TweetFollow Us on Twitter

Distribute Processing
Volume Number:8
Issue Number:2
Column Tag:Jörg's Folder

Related Info: Apple Event Mgr

A Way to Distribute Processing

With today’s Apple Event technology, you could set up a distributed processor

By Jörg Langowski, MacTutor Regular Contributing Author

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

The example that I presented last month showed a very simple way to communicate between Fortran programs using the built-in Apple event handling of the Language Systems (LS) Fortran runtime system. Although the F_SendEvent routine can be used to send high-level events of class 'aevt' in a very simple way, its possibilities are limited. The event class can not be changed, and therefore you cannot declare your own suite of events with a new class identifier. Also, the only kind of parameter that you can add to an Apple event that you send with F_SendEvent is a filename, which identifies a file to be associated with the Apple event. This makes sense when you want to send an 'odoc' or 'pdoc' event, but the file remains the only way to send data with the Apple event.

On the other hand, the LS Fortran runtime system has Apple event handling built in, so you don’t have to take care to make the main event loop System 7-aware. This is the great advantage of LS Fortran when you are porting programs from other machines, and nevertheless want to add easily some System 7 goodies. Exchange of arbitrary types of data between programs on the same machine or over a network is certainly one of the more important features of System 7. So this time, I’ll show you how to create and send an arbitrary Apple event in LS Fortran. The event can contain data that will be processed by the receiving program and sent back when it’s done.

A math library server

When you look at a large computer installation with many workstations and mainframes coupled together through a network, you can’t avoid the impression that most of the time the workstations - at least when its users are engaged in non-productive activities such as sleeping, eating, editing programs or writing manuscripts - are doing nothing but sit there and wait for something to happen. The idle CPU time that accumulates in a place where tens or even hundreds of MacII - class machines are kept must be enormous. Why couldn’t that idle time be used by other machines to do CPU-intensive things like operations on large matrices? Even if any single node on the network is not any more powerful than the machine that needs the extra CPU power, one could split up operations into blocks that would be executed by different idle nodes on the network.

You can imagine the implications of such a system: for instance, a small process turning in the background of each MacII on the network and implementing, for example, the Linpack math library. The process would accept requests from other nodes for calculating matrix operations, do the calculations only during the time when really nothing else is happening (the user at the node should always have priority), and send the result back to the requesting node.

The CPU-intensive program that is executing on one node is responsible for splitting its operations into pieces that can be executed independently, sending out the requests for calculations, and reassembling the answers into one final result.

In this column, I won’t show you all the pieces that are necessary for building such a system - this would much exceed the scope of this column, and anyway, if I had everything done perfectly, I’d sell it and make lots of money. But we can look at a very simple example: a “server process” that accepts an array of real numbers, squares every element and sends back the resulting array, and a program that requests this service.

Setting up an Apple Event and sending it

We’ll define the Apple event first in which we are going to encapsulate our data. Let’s give it the class 'JLMT', and ID 'MULT' (why not). Certain data is always associated with any apple event: a target address descriptor that specifies where the event is going to be sent, a return ID that can be used by a program that sent several Apple events to find out who sent the reply, and a transaction ID. In addition, if you want to send data with the event, you have to add descriptors to it that specify that data.

In the example given below the setting up and sending of the event are done by the routine send_array. First of all, PPCBrowser is called to select the process to which we send the event (this is the routine that displays the dialog “Please select a program to link to:”). The information returned by PPCBrowser is then put into a target address descriptor which we created with AECreateDesc. We need this target address descriptor for creating the actual Apple event with AECreateAppleEvent. The other parameters after the event class, ID, and the target address are the return ID (here we specify that a unique return ID is generated automatically) and a transaction ID (the parameter kAnyTransactionID means that the event does not belong to any particular group of events which form a separate transaction).

After the Apple event is created, we can add data to it. We’ll add three parameters: the x and y dimensions of a 2-dimensional array, both 32-bit integers (type 'long'), and the array data itself, which is sent as an unformatted string of bytes (type 'text'). The array is actually of type real*4, but since only the length (in bytes) and pointer to the first element are required, we can use the 'text' type in the Apple event. The three parameters will also get names ('XDIM','YDIM' and 'ARRY') to identify them uniquely.

