TweetFollow Us on Twitter

Efficient 68000
Volume Number:8
Issue Number:2
Column Tag:Assembly workshop

Efficient 68000 Programming

If a new CPU speeds up inefficient code, what do you think it will do to efficient code?

By Mike Scanlin, MacTutor Regular Contributing Author

The dew is cold. It is quiet. I hear nothing except for crackling sounds coming from the little fire burning two inches to the left of my keyboard. It wasn’t there a minute ago. Seems that Doo-Dah, the god of efficient programming, is upset with me for typing “Adda.W #10,A0” and just sent me a warning in the form of a lightning bolt. I hate it when he does that. You’d think that after three years in his service, researching which 68000 assembly language instructions are the most efficient ones for any given job, that he would lighten up a little. I guess that’s what makes him a god and me a mere mortal striving for enlightenment through the use of optimal instructions. As I extinguish the fire with a little Mountain Dew, I reflect upon the last three years.

My first lesson in the service of Doo-Dah was that proficiency in assembly language is a desirable skill in programmers so long as performance is a desirable attribute of software. The nay-sayers who depend upon faster and faster CPUs to make their sluggish software run at acceptable speeds don’t realize the underlying relativeness of the universe. If a new CPU will speed up a set of non-optimal instructions by 10%, then it will also speed up a set of optimal instructions by 10%. One should strive to be right on the edge of absolute maximum performance all the time. Users may not notice the difference in a 2K document but when they start working with 20MB documents they will soon be able to separate the optimal software from the non-optimal.

In the months following that lesson, I was given the task of compiling a list of instructions that should only very rarely appear in any program executing on a 68000 (and only then because you’re dealing with either self-modifying code or special hardware that depends on certain types of reads and writes from the processor). They are:

Don't Use Use Save

Move.B #0,Dx Clr.B Dx 8 cycles, 2 bytes

Move.W #0,Dx Clr.W Dx 8 cycles, 2 bytes

Clr.L Dx Moveq #0,Dx 2 cycles

Move.L #0,Dx Moveq #0,Dx 8 cycles, 4 bytes

Move.L #0,Ax Suba.L Ax,Ax 4 cycles, 4 bytes

Move.L #[-128..127],Dx Moveq #[-128..127],Dx 8 cycles, 4 bytes

Move.L #[-128..127],ea Moveq #[-128..127],Dx 4 cycles, 2 bytes

Move.L Dx,ea

Move.L #[128..254],Dx Moveq #[64..127],Dx 4 cycles, 2 bytes

Add Dx,Dx

Move.L #[-256..-130],Dx Moveq #[-128..-65],Dx 0 cycles, 2 bytes

Add.L Dx,Dx

Lea [1..8](Ax),Ax Addq #[1..8],Ax 0 cycles, 2 bytes

Add.W #[9..32767],Ax Lea [9..32767](Ax),Ax 4 cycles

Lea [-8..-1](Ax),Ax Subq #[1..8],Ax 0 cycles, 2 bytes

Sub.W #[9..32767],Ax Lea [-32767..-9](Ax),Ax 4 cycles

Asl.W #1,Dx Add.W Dx,Dx 4 cycles

Asl.L #1,Dx Add.L Dx,Dx 2 cycles

Cmp.x #0,ea Tst.x ea 4-10 cycles, 2 bytes

And.L #$0000FFFF,Dx Swap Dx 4 cycles

Clr.W Dx

Swap Dx

In addition, if you don’t care about the values of the condition codes then the following may be optimized:

Don't Use Use Save

Move.W #nnnn,-(SP) Move.L #ppppnnnn,-(SP) 4 cycles, 2 bytes

Move.W #pppp,-(SP)

