TweetFollow Us on Twitter

Memman
Volume Number:7
Issue Number:9
Column Tag:Programmer's Forum

Related Info: Memory Manager

A Memory Manager for the Rest of US

By Jordan Zimmerman, Pacific Grove, CA

A Memory Manager for the Rest Of Us: The Evolution of Portable Virtual Memory

[Jordan Zimmerman lives in Burbank, California where he drinks fresh ale, plays Smash T.V. and writes Movie Magic Scheduling for Screenplay Systems, Inc.]

Introduction

Our story begins with a humble Macintosh programmer faced with what is becoming the issue of the 90’s: there are people in the world who insist on having windows on their blue boxes.

I was confronted with the task of reconciling the different memory management schemes of the Macintosh and Windows 3.0. In the process of solving this, a memory management scheme was developed that would be useful regardless of the porting issues. This memory manager automatically handles virtual memory (without the need for System 7 or a PMMU), is portable, and traps a multitude of errors and crashes caused by mistakes in memory usage.

While the full-blown manager is beyond the scope of this article; what follows is an outline that should be all one needs to write such a manager.

At this point, I must give due credit to my co-workers Ken Smith and Mark Guidarelli who helped design our Memory Manager, Memman.

In the Beginning

It has been my experience that the Windows 3 API (Application Programming Interface) is less flexible than the Macintosh’s. A perfect example is the respective memory managers.

While both platforms use the label “Handle” for their basic type of memory, they are really very different animals. On the Mac, a Handle points to a real location in memory. At that location there is another pointer that points to your data. Once the OS returns an allocated Handle, you are free to use it at will - you don’t need to check with the OS before using it (except, of course, to lock it).

Under Windows, the Handle it returns is merely a reference. It doesn’t point to any real memory. In order to get a pointer to real memory, you have to go through an OS call. When you are done using the real memory, you make another call to let the OS know you’re through.

The restrictions of the Windows model didn’t give us a lot of choice. Ultimately, it made a lot more sense to try to fit the Mac model into the Windows model than it did to try it the other way around.

And Then There Was Light

It quickly became apparent how much control the memory manager would have, given the constraints on the user of the manager. I could count on several things:

a) I’d know whenever memory was or wasn’t being used;

b) I’d have knowledge of every allocation made; and

c) I could do whatever I wanted with the data of an allocation when it wasn’t being used so long as I restored its condition before it was needed again.

The Window’s Model

Windows has five basic memory routines. They are:

a) GlobalAlloc() - allocates a block of memory;

b) GlobalReAlloc() - changes the size of an allocation;

c) GlobalLock() - returns a real pointer to memory;

d) GlobalUnLock() - signals that real memory is done being used; and

e) GlobalFree() - disposes of an allocation.

So, it seemed simple enough to fit the Macintosh memory model into Windows’ - just put wrappers around all memory calls.

Memman is born

This is the basic structure of Memman:

/* 1 */

#ifdef windows
typedef cookie_t HANDLE
#elif macintosh
typedef cookie_t Handle
#endif

cookie_t MMAlloc(long size);
void MMRealloc(cookie_t hdl, 
 long new_size);
void *MMUse(cookie_t hdl);
void MMUnuse(cookie_t hdl);
void MMFree(cookie_t hdl);

The cookie_t is what we call around the office a “magic cookie” - a reference to something that is unusable by itself. In Memman, the magic cookie is a Handle on the Macintosh and a HANDLE on Windows. But that doesn’t really matter to the user of the manager.

The Memman model ports perfectly between the two platforms:

MEMMAN Macintosh Windows

-------------------------------------------------

MMAlloc NewHandle GlobalAlloc

MMRealloc SetHandleSize GlobalReAlloc

MMUse HLock GlobalLock

MMUnuse HUnlock GlobalUnLock

MMFree DisposHandle GlobalFree

Memman imposes some constraints on a program that Macintosh programmers won’t be used to.

Before you read to or write from memory, you MUST call MMUse() to get a real pointer to memory. When you are through reading/writing, you MUST call MMUnuse(). This is a very different way of coding. The program becomes a “client” of the Operating System. On the Mac, it’s somewhat the other way around normally.

MMUse() can be unlimitedly nested. However, for every MMUse(), there must be an MMUnuse() eventually.

Here’s an example:

/* 2 */

/* the Mac way of allocating memory and
then writing to it */
. . .
short   **short_array;
short   *short_ptr;

short_array = (short **)NewHandle(10 * 
 sizeof(short);
short_ptr = *short_array;
short_ptr[1] = 1;
short_ptr[2] = 2;
...

