TweetFollow Us on Twitter

Real-Time 3D
Volume Number:8
Issue Number:1
Column Tag:C Workshop

Real-Time 3D Animation

Using simple vector calculations to draw objects that move and spin in a 3-D environment

By Lincoln Lydick, Littleton, Colorado

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Ever felt that real-time 3d animation was meant only for the “computer gods” to create? That mere mortal programmers are destined only to marvel at the feats of greatness? That finding example code on how to accomplish some of these tricks is impossible? Well it turns out not to be difficult at all. This example uses simple vector calculations to draw 6 objects which move and spin in a 3 dimensional environment. The viewer is also free to move, look at, and even follow any of the objects. To optimize the calculations, we’ll do all of this without SANE. This may sound difficult, but stick with me - it’s very simple

The Plan

In order to draw cubes and pyramids (henceforth called objects), we’ll use a single pipeline that translates, rotates and projects each in perspective. But first we need to develop a plan. Our plan will be a Cartesian coordinate system where all objects (including the viewer) will occupy an x, y, & z position. The objects themselves will be further defined by vertices and each vertex is also defined by an x, y, & z coordinate. For instance, cubes will be defined by eight vertices and pyramids by five - with lines drawn between.

Figure 1: Vertex assignment

Changing any value of a vertex represents movement within space. Therefore we can move the viewer or an object by simply changing an x, y, or z. If either the viewer or an object is required to move in the direction of some angle, then we provide a variable called velocity and apply these simple vector equations:

[EQ.1]  Xnew = Xold + sin(angle) * velocity
[EQ.2]  Ynew = Yold + cos(angle) * velocity


Objects will first be translated (moved) relative to the viewer’s position. This is required because rotation calculations (coming up next) require points to be rotated around a principal axis. Therefore, since the viewer may not be at the origin (Figure 2), we must move the object the same amount we would need to move the viewer to be at the origin (Figure 3). Note: I adopt the convention where the x and y axis are parallel to the plane, and the z axis depicts altitude.

So to perform this “relative” translation, we just subtract the components of the two points:

[EQ.3]  Xnew = Xold - ViewerX
[EQ.4]  Ynew = Yold - ViewerY
[EQ.5]  Znew = ViewerZ - Zold

Now this is all well and good, but what if the viewer is looking at the object? Wouldn’t the object then be directly in front of the viewer - and subsequently drawn at the center of the window? Yes, and this leads us to

Figure 2: Before & Figure 3: After Translation


Since we’re providing the viewer with the ability to “look around”, we need to rotate each object by the viewer’s angle. This rotation will occur around the Z axis and is accomplished by applying these calculations to each vertex:

[EQ.6]  Xnew = Xold * cos(angle) - Yold * sin(angle)
[EQ.7]  Ynew = Xold * sin(angle) + Yold * cos(angle)

Figure 4: Before & Figure 5: After Rotation

Figure 4 shows the viewer looking at the object by some angle. Rotating the object by that angle indeed moves it centered on the y axis (Figure 5) and will be drawn centered in the window. Of course if the viewer and the object are at different heights, (it could be above or below us), we might not see it at all - but we’ll deal with that later.

Now if an object is allowed to rotate itself (i.e., spin), then we use the same calculations, although the angle will be unique to the object and not the viewers. Note, this rotation must occur with the object at the origin, and before it is translated relative to the viewer or rotated by the viewer’s angle. Therefore, we’ll first build the object around the origin, spin it, move it to its correct location, then translate and rotate as shown earlier. This may sound costly (and it is a little) but we’ll compute the net movement once and add it in one quick swoop.

Perspective Drawing

After translation and rotation, the final step is to plot each vertex on the window and connect them with lines. This requires describing a 3d scene on a 2d medium (the screen) and is accomplished by perspective projection. Therefore to plot a 3d point, we’ll use the following calculations:

[EQ.8]  H = X * kProjDistance / Y + origin.h
[EQ.9]  V = Z * kProjDistance / Y + origin.v

where origin.h and origin.v are the center of the window. Note: y must not be negative or zero - if it is, let it equal 1 before using the formula. kProjDistance is a constant that describes the distance of the conceptual projection plane from the viewer (see below).