Move.L #$0000nnnn,-(SP) Pea $nnnn 4 cycles, 2 bytes

Move.B #255,Dx St Dx 2 cycles, 2 bytes

Move.L #$00nn0000,Dx Moveq #[0..127],Dx 4 cycles, 2 bytes

Swap Dx

Movem (SP)+,Dx Move (SP)+,Dx 4 cycles

Ext.L Dx

Movem.L Dx,-(SP) Move.L Dx,-(SP) 4 cycles, 2 bytes

Movem.L (SP)+,Dx Move.L (SP)+,Dx 8 cycles, 2 bytes

Movem.L (SP)+,<2 regs> Move.L (SP)+,<reg 1> 4 cycles

Move.L (SP)+,<reg 2>

Note that pushing 2 regs or popping 3 with Movem.L is equivalent in cycles to doing it with multiple Move.L’s, but popping 3 regs with Move.L’s costs you two extra bytes. An easy rule to remember is to always use Movem.L whenever you’re dealing with 3 or more registers.

There are other optimizations you can make with minimal assumptions. For instance, if you are making room for a function result then don’t use Clr:

Don't UseUseSave
Clr.W -(SP)Subq #2,SP6 cycles
_Random _Random
Clr.L -(SP)Subq #4,SP14 cycles
_FrontWindow _FrontWindow

If you’re trying to set, clear, or change one of the low 16 bits of a data register and you don’t need to test it first, then don’t use these:

Don't UseUseSave
Bset #n,DxOr.W #mask,Dx4 cycles
Bclr #n,DxAnd.W #mask,Dx4 cycles
Bchg #n,DxEor.W #mask,Dx4 cycles

You should use registers wherever possible, not memory (because memory is much slower to access). If you need to test for a NIL handle or pointer, for instance, do this:

Don't UseUseSave
Move.L A0,-(SP)Move.L A0,D016 cycles, 2 bytes
Addq #4,SPBeq.S ItsNil
Beq.S ItsNil

Use the “quick” operations wherever you can. Many times you can reverse the order of two instructions to use a Moveq (since Moveq handles bigger numbers than Addq/Subq):

Don't UseUseSave
Move.L D0,D1Moveq #10,D16 cycles, 4 bytes
Add.L #10,D1Add.L D0,D1

Also, use two Addq’s or Subq’s when dealing with longs in the range of 9..16:

Don't UseUseSave
Addi.L #10,D0Addq.L #2,D04 cycles, 2 bytes
Addq.L #8,D0

The following three optimizations will reduce the size of your program but at the expense of a few cycles. This is good for user interface code, but you probably don’t want to use these optimizations in tight loops where speed is important:

Don't UseUseSave
Move.B #0,-(SP)Clr.B -(SP)-2 cycles, 2 bytes
Move.W #0,-(SP)Clr.W -(SP)-2 cycles, 2 bytes
Move.L #0,-(SP)Clr.L -(SP)-2 cycles, 4 bytes

Most of the optimizations from here onward are only applicable in some cases. Many times you can use a slightly different version of the exact code given here to get an optimization that works well for your particular set of circumstances. These optimizations don’t always have the same set of side effects or overflow/underflow conditions that the original code has, so use them with caution.

Shifting left by 2 bits (to multiply by 4) should be avoided if you’re coding for speed:

Don't UseUseSave
Asl.W #2,DxAdd.W Dx,Dx2 cycles, -2 bytes
Add.W Dx,Dx

Use bytes for booleans instead of bits. They’re faster to access (and less code in some cases). If you have many booleans, though, bits may be the way to go because of reduced memory requirements (of the data, that is, not the code).