Having set up the Apple event, we can then send it to the process which does the calculation. On sending (with the AESend routine) we specify the address of the Apple event that we want to send (normal), a pointer to a reply Apple event structure where the reply will be received, and a parameter that specifies that we wish a reply that will be received through the normal event queue (kAEQueueReply), and that the receiving program doesn’t need to notify the user that the event was received (kAENeverInteract). We might also have specified kAEWaitReply here, in that case, the sending program would idle and yield the CPU to other programs on the same machine until the reply was received. Since we are planning to send out several Apple events to different processes for parallel processing without having to wait for a reply each time, we use the queue reply mode.

After sending the Apple event, send_array returns to the Fortran runtime system.

The server process

The Apple event is received by the second program in the example. The main program simply installs a handler for the JLMT / MULT Apple event (the routine get_array) and then drops into an idle loop. The Fortran output window is never activated.

The event handler will receive the Apple event and a pointer to a reply event. It extracts the data out of the received event, processed it and puts it into the reply, which is automagically sent back by the Apple event manager. Extracting parameters is done by the AEGetParamPtr routine, where you have to specify the address of the Apple event (of course), and the identifier and type of the parameter to extracted. You also have to provide a pointer to a space where the data can be stored. The routine returns the parameter, or an error if such a parameter does not exist.

Thus, we extract the x and y dimensions of the array into two 32 bit integers, calculate the array size, and extract the array data into a real*4 array. We then call the process_array routine, which squares every element and divides it by 10000, and then put the three parameters XDIM, YDIM and ARRY into the reply Apple event record using the routine AEPutParamPtr which is very analogous to AEGetParamPtr. When our event handler returns, the Apple event manager will send the reply Apple event back to the program that sent the original event.

Receiving the result

The reply event is of class 'aevt', ID 'ansr'. Since the main program called AESend with the kAEQueueReply parameter, we will receive the reply through the normal event loop. Therefore, we must install our own handler for a reply event, in our case the routine get_reply. In this routine we extract the XDIM, YDIM and ARRY parameters out of the reply, write a message to the output window that the reply was received and return. The processed array data can then be displayed with the show_array routine which is selected from a menu.

[I have forgotten to mention the array setup routine, also selected from a menu, which puts the initial data into the array, and the menu selection send array, which calls the send_array routine. You’ll already have discovered them.]

What is missing?

Of course, this example is far from the idea of the math routine server that I mentioned initially. Several things would have to be added to make distributed processing really work: First of all, all replies will have the same class and ID ('aevt'/'ansr'), and since you might have sent out several requests for calculations, you have to remember the question when you are getting an answer. This is what the return ID is good for -- by keeping a table of pending requests and their return IDs, a reply can be easily identified. Implementation is left as an exercise for the reader, as is the automatic identification and selection of available server processes on a large Appletalk internetwork. Error handling, too, is very rudimentary in the example; in practice, the program would have to be stable against wrong parameters, values out of range, missing parameters, and send back error messages with some meaningful content.

Anyway, I hope this example has given you an impression about the many things that can be done with Apple events. See you next month with more interesting things from the Fortran side and elsewhere.

Example: Distributed processing with Apple Events in LS Fortran

!!M Inlines.f
!!G AEvent.finc
c
c
 program AEMenu

 implicit none
 
 external get_reply,send_array
 integer*2 err
 
 err = AEInstallEventHandler  
(%val('aevt'),%val('ansr'),%val(%loc(get_reply)), %val(int4(0)),%val(int2(0))) 

 
 if (err. ne. 0) then
 type *,'Error installing Apple event, result code = ',err
 end if

 call AddMenuItem ('AE menu', 'setup array', setup_array)
 call AddMenuItem ('AE menu', 'send array', send_array)
 call AddMenuItem ('AE menu', 'show array', show_array)
 
 end
 
 subroutine setup_array
 implicit none
 
 real*4 myarray(10000)
 integer xdim,ydim
 global xdim,ydim,myarray
 
 xdim = 10
 ydim = 15
 call setarray(myarray,xdim,ydim)
 
 return
 end

 subroutine setarray(array,xdim,ydim)
 integer xdim,ydim
 real*4 array(xdim,ydim)
 
 do i=1,xdim
 do j=1,ydim
 array(i,j) = 10000.*(i-1) + 1.*(j-1)
 end do
 end do
 
 return
 end

 subroutine show_array
 implicit none
 
 real*4 myarray(10000)
 integer xdim,ydim
 global xdim,ydim,myarray
 
 xdim = 10
 ydim = 15
 call display(myarray,xdim,ydim)
 