Figure 6: Object being projected onto a projection plane.

This plane is the “window” to which all points get plotted. Points outside this plane are not visible. Experiment with this constant and you’ll notice smaller values (like 100) create a “fish-eye” lens effect. This is due, in part, to the ability of the projection plane to display more than we would normally see. A value between 400 to 500 approximates a 60 degree cone of vision.


1. All of our calculations are ultimately manipulated into integer values (in order to draw to a window) so calculations involving extended variables (decimal accuracy) are not required. However, we do need to find the sine and cosine of angles, which are fractional values, and requires the use of SANE. But SANE is notoriously slow and further requires all angles to be specified by radians - yuk! Our solution to this dilemma is simple, and very accurate: a Sine Table.

What we’ll do is calculate 91 values of sine (angles 0 to 90) once at initialization, multiply each by 1000, and save them in an indexed array of integers (multiplying by 1000 converts them into rounded integer values which are quite suitable). Finally, when we need to multiply by sine or cosine, we just remember to divide the answer back by 1000. If we desire finer rotations, we can break the angles down into minutes (which is provided by the constant kMinutes) having no effect on execution speed. Note: the cosine of an angle is found from the inverse index of the sine index (see procedure GetTrigValues()).

2. Due to object symmetry (and the fact we only rotate on one axis), redundant calculations can be avoided for the top plane of cubes. By calculating only the vertices of the base, we’ll be able to assign them to the top directly (except for the z component) - see the code.

3. Matrices might be employed but the concept of matrix multiplication tends to confuse an otherwise simple explanation, and is well covered in previous MacTutor articles (see references).

4. Finally, avoiding all traps entirely (esp. _LineTo, _CopyBits and _FillRect) and writing the bottleneck routines in assembly. This was done in the assembly version (except for _LineTo).

The Code

The interface code and error checking are minimal - in the interest of clarity. The only surprise might be the offscreen bit map: since double buffering (_CopyBits) is explored in many other articles, I decided to add the bit map.

After initialization, we check the mouse position to see if the viewer has moved. This is done by conceptually dividing the window into a grid and subtracting a couple of points. Once the velocity and angle of the viewer are determined, the sine and cosine values are also calculated. We also check the keyboard to see if either the “q” key or “w” key might be pressed (“q” = move up, “w” = move down). Armed with these values, we start translating and rotating all the points. If an object can spin, it is first built around the origin and rotated. Once all the rotations are complete and the vertices are found, we decide if the object is visible; if it’s not, we skip it and go on to the next. Otherwise, we connect the dots with lines. This continues until all the points and lines are drawn - then we transfer the bit image to the window and start the process all over (or until the mouse button is pressed - then we quit).

Of course more objects can be easily added (or even joined to create a single complex object) but at the expense of the frame rate. Frame rate refers to how many times the screen can be erased and redrawn per second (fps) and is always a major obstacle for real time simulations (usually sacrificing detail for faster animation). This example runs at 30 fps when written in assembly on a Macintosh II. This was clocked when looking at all the objects - and over 108 fps when looking away. This discrepancy is due to the line drawing, since all of the other calculations take place regardless of whether we see the objects or not. Therefore, speeds averaging 60+ fps (instead of 30) might be obtained if we wrote our own line drawing routines as well! Of course this C version runs somewhat slower but for the purpose of this article is much easier to understand.

One final thing worth mentioning - our lines are not mathematically clipped to the window (where the endpoint is recalculated to the intersection of the line and window). This will present a problem if we calculate an end greater than 32767 or less than -32767 (the maximum allowed by QuickDraw). Our solution is to not draw the object if it is too close.