Don't UseUseSave
Btst #1,myBools(A6)Tst.B aBool(A6)4 cycles, 2 bytes
Btst #1,D0Tst.B D06 cycles, 2 bytes

Avoid the use of multiply and divide instructions like the plague. Use shifts and adds for immediate operands or loops of adds and subtracts for variable operands. For instance, to multiply by 14 you could do this:

Don't UseUseSave
Mulu #14,D0Add D0,D0many cycles, -4 bytes
Move D0,D1
Lsl #3,D0
Sub D1,D0

If you have a variable source operand, but you know that it is typically small (and positive, for this example), then use a loop instead of a multiply instruction. This works really well in the case of a call to FixMul if you know one of the operands is a small integer -- you can avoid the trap overhead and the routine itself by using a loop similar to this one (in fact, the FixMul routine itself checks if either parameter is 1.0 before doing any real work):

Don't UseUseSave
Mulu D1,D0Move D0,D2many cycles, -8 bytes
Neg D2
@1 Add D0,D2
Subq #1,D1
Bne.S @1

Likewise, for division, use a subtract loop if you know that the quotient isn’t going to be huge (and if the destination fits in 16 bits):

Don't UseUseSave
Divu D1,D0Moveq #0,D2many cycles, -10 bytes
Cmp D1,D0
Bra.S @2
@1 Addq #1,D2
Sub D1,D0
@2 Bhi.S @1

Don’t use Bsr/Rts in tight loops where speed is important. Put the return address in an unused address register instead.

Don't UseUseSave
Bsr MyProcLea @1,A08 cycles, -4 bytes
;<blah>Bra MyProc
@1 ;<blah>
;<blah blah>;<blah blah>
RtsJmp (A0)

You can eliminate a complete Bsr/Rts pair (or equivalent above) if the Bsr is the last instruction before an Rts by changing the Bsr to a Bra:

Don't UseUseSave
Bsr MyProcBra MyProc24 cycles, 2 bytes

Don’t use BlockMove for moves of 80 bytes or less where you know the source and destination don’t overlap. The trap overhead and preflighting that BlockMove does make it inefficient for such small moves. Use this loop instead (assuming Dx > 0 on entry):

Don't UseUseSave
_BlockMoveSubq #1,Dxmany cycles, -6 bytes
@1 Move.B (A0)+,(A1)+
Dbra Dx,@1

I base this conclusion on time trials done on a Mac IIci with a cache card. The actual results were (for several thousand iterations):

Figure 1: How fast do blocks move?

I did the same tests on a Mac SE and found that it was only beneficial to call BlockMove on that machine for moves of 130 bytes or more. However, since you should optimize for the lowest common denominator across all machines, you should only use the Dbra loop for non-overlapping moves of 80 bytes or less.

Be warned, though: on the Quadras, BlockMove has been modified to flush the 040 caches because of the possibility that you (or the memory manager) are BlockMoving executable code. So don’t use the above loop for moving small amounts of code (like you might do in some INIT installation code). Apple did this for compatibility reasons with existing non-040 aware applications running in 040 copy-back mode (high performance mode). However, because of this, your non-code BlockMoves are unnecessarily clearing the caches, too. I don’t know if it’s worth it to write a dedicated BlockMove for non-code moves, but it seems like it’s worth doing and then timing to see if there’s a difference.

Unroll loops. At the expense of a few extra bytes you can make any tight loop run faster. This is because short branch instructions that are not taken are faster than those that are taken. Here’s an even faster version of the above loop:


 Subq #1,Dx
 @1 Move.B (A0)+,(A1)+
 Subq #1,Dx
 Bcs.S @2
 Move.B (A0)+,(A1)+
 Subq #1,Dx
 Bcs.S @2
 Move.B (A0)+,(A1)+
 Dbra Dx,@1

Beware when using the above trick, though, because it doesn’t work for long branches. In that case, a taken branch is faster than a branch not taken.