 return
 end

 subroutine display(array,xdim,ydim)
 integer xdim,ydim
 real*4 array(xdim,ydim)
 
 write (*,'(1x,10(1xf7.0))') ((array(i,j),i=1,xdim),j=1,ydim)
 
 return
 end

 subroutine send_array
 implicit none
 real*4 myarray(10000)
 integer xdim,ydim
 global xdim,ydim,myarray
 
 integer totalsize
 
 integer*2 err
 record /AppleEvent/ theAppleEvent,reply
 record /targetID/ target
 record /LocationNameRec/ myLocation
 record /PortInfoRec/ myPortInfo
 record /AEAddressDesc/ targetAddress
 
 err = PPCBrowser(%val(int4(0)),%val(int4(0)),
 1 %val(int2(0)),%ref(myLocation),
 2 %ref(myPortInfo),%val(int4(0)),%val(int4(0)))
 if (err .ne. 0) then
 type *,'PPC Browser: error ',err
 return
 end if
 
 target.location = myLocation
 target.name = myPortInfo.name
 
 type *,'Session ID = ',target.sessionid,
 1 ', target name = ',target.name.name
 
 err = AECreateDesc(%val(typeTargetID),
 1 %val(%loc(target)),%val(sizeof(target)),
 2 %ref(targetAddress))
 if (err .ne. 0) then
 type *,'AECreateDesc: error ',err
 return
 end if 
 
 err=AECreateAppleEvent(%val('JLMT'),%val('MULT'),
 1 %ref(targetAddress),
 2 %val(kAutoGenerateReturnID),
 3 %val(int4(kAnyTransactionID)),
 4 %ref(theAppleEvent))
 if (err .ne. 0) then
 type *,'AECreateAppleEvent: error ',err
 return
 end if 
 
 err = AEPutParamPtr(%ref(theAppleEvent),
 1 %val('XDIM'),%val(typeInteger),
 2 %val(%loc(xdim)),%val(sizeof(xdim)))
 if (err .ne. 0) then
 type *,'AEPutParamPtr: error ',err
 return
 end if 
 
 err = AEPutParamPtr(%ref(theAppleEvent),
 1 %val('YDIM'),%val(typeInteger),
 2 %val(%loc(ydim)),%val(sizeof(ydim)))
 if (err .ne. 0) then
 type *,'AEPutParamPtr: error ',err
 return
 end if 
 
 totalsize = xdim * ydim * 4
 
 err = AEPutParamPtr(%ref(theAppleEvent),
 1 %val('ARRY'),%val(typeChar),
 2 %val(%loc(myarray)),%val(totalsize))
 if (err .ne. 0) then
 type *,'AEPutParamPtr: error ',err
 return
 end if 
 
 err = AESend(%ref(theAppleEvent),%ref(reply),
 1 %val(int4(kAEQueueReply+kAENeverInteract)),
 2 %val(kAENormalPriority),%val(int4(120)),
 3 %val(int4(0)),%val(int4(0)) )
 if (err .ne. 0) then
 type *,'AESend: error ',err
 return
 end if 
 
 type *,'Sent test array of size ',xdim*ydim

 return
 end

 integer*2 function get_reply(theAppleEvent,reply,
 1 %val(handlerRefCon))

 record /AppleEvent/ theAppleEvent
 record /AppleEvent/ reply
 integer*4 handlerRefCon
 
 real*4 myarray(10000)
 integer xdim,ydim
 global xdim,ydim,myarray
 
 integer totalsize
 
 err = AEGetParamPtr(%ref(theAppleEvent),
 1 %val('XDIM'),%val(typeInteger),returnedType,
 2 %val(%loc(xdim)),%val(sizeof(xdim)),actualSize)
 if (err .ne. 0) then
 type *,'AEGetParamPtr: error ',err
 goto 9999
 end if 
 
 err = AEGetParamPtr(%ref(theAppleEvent),
 1 %val('YDIM'),%val(typeInteger),returnedType,
 2 %val(%loc(ydim)),%val(sizeof(ydim)),actualSize)
 if (err .ne. 0) then
 type *,'AEGetParamPtr: error ',err
 goto 9999
 end if 
 
 totalsize = xdim * ydim * 4
 
 err = AEGetParamPtr(%ref(theAppleEvent),
 1 %val('ARRY'),%val(typeChar),returnedType,
 2 %val(%loc(myarray)),%val(totalsize),actualSize)
 if (err .ne. 0) then
 type *,'AEGetParamPtr: error ',err
 goto 9999
 end if 
 