The Future

If interest is shown, perhaps we’ll discuss a technique for real-time hidden line removal. There are a couple of methods that could be incorporated into this example. We might also look at adding rotations around the other two axis and linking them to the same control. This could be the first step to developing a flight simulator. Who knows, terrain mapping using octree intersections, other aircraft and airports, sound... the skies the limit (pun intended). Have fun.


Foley, vanDam, Feiner, Hughes. Computer Graphics, (2nd ed.) Addison-Wesley Publishing Company. Good (but very general) explanation of geometrical transformations, rotations and perspective generation using matrix algebra. Also includes line clipping, hidden line removal, solid modeling, etc

Burger & Gillies. Interactive Computer Graphics. Addison-Wesley Publishing Company. Very similar to above and less expensive.

Martin, Jeffrey J. “Line Art Rotation.” MacTutor Vol.6 No.5. Explains some of the concepts presented here, plus rotations around 2 axis, matrix multiplication, and illustrates why we avoid SANE in the event loop.


#Program: Tutor3D™
#Copyright © 1991 Lincoln Lydick
#All Rights Reserved.
Include these libraries (for THINK C):

 The procedures “RotateObject()” and “Point2Screen()”
 significantly slow this program because THINK C creates a
 JSR to some extra glue code in order to multiply and divide
 long words. Therefore both procs are written in assembly,
 however the C equivalent is provided in comments above.
 Simply replace the asm {} statement with the C code if you


#include  “SANE.h”

#define kMaxObjects6 /*num. objects*/
#define kMinutes 4 /*minutes per deqree*/
#define kProjDistance450  /*distance to proj. plane*/
#define kWidth   500 /*width of window*/
#define kHeight  280 /*height of window*/
#define kMoveUpKey 0x100000 /*’q’ key = move up*/
#define kMoveDnKey 0x200000 /*’w’ key = move down*/
#define kOriginH (kWidth/2) /*center of window */
#define kOriginV (kHeight/2)/*ditto*/
#define kMapRowBytes (((kWidth+15)/16)*2)

/* Define macros so MoveTo() & LineTo() accept Points.*/
#define QuickMoveTo(pt) asm{move.l pt, gOffPort.pnLoc}
#define QuickLineTo(pt) asm{move.l pt, -(sp)}asm {_LineTo}

enum  ObjectType {cube, pyramid};
typedef struct {shortx, y, z;
} Point3D;/*struct for a 3 dimensional point.*/

typedef struct {
 short  angle, sine, cosine;
} ViewerInfo;  /*struct for viewer’s position.*/

typedef struct { 
 enum   ObjectType objType;
 short  angle, halfWidth, height;
 Booleanrotates, moves;
} ObjectInfo;    /*struct for an object.*/

Point3D gDelta;
Point   gMouse, gVertex[8];
WindowPtr gWindow;
BitMap  gBitMap;
Rect    gVisRect, gWindowRect;
short   gVelocity, gSineTable[(90*kMinutes)+1];
KeyMap  gKeys;

/* Assign parameters to a new object (a cube or pyramid).
static void NewObject(short index, enum ObjectType theType, short width, 
short height,
 Boolean rotates, Boolean moves, short positionX, short positionY, short 
 register ObjectInfo *obj;
 obj = &gObject[index];
 obj->angle = 0;
 obj->objType = theType;
 obj->halfWidth = width/2;
 obj->height = height;
 obj->rotates = rotates;
 obj->moves = moves;
 obj->pt3D.x = positionX;
 obj->pt3D.y = positionY;
 obj->pt3D.z = positionZ;

/* Initialize all our globals, build the trig table, set up an
/* offscreen buffer, create a new window, and initialize all
/* the objects to be drawn.
static void Initialize(void)
 extended angle;
 short  i;

 FlushEvents(everyEvent, 0);

 if ((*(*GetMainDevice())->gdPMap)->pixelSize > 1)
 ExitToShell();  /*should tell user to switch to B&W.*/