Preserving pointers into relocatable blocks across code that moves memory: If you need to lock a handle because you’re going to call a routine that moves memory but the handle (and the dereferenced handle) isn’t a parameter to that routine, then you can usually avoid locking the handle with a trick (which has the desirable side effect of reducing memory fragmentation). Assume the handle is in A3 and the pointer into the middle of the block is in A2. All you really have to do is save/restore the offset into the block; you don’t care if the block moves or not:

Don't UseUseSave
Move.L A3,A0Sub.L (A3),A2many cycles, 4 bytes
;<move memory> ;<move memory>
Move.L A3,A0Add.L (A3),A2

If the end of a routine is executing the same set of instructions two or more times, then you may be able to use this trick to save some bytes (at the expense of a few cycles). If the end of the routine looks like a subroutine, then have it Bsr to itself, like this (this example is drawing a BCD byte in D3):

Don't UseUseSave
Ror #4,D3Ror #4,D3many bytes
Move.B D3,D0Bsr @1
And #$000F,D0Rol #4,D3
Add #'0',D0
Move D0,-(SP)
Rol #4,D3
Move.B D3,D0@1 Move D3,D0
And #$000F,D0And #$000F,D0
Add #'0',D0Add #'0',D0
Move D0,-(SP)Move D0,-(SP)
_DrawChar _DrawChar
Rts Rts

Use multiple entry points to set common parameters. Suppose you have a routine that takes a boolean value in D0 as an input and suppose you call this routine 20 times with the value of True and 30 times with the value of False. It would save code if you made two entry points that each set D0, and then branched to common code. For instance:

Don't UseUseSave
St D0Bsr MyProcTruemany bytes
Bsr MyProc
Sf D0Bsr MyProcFalse
Bsr MyProc
St D0
Bra.S MyProc
Sf D0

Clean up the stack with Unlk. If your routine already has a stack frame and you create some temporary data on the stack (in addition to the stack frame) then you don’t always need to remove it when you’re done with it -- the Unlk will clean it up for you. For instance, suppose you make a temporary Rect on the stack. You would normally remove it with Addq #8,SP but if it’s near the end of a function that does an Unlk, then leave the Rect there; it’ll be gone when the Unlk executes.

Well, hopefully Doo-Dah has many more learned disciples now. Don’t forget to sacrifice a copy of FullWrite in his honor at least once a year. That makes him happy.

P.S. If you want even more 68000 optimizations there is an excellent article by Mike Morton in the September, 1986, issue of Byte magazine called “68000 Tricks and Traps” (pgs. 163-172). There are more than half a dozen or so tricks in that article not covered in this article (sorry for not listing them here but I didn’t want to get sued for plagiarism).


Community Search:
MacTech Search:

Software Updates via MacUpdate

Never Gone (Games)
Never Gone 1.0.2 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.2 (iTunes) Description: ###IMPPORTANT### Never Gone's HD art resources require devices with more than 1GB RAM, so please note that iPhone 4/4s, iPad 2/... | Read more »
INKS. (Games)
INKS. 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: From the makers of BAFTA-winning Lumino City comes INKS. INKS updates pinball for a new generation. It combines the joy of pinball with... | Read more »
How to maximise your profits in Bakery B...
Running a bakery can be an expensive venture. You’ll need to continuously upgrade your oven, your kitchen supplies, and even your ingredients to keep customers happy. Most of these renovations in Bakery Blitz cost a pretty penny, but we have a few... | Read more »
How to manage your time in Bakery Blitz
It can be tricky, especially when you risk burning your kitchen to the ground if you forget a cake in the oven, so make sure to use these time management tricks to keep your bakery running smoothly. Don’t collect the money right away [Read more] | Read more »
Model 15 (Music)
Model 15 1.0 Device: iOS iPhone Category: Music Price: $29.99, Version: 1.0 (iTunes) Description: The Moog Model 15 App is the first Moog modular synthesizer and synthesis educational tool created exclusively for iPad, iPhone and... | Read more »
How to deal with wind in Angry Birds Act...
Angry Birds Action! is a physics-based puzzler in which you're tasked with dragging and launching birds around an obstacle-littered field to achieve a set objective. It's simple enough at first, but when wind gets introduced things can get pretty... | Read more »
How to get three stars in every level of...
Angry Birds Action! is, essentially, a pinball-style take on the pull-and-fling action of the original games. When you first boot it up, you'll likely be wondering exactly what it is you have to do to get a good score. Well, never fear as 148Apps... | Read more »
The beginner's guide to Warbits
Warbits is a turn-based strategy that's clearly inspired by Nintendo's Advance Wars series. Since turn-based strategy games can be kind of tricky to dive into, see below for a few tips to help you in the beginning. Positioning is crucial [Read... | Read more »
How to upgrade your character in Spellsp...
So you’ve mastered the basics of Spellspire. By which I mean you’ve realised it’s all about spelling things in a spire. What next? Well you’re going to need to figure out how to toughen up your character. It’s all well and good being able to spell... | Read more »
5 mash-ups we'd love to...
If there's one thing that has proved, it's that the addictive gameplay of can be transplanted onto basically anything and it will still be good fun. It wouldn't be surprising if we saw other developers jumping on the bandwagon,... | Read more »

