orientation of the voxel space, and what part of the voxel space is in view. This viewing window corresponds to the computer screen. The image is created by following a ray from the viewing window through the voxels and summing the contributions of the voxels the ray passes through. The ray is perpendicular to the viewing window. Figure 1 shows two voxels spaces. The first has the viewing window on the front face. The second has the viewing window on the top left front corner. The arrow is the ray followed through the voxel space.

Figure 1 Voxel Space and Viewing Windows

The contribution of each voxel is calculated from a transparency and a color. The transparency, sometimes called opacity, is calculated from the intensities associated with each voxel. Usually the intensity is just scaled to yield an opacity. In our example, inside the sphere is opaque, and outside the sphere is transparent. Figure 2 shows the voxel space we will be using and the sphere opacity.

Figure 2 Voxel Space

To characterize the viewing environment we’ll define several vectors. First a normalized vector pointing toward the viewing window. Next we define normal vectors at each voxel. Finally we need a normal vector pointing toward each light source.

The color of a particular pixel is calculated using the intensities of the voxels and these vectors defining the viewing environment. We’ll be using the Phong shading model to calculate the color.

Phong Shading

The Phong shading model is used in order to give objects in an image their three dimensional quality. We’ll go through the Phong shading equation by describing each piece. I use the words “shade” and “color” interchangeably. They mean the same thing. We start with:

Shade is the color of the voxel we are calculating. Ip is the intensity of a light source. ka is the ambient light reflection coefficient. The ambient light reflection coefficient, as you might expect, just sets an overall light level for the image. A gray disk is drawn if we use this equation to calculate the color.

Next, we add some depth cueing, which will start to give the image a 3D look.

kd1 and kd2 are depth cueing coefficients. We set kd2 = 1 in the example program. k is the distance from the viewing plane along the ray. This adds a small 3D effect. A gray disk is drawn that gets slightly lighter as we move from the edge of the sphere into the center.

Now we add the effect of diffuse and specular reflected light. (This step is a big jump, but these effects are what makes Phong shading so good.)

Figure 3 shows the difference between diffuse and specularly reflected light. Diffuse reflection is light reflected in all directions. This is caused by the roughness of the reflecting surface. Specular reflection, on the other hand, is light that is reflected in only one direction. Specular reflection is caused by the smoothness of the reflecting surface.

Figure 3 Reflected light

Here is the Phong shading equation with the effect of diffuse and specularly reflected light added.

d is the diffuse reflection coefficient, and s is the specular reflection coefficient. N is a normal vector to the voxel whose shade we are calculating, V is a vector pointing toward the viewer, L is a vector pointing at the light source and H is the normalized sum of V and L. N•L is the dot product of N and L.

We’ve come to the point where we can set our viewing window and define the vector space. Figure 4 shows the vector space. There are two L vectors shown in Figure 4. We’ll use two light sources to make the image a little more interesting. To add another light source we only need to add the effect of diffuse and specular reflection to the shade calculated above.

Figure 4 Vector space

The axes are slightly unusual, but the x and y axes correspond to the Macintosh coordinate system. N, H, L1, L2, and V are drawn to show their relative directions. This space corresponds to a viewer looking into the front face, (through the viewing window). The two light sources are pointing down from the top-left front corner of the cube, and into the right side. These vectors must be set before we start.

We can pre-calculate most of the shade equation before going into the loop that calculates the pixel color. This speeds up drawing the image.

Here are the definitions for V, L1, L2, H, and N.

r is the radius of the sphere, i, j, k are a point on the surface of the sphere. In our example, the center of the sphere is at (cv, cv, cv).

We can generate equations for N•L and N•H.

At this point you may be asking yourself, “How do you sum the contributions from the voxels?” Here’s how the example program does it. The indexes i and j step through the pixels on the viewing window. The index k corresponds to the ray going back into the voxels. As k varies, we check to see if point (i, j, k) is inside or outside the sphere. If it is outside the sphere, return a color of zero. If k gets to the back of the voxel space without hitting the sphere, draw a black pixel at (i, j) on the screen. If we hit the sphere, calculate a color for the sphere surface and draw that color at (i, j) on the screen, then go on to the next pixel. There is no need to process any farther inside the sphere, because there is no way the light can get there. Normally the effects of all voxels the ray passes through are used to calculate a color, but I have chosen to make the problem (and program) simpler to understand.