 type *,'Reply received from server'
 
 get_reply = 0 ! noErr
 return

9999  get_reply = err
 return
 end



!!M Inlines.f
!!G AEvent.finc
c
c
 program Array_process

 implicit none
 
 external get_array
 integer*2 err
 
 err = AEInstallEventHandler(%val('JLMT'),%val('MULT'),
 1    %val(%loc(get_array)),%val(int4(0)),%val(int2(0))) 
 if (err. ne. 0) call alertbox
 1 ('Array_process: Apple Event install error')

 do while (.true.)
 call F_DoBackground
 end do
 
 end

 integer*2 function get_array(theAppleEvent,reply,
 1 %val(handlerRefCon))
 implicit none
 
 record /AppleEvent/ theAppleEvent
 record /AppleEvent/ reply
 integer*4 handlerRefCon
 
 integer*2 err
 integer*4 keywd,returnedType,actualSize
 
 real*4 myarray(10000)

 integer xdim,ydim
 global xdim,ydim,myarray
 
 integer totalsize
 
 err = AEGetParamPtr(%ref(theAppleEvent),
 1 %val('XDIM'),%val(typeInteger),returnedType,
 2 %val(%loc(xdim)),%val(sizeof(xdim)),actualSize)
 if (err .ne. 0) goto 9999
 
 err = AEGetParamPtr(%ref(theAppleEvent),
 1 %val('YDIM'),%val(typeInteger),returnedType,
 2 %val(%loc(ydim)),%val(sizeof(ydim)),actualSize)
 if (err .ne. 0) goto 9999
 
 totalsize = xdim * ydim * 4
 
 err = AEGetParamPtr(%ref(theAppleEvent),
 1 %val('ARRY'),%val(typeChar),returnedType,
 2 %val(%loc(myarray)),%val(totalsize),actualSize)
 if (err .ne. 0) goto 9999

cwe don't check whether actualSize = totalsize 
cand returnedType = typeChar.
c
cIn an actual application, such errors 
chave to be trapped, of course.
c
 call process_array(myarray,xdim,ydim)
 
 err = AEPutParamPtr(%ref(reply),%val('XDIM'),
 1 %val(typeInteger),%val(%loc(xdim)),
 2 %val(sizeof(xdim)))
 if (err .ne. 0) goto 9999
 
 err = AEPutParamPtr(%ref(reply),%val('YDIM'),
 1 %val(typeInteger),%val(%loc(ydim)),
 2 %val(sizeof(ydim)))
 if (err .ne. 0) goto 9999
 
 err = AEPutParamPtr(%ref(reply),%val('ARRY'),
 1 %val(typeChar),%val(%loc(myarray)),
 2 %val(totalsize))
 if (err .ne. 0) goto 9999
 
 get_array = 0 ! noErr
 return

9999  get_array = err
 return
 
 end


 subroutine process_array(array,xdim,ydim)
 integer xdim,ydim
 real*4 array(xdim,ydim)
 
 do i=1,xdim
 do j=1,ydim
 array(i,j) = array(i,j)*array(i,j)/10000.
 end do
 end do
 
 return
 end
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

How to get started with Prisma
If there's one thing people like to do more than taking pictures with their smartphones, it's tinkering with those photos in some way. Numerous apps have sprung up over the last several years that allow you to use filters and special effects to... | Read more »
6 Pokemon GO updates you can expect, acc...
Pokemon GO had a scheduled appearance at this year's San Diego Comic-Con for a while, but it was only relatively close to the show that it was upgraded to a spot in Hall H. That's the biggest venue at SDCC, one usually reserved for the largest... | Read more »
How to evolve Eevee in Pokemon GO
By now, almost everyone should be hip to how to evolve Pokemon in Pokemon GO (and if not, there's a guide for that). Just gather enough candy of the appropriate type, feed them all to the Pokemon, and evolution happens. It's a miracle that would... | Read more »
CSR Racing 2: Guide to all game modes
It might not seem like there are all that many ways to go fast in a straight line, but CSR Racing 2 begs to differ. [Read more] | Read more »
Bulb Boy (Games)
Bulb Boy 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Multi-award winning 2D point & click horror adventure about a boy with a glowing head. | Read more »
5 top free emoji keyboard apps
If we're not at peak emoji yet as a society, it feels like we definitely should be. The emoji concept has gone far beyond what anyone in Japan could have envisioned when the people there unleashed it on an unsuspecting world, but the West has... | Read more »
How to unlock more characters in Disney...
One of the big charms of Disney Emoji Blitz is seeing a wide variety of beloved Disney and Pixar characters transformed into smiling emojis. Even someone like the sneaky Randall from Monsters Inc., who probably never cracked a smile on film, is... | Read more »
Cubway (Games)
Cubway 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Cubway is a journey with an abstract story of lifecycle of rebirth, called Samsara. Guide the cube through the long way full of dangers... | Read more »
Colorcube (Games)
Colorcube 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Turn pieces and blend colours in this minimal yet visually stunning puzzler.Over 200 handcrafted and challenging levels. Features... | Read more »
Doodle God Griddlers (Games)
Doodle God Griddlers 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: | Read more »