 /*create a table w/ the values of sine from 0-90.*/
 for (i=0, angle=0.0; i<=90*kMinutes; i++, angle+=0.017453292/kMinutes)
 gSineTable[i] = sin(angle)*1000;

   /* give the viewer an initial direction and position */
 gViewer.angle = gViewer.sine = gViewer.pt3D.x = gViewer.pt3D.y = 0;
 gViewer.cosine = 999;
 gViewer.pt3D.z = 130;

 /*create some objects (0 to kMaxObjects-1).*/
 NewObject(0, cube, 120, 120, false, false, -150, 600, 0);     
 NewObject(1, cube, 300, 300, true, false, -40, 1100, 60);
 NewObject(2, cube, 40, 10, true, true, 0, 500, 0);
 NewObject(3, pyramid, 160, 160, false, false, 200, 700, 0);
 NewObject(4, pyramid, 80, -80, true, false, 200, 700, 240);
 NewObject(5, pyramid, 60, 60, false, false, -40, 1100, 0);

 SetRect(&gBitMap.bounds, 0, 0, kWidth, kHeight);
 SetRect(&gWindowRect, 6, 45, kWidth+6, kHeight+45);
 SetRect(&gVisRect, -150, -150, 650, 450);
 gWindow = NewWindow(0L, &gWindowRect, “\pTutor3D™”, true, 0, (Ptr)-1, 
false, 0);

 /*make an offscreen bitmap and port */
 gBitMap.rowBytes = kMapRowBytes;
 gBitMap.baseAddr = NewPtr(kHeight*kMapRowBytes);

/* Return the sine and cosine values for an angle.
static void GetTrigValues(register short *angle, register short *sine, 
register short *cosine)
 if (*angle >= 360*kMinutes)
 *angle -= 360*kMinutes;
 else if (*angle < 0)
 *angle += 360*kMinutes;

 if (*angle <= 90*kMinutes)
 { *sine = gSineTable[*angle];
 *cosine = gSineTable[90*kMinutes - *angle];
 else if (*angle <= 180*kMinutes)
 { *sine = gSineTable[180*kMinutes - *angle];
 *cosine = -gSineTable[*angle - 90*kMinutes];
 else if (*angle <= 270*kMinutes)
 { *sine = -gSineTable[*angle - 180*kMinutes];
 *cosine = -gSineTable[270*kMinutes - *angle];
 { *sine = -gSineTable[360*kMinutes - *angle];
 *cosine = gSineTable[*angle - 270*kMinutes];

/* Increment an objects angle and find the sine and cosine
/* values. If the object moves, assign a new x,y position for
/* it as well. Finally, rotate the object’s base around the z
/* axis and translate it to correct position based on delta.
/* register Point*vertex; short i;
/* for (i = 0; i < 4; i++)
/* {  vertex = &gVertex[i]; savedH = vertex->h;          
/* vertex->h=((long)savedH*cosine/1000 -
/* (long)vertex->v*sine/1000)+gDelta.x;
/* vertex->v=((long)savedH*sine/1000 +
/* (long)vertex->v*cosine/1000)+gDelta.y;
/* }
static void RotateObject(register ObjectInfo       *object)
 Point  tempPt;
 short  sine, cosine;

 object->angle += (object->objType == pyramid) ? -8*kMinutes : 2*kMinutes;
 GetTrigValues(&object->angle, &sine, &cosine);
 if (object->moves)
 { object->pt3D.x += sine*20/1000; /*[EQ.1]*/
 object->pt3D.y += cosine*-20/1000;/*[EQ.2]*/

 asm  { moveq    #3, d2   ; loop counter
 lea    gVertex, a0; our array of points
 loop:  move.l   (a0), tempPt ;  ie., tempPt = gVertex[i];
 move.w cosine, d0
 muls   tempPt.h, d0 ;  tempPt.h * cosine
 divs   #1000, d0; divide by 1000
 move.w sine, d1
 muls   tempPt.v, d1 ;  tempPt.v * sine
 divs   #1000, d1; divide by 1000
 sub.w  d1, d0   ; subtract the two
 add.w  gDelta.x, d0 ;  now translate x
 move.w d0, OFFSET(Point, h)(a0);  save new h