The Example Program

The code was developed under Think C. The MacTraps library is the only library that needs to be included. Turn on the Native floating-point format and Generate 68881 instruction switches in the Compiler settings screen if you have a floating point coprocessor. If not, just turn on the Native floating-point format switch. The program takes about a minute to generate a 128x128 pixel image on a Mac IIci with 68881 instructions on, and three minutes with it off.

The example program uses a standard Macintosh event loop shell and main routine. All of the interesting processing is done by DoColor() called by the Init() routine. Init() starts by initializing the the Macintosh managers and setting up the menus. If Color Quickdraw is not available, the program quietly exits. If Color Quickdraw is available, a window is opened and sized to our voxel data. The size of the volume and sphere are set with the defines:

/* size of the voxel data */
#define volSize  64
/* half the size of voxel data */
#define halfVolSize32
/* the radius of the sphere */
#define sphere_r 30
/* sphere_r*sphere_r */
#define volumeMag900.0
/* sqrt(3.0)*sphere_r */
#define sqrt3r   51.9615
/* sphere_r*sqrt(6+2*sqrt(3)) */
#define rsqrt6   92.2913

Notice that some of the constants for the N•L and N•H equation are defined. This speeds up processing. Because this program is calculation intensive, start with a small volume and increase it later when you have the effect you like.

A grayscale palette is loaded and attached to the window using SetPalette(). The palette is a 128 shade grayscale 'pltt' resource created in ResEdit. An offscreen drawing port is used because we only want to calculate the pixel colors once. The offscreen port is set up using the GWorld calls defined in Volume VI of “Inside Macintosh”.

This brings us to the drawing section. The indexes i and j cycle through all the pixels of the viewing window. The k index is the ray moving back through the voxels. All of the work of deciding the color of a pixel is done in the DoColor() routine. Once a non-zero color is returned we move on to the next pixel in the viewing plane. Inside DoColor() the CalcVolumeData() routine calculates whether or not i, j, k is inside the sphere or not. If it is, we calculate a shade. If not, return a RGBColor of zero.

Once the drawing to the offscreen port is done, we set the current port to the onscreen window and exit Init(). At this point the screen is still blank. When WaitNextEvent() receives an update event we use CopyBits() to copy the offscreen bit map onto the screen.

Stuff To Try

Use a small volume to start off. Start with 64x64x64 voxel set. The following are a couple of other sets of defines to try to get various sized spheres. Remember the bigger the voxel space the more time you have to get coffee while the program runs.

/* 1 */

#define volSize  128
#define halfVolSize64
#define sphere_r 60
#define volumeMag3600.0
#define sqrt3r   103.9230
#define rsqrt6   184.5827
and 

#define volSize  256
#define halfVolSize128
#define sphere_r 120
#define volumeMag14400.0
#define sqrt3r   207.8461
#define rsqrt6   369.1654
The defines:

/* these constants define the Phong shading */
/* ambient reflection coefficient */
#define ambientReflCoef 0.1
/* depth cueing coefficient */
#define depthCueCoef 1.0
/* diffuse reflection coefficient */
#define diffReflCoef 2.0
/* specular reflection coefficient */
#define specReflCoef 3.0
/* first light source intensity */
#define light  0.6
/* second light source intensity */
#define light2   1.2
/* coefficient to approx highlight */
#define highlightCoef11

set the constants for the Phong shading. You can play around with these to change the shading effects in the displayed image. But be careful. The value of shade should fall between 0.0 and 1.0. If shade is greater than one, the color will roll over from white to black, and the image will appear with black blotches in the middle of an area that should be white.

A major performance improvement can be made by replacing the floating-point math with suitable integer arithmetic. Some improvement could be made by calling SetCPixel() from a pointer rather than leaving it to the trap dispatcher. Or, the code for the functions could be inserted into Init() to eliminate the overhead of the function calls.

Drawing in 3D is not hard; it just takes some math know-how and a good computer.