Price Scanner via MacPrices.net

13-inch 1.6GHz/128GB MacBook Air on sale for...
Amazon has the 13″ 1.6GHz/128GB MacBook Air on sale for $200 off MSRP for a limited time. Shipping is free: - 13″ 1.6GHz/128GB MacBook Air (sku MMGF2LL/A): $799.99 $200 off MSRP Their price is the... Read more
13-inch 1.6GHz/256GB MacBook Air on sale for...
Amazon has the 13″ 1.6GHz/256GB MacBook Air on sale for $200 off MSRP for a limited time. Shipping is free: - 13″ 1.6GHz/256GB MacBook Air (sku MMGG2LL/A): $999.99 $200 off MSRP Their price is the... Read more
Free iOS Business App notably* Helps Service...
PayStudio Inc. has introduced their new business app notably* 1.0, developed for iPhone and iPod touch. notably* was specifically developed to help service and trade professionals go digital and... Read more
27-inch iMacs on sale for $200 off MSRP
Amazon has 27″ iMacs on sale for $200 off MSRP including free shipping: - 27″ 3.3GHz iMac 5K: $2099 $200 off MSRP - 27″ 3.2GHz/1TB Fusion iMac 5K: $1799.99 $200 off MSRP - 27″ 3.2GHz/1TB HD iMac 5K... Read more
Mac Pros on sale for $200 off MSRP
B&H Photo has Mac Pros on sale for $200 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2799, $200 off MSRP - 3.5GHz 6-core Mac Pro: $3799, $200... Read more
Save up to $600 with Apple refurbished Mac Pr...
Apple has Certified Refurbished Mac Pros available for up to $600 off the cost of new models. An Apple one-year warranty is included with each Mac Pro, and shipping is free. The following... Read more
Apple price trackers, updated continuously
Scan our Apple Price Trackers for the latest information on sales, bundles, and availability on systems from Apple’s authorized internet/catalog resellers. We update the trackers continuously: - 15″... Read more
13-inch 2.5GHz MacBook Pro (Apple refurbished...
Apple has Certified Refurbished 13″ 2.5GHz MacBook Pros available for $829, or $270 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.5GHz MacBook Pros... Read more
21-inch iMacs on sale for up to $120 off MSRP
B&H Photo has 21″ iMacs on sale for up to $120 off MSRP including free shipping plus NY sales tax only: - 21″ 3.1GHz iMac 4K: $1379 $120 off MSRP - 21″ 2.8GHz iMac: $1199.99 $100 off MSRP - 21″ 1... Read more
Charitybuzz Set to Auction Unique Apple-1 Com...
Offering an opportunity to own the computer that sparked a revolution, on Monday, July 25, leading online charity auction platform Charitybuzz will auction what is claimed to be the world’s most... Read more

Jobs Board

*Apple* Retail - Multiple Positions, Willow...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Evangelist - JAMF Software (United S...
The Apple Evangelist is responsible for building and cultivating strategic relationships with Apple 's small and mid-market business development field teams. This Read more
*Apple* Solutions Consultant - APPLE (United...
Job Summary As an Apple Solutions Consultant, you'll be the link between our future customers and our products. You'll showcase your entrepreneurial spirit as you Read more
*Apple* Professional Learning Specialist - A...
Job Summary The Apple Professional Learning Specialist is a full-time position for one year with Apple in the Phoenix, AZ area. This position requires a high Read more
*Apple* Picker - Apple Hill Orchard (United...
Apple Hill Orchard, Co. Rte. 21,Whitehall, NY 9/7/16-10/228/16. Pick fresh market or processing apples Productivity of 60 boxes and 80 boxes processing fruit per Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.