 move.w sine, d0
 muls   tempPt.h, d0 ;  tempPt.h * sine
 divs   #1000, d0; divide by 1000
 move.w cosine, d1
 muls   tempPt.v, d1 ;  tempPt.v * cosine
 divs   #1000, d1; divide by 1000
 add.w  d1, d0   ; add em up
 add.w  gDelta.y, d0 ;  now translate y
 move.w d0, OFFSET(Point, v)(a0);  save new v
 addq.l #4, a0   ; next vertex address
 dbra   d2, @loop; loop

/* Rotate a point around z axis and find it’s location in 2d
/* space using 2pt perspective.
/* saved = pt->h;/*saved is defined as a short.*/
/* pt->h = (long)saved*gViewer.cosine/1000 -
/* (long)pt->v*gViewer.sine/1000;  /*[EQ.6]*/
/* pt->v = (long)saved*gViewer.sine/1000 +
/* (long)pt->v*gViewer.cosine/1000;/*[EQ.7]*/
/* /*[EQ.8 & 9]*/
/* if ((saved = pt->v) <= 0)saved = 1;/*never <= 0*/
/* pt->h = (long)pt->h*kProjDistance/saved+kOriginH;
/* pt->v = (long)gDelta.z*kProjDistance/saved+kOriginV;
static void Point2Screen(register Point *pt)
{asm  { 
 move.w gViewer.cosine, d0; [EQ.6]
 muls   OFFSET(Point, h)(pt), d0;  pt.h * cosine
 divs   #1000, d0; divide by 1000
 move.w gViewer.sine, d1
 muls   OFFSET(Point, v)(pt), d1;  pt.v * sine
 divs   #1000, d1; divide by 1000
 sub.w  d1, d0   ; subtract, yields horizontal
 move.w gViewer.sine, d1  ; [EQ.7]
 muls   OFFSET(Point, h)(pt), d1;  pt.h * sine
 divs   #1000, d1; divide by 1000
 move.w gViewer.cosine, d2
 muls   OFFSET(Point, v)(pt), d2;  pt.v * cosine
 divs   #1000, d2; divide by 1000
 add.w  d2, d1   ; add, yields vertical
 bgt    @project ; if (vertical<=0) 
 moveq  #1, d1   ; then vertical=1

project:muls#kProjDistance, d0;  [EQ.8]. horiz*kProjDist
 divs   d1, d0   ; divide by the vertical
 addi.w #kOriginH, d0;  add origin.h
 move.w d0, OFFSET(Point, h)(pt);  save the new hor
 move.w #kProjDistance, d0; [EQ.9]
 muls   gDelta.z, d0 ;  height * kProjDistance
 divs   d1, d0   ; divide by the vertical
 addi.w #kOriginV, d0;  add origin.v
 move.w d0, OFFSET(Point, v)(pt);  save the new vert

/* For all of our cubes and pyramids, index thru each -
/* calculate sizes, translate, rotate, check for visibility,
/* and finally draw them.
static void DrawObjects(void)
 register ObjectInfo *obj;
 short  i;

 for (i = 0; i < kMaxObjects; i++)
 { obj = &gObject[i];
 gDelta.x = obj->pt3D.x - gViewer.pt3D.x; /*[EQ.3]*/
 gDelta.y = obj->pt3D.y - gViewer.pt3D.y; /*[EQ.4]*/
 gDelta.z = gViewer.pt3D.z - obj->pt3D.z ; /*[EQ.5]*/