References

Computer Graphics: Principles and Practice, 2nd ed., by J. D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes (Addison-Wessley, 1990)

Marc Levoy, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and Applications, May 1988 pp. 29-37

Code Listing
#include <Palettes.h>
#include <SANE.h>
#include <QDOffscreen.h>

/* size of the voxel data */
#define volSize  128
/* half the size of voxel data */
#define halfVolSize64
/* the radius of the sphere */
#define sphere_r 60
/* sphere_r*sphere_r */
#define volumeMag3600.0
/* sqrt(3.0)*sphere_r */
#define sqrt3r   103.9230
/* sphere_r*sqrt(6+2*sqrt(3)) */
#define rsqrt6   184.5827

/* resource numbers for the window, palette and menus */
#define windowRscr 128
#define paletteRscr 128

#define appleID 128
#define appleM 1
#define appleAbout 1

#define fileID 129
#define fileM 2
#define fileQuit 1

#define editID 130
#define editM 3
#define editUndo 1
#define editCut 3
#define editCopy 4
#define editPaste 5
#define editClear 6

#define sleepTicks 30

#define aboutDialog 128

/* these constants define the Phong shading */
/* ambient reflection coefficient */
#define ambientReflCoef 0.1
/* depth cueing coefficient */
#define depthCueCoef 1.0
/* diffuse reflection coefficient */
#define diffReflCoef 5.0
/* specular reflection coefficient */
#define specReflCoef 5.0
/* first light source intensity */
#define light  1.0
/* coefficient to approx highlight */
#define highlightCoef30

char aChar;
WindowPtr currentWindow;
MenuHandle myMenus[editM+1];
Rect dragRect, growRect;
long newSize;
Boolean doneFlag;
EventRecord event;
WindowPtr whichWindow;
RGBColor pixColor;
short i, j, k;
PaletteHandle palH;
DialogPtr dPtr;
short doneDlg;
OSErr err;
SysEnvRec envRec;

Rect copyRect;
GWorldPtr wallyWorld;
GDHandle savedDevice;
CGrafPtr savedPort;
 
double PowerOfN (double x, short r) {
 double ans;
 
 ans = 1.0;
 while (r- > 0) ans *= x;
 return ans;
}

double fx, fy, fz;

short CalcVolumeData (short i, short j, short k) {
 long x, y, z;
 
 fx = -(double)(i - halfVolSize);
 fy = -(double)(j - halfVolSize);
 fz = -(double)(k - halfVolSize);
 if ((fx * fx + fy * fy + fz * fz) <= volumeMag) 
 return 1;
 else return 0;
}

void DoColor (short i, short j, short k,
 RGBColor *RGBVal) {
 double n_dot_h, n_dot_l;
 double n_dot_h2, n_dot_l2, shade;
 unsigned short color;
 
 if (CalcVolumeData (i, j, k)) {
 n_dot_l = (fx + fy + fz)/sqrt3r;
 n_dot_h = (fx + fy + 2.7321*fz)/rsqrt6;
 shade = light*ambientReflCoef+
 (light/((double)(k)+depthCueCoef)
 *(diffReflCoef*n_dot_l+specReflCoef
 *PowerOfN (n_dot_h, highlightCoef)));

 /* second light source */
 n_dot_l2 = -fx/sphere_r;
 n_dot_h2 = (-fx + fz)/(1.4142*sphere_r);
 shade +=  light/((double)(k)+depthCueCoef)
 *(diffReflCoef*n_dot_l2+specReflCoef
 *PowerOfN (n_dot_h2, highlightCoef));

 color = (unsigned short)(shade * 65534.0);
 

RGBVal->red = color;
 RGBVal->green = color;
 RGBVal->blue = color;
 }
 else {
 RGBVal->red = 0;
 RGBVal->green = 0;
 RGBVal->blue = 0;
 }
}

void OpenWindow (void) {
 currentWindow =  (WindowPtr)GetNewCWindow(
 windowRscr, NULL, (Ptr)-1);
 SetPort(currentWindow);
 SizeWindow(currentWindow, volSize + 25,
 volSize + 25, 1);
 SetWTitle(currentWindow, &”\pVol3D”);
 ShowWindow(currentWindow);
}

void Init (void) {
 short i, j, k;

 InitGraf(&thePort);
 InitFonts ();
 FlushEvents (everyEvent, 0);
 InitWindows ();
 InitMenus ();
 TEInit ();
 InitDialogs (NULL);

 myMenus[appleM] = GetMenu(appleID);
 AddResMenu(myMenus[appleM], ‘DRVR’);

 myMenus[fileM] = GetMenu(fileID);
 myMenus[editM] = GetMenu(editID);

 for (i=appleM;i<=editM;i++)
 InsertMenu(myMenus[i], 0);

 DrawMenuBar ();