Price Scanner via

Global Tablet Sales Slump Continues, iPad’s F...
Another miserable showing for the global slate tablet category in calendar Q1/16, with global tablet shipments falling another 1ten percent to 46.5 million units during the according to Strategy... Read more
Revel Systems to Showcase iPad POS Platform w...
Revel Systems, specialists in iPad Point of Sale management solution for brick-and-mortar retail, food businesses and more, today announced that it will showcase its innovative iPad Point of Sale... Read more
13-inch 2.5GHz MacBook Pro on sale for $999,...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $999 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more
Apple refurbished 2015 iMacs available for up...
Apple now has a full line of Certified Refurbished 2015 21″ & 27″ iMacs available for up to $350 off MSRP. Apple’s one-year warranty is standard, and shipping is free. The following models are... Read more
Indian Smartphone Market Grows Annually by 12...
India’s smartphone market grew by 12 percent year-over-year, with 24.4 million units shipping in Q1 2016. The top five vendors stayed the same, with Samsung in the lead, followed by Micromax, Intex... Read more
Get Notifications When Your Friend’s Phone Ba...
Calgary, Canada based Stonelight Pictures has announced the release of Battery Share 1.0.1, its new utility for iOS 9 supported devices. The company notes that people are spending more time on their... Read more
11-inch 1.6GHz/128GB MacBook Air on sale for...
Amazon has the current-generation 11″ 1.6GHz/128GB MacBook Air (sku MJVM2LL/A) on sale for $749.99 for a limited time. Their price is $150 off MSRP, and it’s the lowest price available for this model... Read more
Price drops on clearance 2015 13-inch MacBook...
B&H Photo has dropped prices on clearance 2015 13″ MacBook Airs by up to $250. Shipping is free, and B&H charges NY sales tax only: - 13″ 1.6GHz/4GB/128GB MacBook Air (MJVE2LL/A): $799, $200... Read more
Mac minis on sale for up to $100 off MSRP
B&H Photo has Mac minis on sale for up to $100 off MSRP including free shipping plus NY sales tax only: - 1.4GHz Mac mini: $449 $50 off MSRP - 2.6GHz Mac mini: $649 $50 off MSRP - 2.8GHz Mac mini... Read more
13-inch Retina MacBook Pros on sale for up to...
B&H Photo has 13″ Retina MacBook Pros on sale for $130-$200 off MSRP. Shipping is free, and B&H charges NY tax only: - 13″ 2.7GHz/128GB Retina MacBook Pro: $1169 $130 off MSRP - 13″ 2.7GHz/... Read more

Jobs Board

Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
Simply Mac *Apple* Specialist- Service Repa...
Simply Mac is the largest premier retailer of Apple products in the nation. In order to support our growing customer base, we are currently looking for a driven Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation WHY YOU LL LIKE IT You ll be the Big Apple You ll solve problems You ll get to show your ability to handle the stress and Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Restaurant Manager (Neighborhood Captain) - A...
…in every aspect of daily operation. WHY YOU'LL LIKE IT: You'll be the Big Apple . You'll solve problems. You'll get to show your ability to handle the stress and Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.