 if (obj->rotates) /*does this one rotate?*/
 { gVertex[0].h=gVertex[0].v=gVertex[1].v=gVertex[3].h = -obj->halfWidth;
 gVertex[1].h=gVertex[2].h=gVertex[2].v=gVertex[3].v = obj->halfWidth;
 else   /*translate*/
 { gVertex[0].h = gVertex[3].h = -obj->halfWidth + gDelta.x;
 gVertex[0].v = gVertex[1].v = -obj->halfWidth + gDelta.y;
 gVertex[1].h = gVertex[2].h = obj->halfWidth + gDelta.x;
 gVertex[2].v = gVertex[3].v = obj->halfWidth + gDelta.y;

 if (obj->objType == pyramid) /* a pyramid?*/
 { gVertex[4].h = gDelta.x; /*assign apex*/
 gVertex[4].v = gDelta.y;
 { gVertex[4] = gVertex[0]; /*top of cube.*/
 gVertex[5] = gVertex[1];
 gVertex[6] = gVertex[2];
 gVertex[7] = gVertex[3];

 Point2Screen(&gVertex[0]); /*rotate & plot base*/
 gDelta.z -= obj->height;

 if (! PtInRect(gVertex[4], &gVisRect)) /* visible?*/


 if (obj->objType == pyramid)
 { QuickLineTo(gVertex[1]); /*Finish pyramid.*/
 } else {
 Point2Screen(&gVertex[5]); /*Finish cube.*/
}} }

/* Check mouse position (velocity is vertical movement,
/* rotation is horiz.), calculate the sine and cosine values of
/* the angle, and update the viewer’s position. Finally, check
/* the keyboard to see if we should move up or down.
static void GetViewerPosition(void)
 if (! PtInRect(gMouse, &gWindowRect))
 gVelocity = -(gMouse.v-(kOriginV+45))/5;
 gViewer.angle += (gMouse.h-(kOriginH+6))/14;
 GetTrigValues(&gViewer.angle, &gViewer.sine, &gViewer.cosine);

 gViewer.pt3D.x += gViewer.sine*gVelocity/1000; /*[EQ.1]*/
 gViewer.pt3D.y += gViewer.cosine*gVelocity/1000; /*[EQ.2]*/

 if (gKeys.Key[0] == kMoveUpKey)
 gViewer.pt3D.z += 5;
 if (gKeys.Key[0] == kMoveDnKey)
 gViewer.pt3D.z -= 5;

/* Draw a simple crosshair at the center of the window.
static void DrawCrossHair(void)
 QuickMoveTo(#0x008200fa);/*ie., MoveTo(250, 130)*/
 QuickLineTo(#0x009600fa);/*ie., LineTo(250, 150)*/
 QuickMoveTo(#0x008c00f0);/*ie., MoveTo(240, 140)*/
 QuickLineTo(#0x008c0104);/*ie., LineTo(260, 140)*/

/* Main event loop - initialize & cycle until the mouse
/* button is pressed.
void main(void)
 while (! Button())
 { FillRect(&gBitMap.bounds, black);
 DrawObjects();  /*main pipeline*/
 CopyBits(&gBitMap, &gWindow->portBits, &gBitMap.bounds, &gBitMap.bounds, 
0, 0L);
 FlushEvents(mDownMask+keyDownMask, 0);


Community Search:
MacTech Search:

Software Updates via MacUpdate

Arq 5.8.5 - Online backup to Google Driv...
Arq is super-easy online backup for Mac and Windows computers. Back up to your own cloud account (Amazon Cloud Drive, Google Drive, Dropbox, OneDrive, Google Cloud Storage, any S3-compatible server... Read more
Backblaze - Online backup servi...
Backblaze is an online backup service designed from the ground-up for the Mac. With unlimited storage available for $5 per month, as well as a free 15-day trial, peace of mind is within reach with... Read more
Instaradio 7.1 - Listen to your favorite...
Instaradio is fast, and it could be the radio player you have been waiting for. Try the app thousands of people rely on for listening to radio. Features Listen to radio from all around the world... Read more
EtreCheck 3.3.3 - For troubleshooting yo...
EtreCheck is an app that displays the important details of your system configuration and allow you to copy that information to the Clipboard. It is meant to be used with Apple Support Communities to... Read more
Hopper Disassembler 4.2.1- - Binary disa...
Hopper Disassembler is a binary disassembler, decompiler, and debugger for 32-bit and 64-bit executables. It will let you disassemble any binary you want, and provide you all the information about... Read more
Slack 2.6.2 - Collaborative communicatio...
Slack is a collaborative communication app that simplifies real-time messaging, archiving, and search for modern working teams. Version 2.6.2: Fixed Inexplicably, context menus and spell-check... Read more
Apple Final Cut Pro X 10.3.4 - Professio...
Apple Final Cut Pro X is a professional video editing solution.Completely redesigned from the ground up, Final Cut Pro adds extraordinary speed, quality, and flexibility to every part of the post-... Read more
Numi 3.15 - Menu-bar calculator supports...
Numi is a calculator that magically combines calculations with text, and allows you to freely share your computations. Numi combines text editor and calculator Support plain English. For example, '5... Read more
TunnelBear 3.0.14 - Subscription-based p...
TunnelBear is a subscription-based virtual private network (VPN) service and companion app, enabling you to browse the internet privately and securely. Features Browse privately - Secure your data... Read more
Apple iMovie 10.1.6 - Edit personal vide...
With an all-new design, Apple iMovie lets you enjoy your videos like never before. Browse your clips more easily, instantly share your favorite moments, and create beautiful HD movies and Hollywood-... Read more

Latest Forum Discussions

See All

Goat Simulator PAYDAY (Games)
Goat Simulator PAYDAY 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: ** IMPORTANT - SUPPORTED DEVICES **iPhone 4S, iPad 2, iPod Touch 5 or better Goat Simulator: Payday is the most... | Read more »
Zombie Gunship Survival Beginner's...
The much anticipated Zombie Gunship Survival is here. In this latest entry in the Zombie Gunship franchise, you're tasked with supporting ground troops and protecting your base from the zombie horde. There's a lot of rich base building fun, and... | Read more »
Mordheim: Warband Skirmish (Games)
Mordheim: Warband Skirmish 1.2.2 Device: iOS Universal Category: Games Price: $3.99, Version: 1.2.2 (iTunes) Description: Explore the ruins of the City of Mordheim, clash with other scavenging warbands and collect Wyrdstone -... | Read more »
Mordheim: Warband Skirmish brings tablet...
Legendary Games has just launched Mordheim: Warband Skirmish, a new turn-based action game for iOS and Android. | Read more »
Magikarp Jump splashes onto Android worl...
If you're tired ofPokémon GObut still want something to satisfy your mobilePokémon fix,Magikarp Jumpmay just do the trick. It's out now on Android devices the world over. While it looks like a simple arcade jumper, there's quite a bit more to it... | Read more »
Purrfectly charming open-world RPG Cat Q...
Cat Quest, an expansive open-world RPG from former Koei-Tecmo developers, got a new gameplay trailer today. The video showcases the combat and exploration features of this feline-themed RPG. Cat puns abound as you travel across a large map in a... | Read more »
Jaipur: A Card Game of Duels (Games)
Jaipur: A Card Game of Duels 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: ** WARNING: iPad 2, iPad Mini 1 & iPhone 4S are NOT compatible. ** *** Special Launch Price for a limited... | Read more »
Subdivision Infinity (Games)
Subdivision Infinity 1.03 Device: iOS Universal Category: Games Price: $2.99, Version: 1.03 (iTunes) Description: Launch sale! 40% Off! Subdivision Infinity is an immersive and pulse pounding sci-fi 3D space shooter. https://www.... | Read more »
Clash of Clans' gets a huge new upd...
Clash of Clans just got a massive new update, and that's not hyperbole. The update easily tacks on a whole new game's worth of content to the hit base building game. In the update, that mysterious boat on the edge of the map has been repaired and... | Read more »
Thimbleweed Park officially headed to iO...
Welp, it's official. Thimbleweed Park will be getting a mobile version. After lots of wondering and speculation, the developers confirmed it today. Thimbleweed Park will be available on both iOS and Android sometime in the near future. There's no... | Read more »