 SetRect(&dragRect, 30, 20,
 screenBits.bounds.right - 10,
 screenBits.bounds.bottom - 30);
 SetRect(&growRect, 50, 50,
 screenBits.bounds.right - 20,
 screenBits.bounds.bottom - 50);

 doneFlag = 0;
 err = SysEnvirons(1, &envRec);
 if (!envRec.hasColorQD) doneFlag = 1;
 else {
 OpenWindow ();
 palH = GetNewPalette (paletteRscr);
 if (palH == NULL) {
 doneFlag = 1;
 }
 else {
 SetPalette (currentWindow, palH, 1);
 }
 
 /* set up the offscreen drawing port */
 GetGWorld (&savedPort, &savedDevice);
 SetRect (&copyRect, 0, 0, volSize-1,
 volSize-1);
 LocalToGlobal (&copyRect.top);
 LocalToGlobal (&copyRect.bottom);
 err = NewGWorld (&wallyWorld, 0, &copyRect,
 NULL, NULL, 0);
 GlobalToLocal (&copyRect.top);
 GlobalToLocal (&copyRect.bottom);

 if (err != noErr)
 doneFlag = 1;
 else {
 SetGWorld (wallyWorld, NULL);
 if (LockPixels (wallyWorld->portPixMap)) {
 /* draw off screen here */
 for(i=0;i<volSize;i++) 
 for (j=0;j<volSize;j++) {
 k = 0;
 do {
 DoColor(i, j, k, &pixColor);
 k++;
 } while ((pixColor.red == 0)
 & (k < volSize));
 SetCPixel (i, j, &pixColor);
 }
 UnlockPixels (wallyWorld->portPixMap);
 }
 else doneFlag = 1;
 
/* the drawing is done set the current port back to the display window 
*/
 }
 SetGWorld (savedPort, savedDevice);
 }
}

void DoAboutBox (void) {

 dPtr = GetNewDialog (aboutDialog, NULL,
 (Ptr)-1);
 do
 ModalDialog(NULL, &doneDlg);
 while (!doneDlg);
 DisposDialog(dPtr);
}

void CleanUp (void) {
 
 HideWindow (currentWindow);
 DisposeGWorld (wallyWorld);
 DisposePalette (palH);
 DisposeWindow (currentWindow);
 doneFlag = 1;
}

void DoCommand (long menuResult) {
 short menuID, menuItem;
 Str255 daName;
 short daErr;

 menuItem = LoWord (menuResult);
 menuID = HiWord (menuResult);

 switch (menuID) {
 case appleID: 
 if (menuItem == appleAbout) DoAboutBox ();
 else {
 GetItem(myMenus[appleM], menuItem, daName);
 daErr = OpenDeskAcc(daName);
 if (currentWindow)
 SetPort (currentWindow);
 }
 break;
 case fileID: 
 switch (menuItem) { 
 case fileQuit: 
 CleanUp ();
 break;
 }
 break;
 }
 HiliteMenu(0);
}

void DoEvent (void) {

 switch (event.what) {
 case mouseDown: 
 switch (FindWindow(event.where, 
 &whichWindow)) {
 case inMenuBar: 
 DoCommand(MenuSelect(event.where));
 break;
 case inSysWindow: 
 SystemClick(&event, whichWindow);
 break;
 case inDrag: 
 DragWindow(whichWindow, event.where,
 &dragRect);
 break;
 case inGrow: 
 newSize = GrowWindow(whichWindow,
 event.where, &growRect);
 SizeWindow(whichWindow, LoWord(newSize),
 HiWord(newSize), 1);
 InvalRect(&currentWindow->portRect);
 break;
 case inGoAway: 
 if (TrackGoAway(whichWindow,
 event.where)) CleanUp ();
 break;
 } /* case findwindow (...) */
 break;
 case keyDown:
 case autoKey: 
 aChar = (char)(BitAnd (event.message,
 charCodeMask));
 if (BitAnd (event.modifiers, cmdKey))
 DoCommand(MenuKey(aChar));
 break;
 case activateEvt: 
 if (BitAnd(event.modifiers, activeFlag))
 DisableItem(myMenus[editM], 0);
 else EnableItem(myMenus[editM], 0);
 break;

 case updateEvt: 
 BeginUpdate(currentWindow);
 EraseRect(&currentWindow->portRect);
 DrawGrowIcon(currentWindow);
 InsetRect (&currentWindow->portRect, 8, 8);
 OffsetRect (&currentWindow->portRect,
 -8, -8);

 if (LockPixels (wallyWorld->portPixMap)) {
 CopyBits(&wallyWorld->portPixMap,
 &currentWindow->portBits, &copyRect,
 &currentWindow->portRect, srcCopy, NULL);
 UnlockPixels (wallyWorld->portPixMap);
 }
 