Price Scanner via

Best value this Memorial Day weekend: Touch B...
Apple has Certified Refurbished 2016 15″ and 13″ MacBook Pros available for $230 to $420 off original MSRP. An Apple one-year warranty is included with each model, and shipping is free: - 15″ 2.6GHz... Read more
13-inch MacBook Airs on sale for up to $130 o... has 13″ MacBook Airs on sale for up to $130 off MSRP including free shipping: - 13″ 1.6GHz/128GB MacBook Air (sku MMGF2LL/A): $869.99 $130 off MSRP - 13″ 1.6GHz/256GB MacBook Air (sku... Read more
2.8GHz Mac mini available for $973 with free...
Adorama has the 2.8GHz Mac mini available for $973, $16 off MSRP, including a free copy of Apple’s 3-Year AppleCare Protection Plan. Shipping is free, and Adorama charges sales tax in NY & NJ... Read more
15-inch 2.2GHz Retina MacBook Pro on sale for...
Amazon has 15″ 2.2GHz Retina MacBook Pros (MJLQ2LL/A) available for $1749.99 including free shipping. Apple charges $1999 for this model, so Amazon’s price is represents a $250 savings. Note that... Read more
Huawei Unveils New ‘Business-Styled’ MateBook...
Huawei has introduced a trio of new MateBook laptops, expanding its mobile portfolio and building on its success in delivering attractive and powerful high-end devices. The company claims the HUAWEI... Read more
Deal! Gold 12-inch 1.2GHz Retina MacBook for...
Amazon has the 2016 Gold 12″ 1.2GHz Retina MacBook (MLHF2LL/A) on sale for $350 off MSRP for a limited time. Shipping is free: - 12″ 1.2GHz Gold Retina MacBook: $1249.99 $350 off MSRP We expect this... Read more
13-inch 2.0GHz MacBook Pros on sale for $100...
B&H has the non-Touch Bar 13″ 2.0GHz MacBook Pros in stock today and on sale for $100 off MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: - 13″ 2.0GHz MacBook Pro Space... Read more
15-inch 2.2GHz Retina MacBook Pro, Apple refu...
Apple has Certified Refurbished 2015 15″ 2.2GHz Retina MacBook Pros available for $1699. That’s $300 off MSRP, and it’s the lowest price available for a 15″ MacBook Pro. An Apple one-year warranty is... Read more
Apple refurbished 9-inch and 12-inch iPad Pro...
Apple has Certified Refurbished 9″ and 12″ Apple iPad Pros available for up to $160 off the cost of new iPads. An Apple one-year warranty is included with each model, and shipping is free: - 32GB 9″... Read more
Apple Certified Refurbished iMacs available f...
Apple has Certified Refurbished 2015 21″ & 27″ iMacs available for up to $350 off MSRP. Apple’s one-year warranty is standard, and shipping is free. The following models are available: - 21″ 3.... Read more

Jobs Board

Best Buy *Apple* Computing Master - Best Bu...
**509110BR** **Job Title:** Best Buy Apple Computing Master **Location Number:** 000048-Topeka-Store **Job Description:** **What does a Best Buy Apple Computing Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Systems Engineer - California Polyte...
Cal Poly, San Luis Obispo Apple Systems Engineer Department: ITS - Customer & Tech Support (134900) College/Division: Academic Affairs Salary Range: Position Read more
Best Buy *Apple* Computing Master - Best Bu...
**508718BR** **Job Title:** Best Buy Apple Computing Master **Location Number:** 001526-Odessa-Store **Job Description:** **What does a Best Buy Apple Computing Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.