 OffsetRect (&currentWindow->portRect, 8, 8);
 InsetRect (&currentWindow->portRect, -8, -8);
 EndUpdate(currentWindow);
 break;
 }
}

void main (void) {
 currentWindow = NULL;
 Init ();
 InitCursor ();

 do {
 if (WaitNextEvent (everyEvent, &event,
 sleepTicks, NULL)) DoEvent ();
 } while (!doneFlag);
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Adobe Creative Cloud 2.2.0.129 - Access...
Adobe Creative Cloud costs $49.99/month (or less if you're a previous Creative Suite customer). Creative Suite 6 is still available for purchase (without a monthly plan) if you prefer. Introducing... Read more
Tower 2.2.3 - Version control with Git m...
Tower is a powerful Git client for OS X that makes using Git easy and more efficient. Users benefit from its elegant and comprehensive interface and a feature set that lets them enjoy the full power... Read more
Apple Java 2015-001 - For OS X 10.7, 10....
Apple Java for OS X 2015-001 installs the legacy Java 6 runtime for OS X 10.11 El Capitan, OS X 10.10 Yosemite, OS X 10.9 Mavericks, OS X 10.8 Mountain Lion, and OS X 10.7 Lion. This package is... Read more
Adobe Muse CC 2015 2015.0.1 - Design and...
Muse CC 2015 is available as part of Adobe Creative Cloud for as little as $14.99/month (or $9.99/month if you're a previous Muse customer). Muse CS6 is still available for purchase (without a... Read more
Adobe Illustrator CC 2015 19.1.0 - Profe...
Illustrator CC 2015 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Illustrator customer). Illustrator CS6 is still available for... Read more
Corel Painter 14.1.0.1105 - Digital art...
Corel Painter helps you create astonishing art in a variety of media. Paint with vivid oil paints, fluid water colors, and earthy charcoals. Corel Painter flawlessly recreates the tones and textures... Read more
Pacifist 3.5.4 - Install individual file...
Pacifist opens up .pkg installer packages, .dmg disk images, .zip, .tar. tar.gz, .tar.bz2, .pax, and .xar archives and more, and lets you extract or install individual files out of them. This is... Read more
Merlin Project 3.1.0.40305 - Project man...
Merlin Project is for those of you who are responsible for complex projects. Simple lists of tasks won't suffice. Good planning raises questions about the dependencies of activities on each other,... Read more
DM1 2.0 - Advanced drum machine. (Commer...
DM1 is an advanced Drum Machine. It turns your computer into a fun and creative beat making machine. Easy and fast to use, loaded with 86 superb electronic drum kits and beautiful hyper-realistic... Read more
Posterino 3.2.1 - Create posters, collag...
Posterino offers enhanced customization and flexibility including a variety of new, stylish templates featuring grids of identical or odd-sized image boxes. You can customize the size and shape of... Read more

Battle Golf is the Newest Game from the...
Wrassling was a pretty weird - and equally great - little wressling game. Now the developers, Folmer Kelly and Colin Lane, have turned their attention to a different sport: golfing. This is gonna be weird. [Read more] | Read more »
Qbert Rebooted has the App Store Going...
The weird little orange... whatever... is back, mostly thanks to that movie which shall remain nameless (you know the one). But anyway it's been "rebooted" and now you can play the fancy-looking Qbert Rebooted on iOS devices. [Read more] | Read more »
Giant Monsters Run Amok in The Sandbox...
So The Sandbox has just hit version number 1.99987 (seriously), and it's added a lot more stuff. Just like every other update, really. [Read more] | Read more »
Fish Pond Park (Games)
Fish Pond Park 1.0.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.0 (iTunes) Description: Nurture an idyllic slice of tourist's heaven into the top nature spot of the nation, furnishing it with a variety of... | Read more »
Look after Baby Buddy on your Apple Watc...
Parigami Gold is the new premium version of the match three puzzler that includes Apple Watch support and all new content. You won't simply be sliding tiles around on your wrist, the Apple Watch companion app is an all new mini-game in itself. You'... | Read more »
Swallow all of your opponents as the big...
Eat all of the opposition and become the largest ball in Battle of Balls now available in the App Store and Google Play. Battle of Balls pits you against other opponents in real time and challenges you to eat more balls and grow larger than all of... | Read more »
PAC-MAN Championship Edition DX (Games)
PAC-MAN Championship Edition DX 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: It’s Your World. EAT IT! Get ready for more ghost chain gobbling and frantic action in PAC-MAN® CE-DX! The... | Read more »
incurve (Games)
incurve 1.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0 (iTunes) Description: Get ready for 2 different gravities Goal is to hit as many white dots on your way up.When you're touching the screen, the dots have a... | Read more »
Crossy Road has its Own Merch Store Now....
Do you like Crossy Road? I mean do you really like Crossy Road? Well then you're in luck! Hipster Whale has opened up a Crossy Road store, so you can show off your fandom via official T-shirts. [Read more] | Read more »
The Grand Tournament is Hearthstone...
You all still play Hearthstone, right? Of course you do. We all do. And Blizzard has been updating it with more and more content so it's why wouldn't we? They're certainly not helping things by releasing yet another expansion, either. [Read more] | Read more »

Price Scanner via MacPrices.net

Apple restocks refurbished Mac minis for up t...
The Apple Store has restocked Apple Certified Refurbished 2014 Mac minis, with models available starting at $419. Apple’s one-year warranty is included with each mini, and shipping is free: - 1.4GHz... Read more
13-inch 2.5GHz MacBook Pro on sale for $899,...
Best Buy has the 13″ 2.5GHz MacBook Pro available for $899.99 on their online store. Choose free shipping or free instant local store pickup (if available). Their price is $200 off MSRP. Price is... Read more
21-inch 2.9GHz iMac on sale for $1299, save $...
Best Buy has the 21″ 2.9GHz iMac on sale today for $1299.99 on their online store. Choose free shipping or free local store pickup (if available). Their price is $200 off MSRP, and it’s the lowest... Read more
Free Image Sizer 1.3 for iOS Offers Photo Edi...
Xi’An, China based G-Power has announced the release of Image Sizer 1.3 for the iPhone, iPad, and iPod touch, an important update to their free photo editing app. Image Sizer’s collection of easy to... Read more
Sale! 13″ 1.6GHz/128GB MacBook Air for $899,...
B&H Photo has the 13″ 1.6GHz/128GB MacBook Air on sale for $899 including free shipping plus NY tax only. Their price is $100 off MSRP, and it’s the lowest price available for this model. Read more
13-inch Retina MacBook Pros on sale for $100...
Best Buy has 13-inch Retina MacBook Pros on sale for $100 off MSRP on their online store. Choose free shipping or free local store pickup (if available). Prices are for online orders only, in-store... Read more
Will BMW’s i3 Electric Vehicle Be The Automo...
The German-language business journal Manager Magazin’s Michael Freitag reports that Apple and the German performance/luxury automaker Bayerishe Motoren Werke (BMW) are back at far-reaching... Read more
Sale! $250 off 15-inch Retina MacBook Pro, $2...
B&H Photo has lowered their price for the 15″ 2.2GHz Retina MacBook Pro to $1749, or $250 off MSRP. Shipping is free, and B&H charges NY sales tax only. They have the 27″ 3.3GHz 5K iMac on... Read more
Global Smartphone Market Posts 11.6% Year-Ove...
According to the latest preliminary data released from the International Data Corporation (IDC) Worldwide Quarterly Mobile Phone Tracker, smartphone vendors shipped a total of 337.2 million units... Read more
15-inch and 13-inch Retina MacBook Pros on sa...
B&H Photo has 15″ & 13″ Retina MacBook Pros on sale for up to $180 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1819 save $180 - 15″ 2.... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Professional Services: Business Anal...
**Job Summary** Imagine what you could do here. At Apple , great ideas have a way of becoming great products, services, and customer experiences very quickly. Bring Read more
Software Engineer, *Apple* Watch - Apple (U...
…the team that is revolutionizing the watch! As a software engineer on the Apple Watch team, you will be responsible for building world-class applications and frameworks Read more
*Apple* and Windows Desktop Support Engineer...
…protected veterans status or any other characteristic protected by law. * ACSP ( Apple Certified Support Professional) / ACMT ( Apple Certified Mac Technician) Read more
*Apple* Certified Desktop Support Technician...
* Apple Certified Desktop Support Technician-San Diego, CA-Ongoing Contract Position* At*CompuCom*, you're more than just a number. Our employee relationship managers Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.