/* now, the Memman way */
. . .
cookie_treference;
short   *short_ptr;

reference = MMAlloc(10 * sizeof(short));
short_ptr = (short *)MMUse(reference);
short_ptr[1] = 1;
short_ptr[2] = 2;
/* etc. */
MMUnuse(reference);
. . .

Where’s the VM Beef?

So how does this get us Virtual Memory? Given the control that Memman has over memory allocation and usage, Virtual Memory becomes somewhat simple.

What is Virtual Memory, Anyway?

Virtual Memory is a technique that allows an application to access more memory than is physically present in the system. Data is paged to and from disk as needed, thus giving the appearance of more memory than is really available.

Under System 7, this is done on a hardware level by the Paged Memory Management Unit (PMMU). This is the fastest and most desirable way to implement Virtual Memory. But there is nothing stopping the lowly software programmer from doing it manually.

Today’s operating systems provide sophisticated disk I/O and memory managers. These are all a programmer needs to do Virtual Memory.

Memman knows about every allocation that is made. It also knows whenever an allocation is or isn’t being used. So, the first thing to do is to keep track of every allocation made through MMAlloc().

/* 3 */

typedef longhdl_t;

typedef struct {
 cookie_t platform_hdl;
 long   size;
 void   *ptr;
 short  access_cnt;
} alloc_rec;

Memman keeps an array of alloc_recs. Every time MMAlloc() is called, an entry into this array is stored. platform_hdl is a Handle on the Mac or a HANDLE on Windows. Because there is no equivalent to the Mac’s GetHandleSize() on Windows, size stores the size of the allocation.

Instead of MMAlloc() returning a cookie_t, Memman defines its own “magic cookie”, hdl_t. This is an offset into the array of alloc_recs.

ptr is NULL if the allocation isn’t currently being “used” (i.e. MMUse() hasn’t been called) or a real memory location if it is being used. This is done as an optimization. If MMUse() is called in a nested way, there is no need to go through the OS (HLock() or GlobalLock() ) to get a pointer.

access_cnt is the number of unbalanced times MMUse() has been called for the allocation. This is how Memman determines if an allocation is in use or not. When allocated, the access_cnt is set to zero. Every time MMUse() is called, it is incremented by one. Every time MMUnuse() is called it is decremented by one. When the access_cnt is zero, Memman knows that the allocation is not being used.

It is the knowledge of when an allocation is in use or not that allows us to do VM. When an allocation isn’t in use, its data can be stored on disk (however, you’d probably only want to do this when memory is tight). Let’s change alloc_rec a little.

/* 4 */

typedef longhdl_t;

typedef struct {
 cookie_t platform_hdl;
 long   size;
 void   *ptr;
 short  access_cnt;
 long   location;
} alloc_rec;

Memman uses the location field to determine whether or not an allocation is in memory or on disk. MMUse() is responsible for reading in a paged allocation. If location >= 0, then the allocation’s data is on disk; otherwise, location == -1.

A simple implementation of MMAlloc(), MMUse() and MMUnuse() for the Mac might look like this:

/* 5 */

alloc_rec **alloc_array;

hdl_t MMAlloc(long size)
{

 alloc_rec*alloc_ptr;
 Handle h;
 long   old_size;
 hdl_t  hdl;

 /* get some real memory from the OS */
 h = NewHandle(size);
 if ( MemError() )
 DoError();

 /* add another alloc_rec */
 old_size = GetHandleSize(alloc_array);
 SetHandleSize(alloc_array,old_size + 
 sizeof(alloc_rec));
 if ( MemError() )
 DoError();

 /* get the index into the array */
 hdl = old_size / sizeof(alloc_rec);
 alloc_ptr = (*alloc_array)[hdl];

 /* store away the information */
 alloc_ptr->platform_hdl = h;
 alloc_ptr->size = size;
 alloc_ptr->ptr = NULL;
 alloc_ptr->access_cnt = 0;
 alloc_ptr->location = -1;/* in memory */

 return hdl;

} /* MMAlloc */

void *MMUse(hdl_t hdl)
{

 alloc_rec*alloc_ptr;
 void   *ptr;

 /* hdl is an index into the array of alloc_recs */
 HLock(alloc_array);
 alloc_ptr = (*alloc_array)[hdl];

 /* make sure it’s in memory */
 if ( alloc_ptr->location >= 0 )
 load_from_disk(alloc_ptr);

 /* increment the access_cnt and lock the Handle if necessary */
 if ( ++alloc_ptr->access_cnt > 1 )
 ptr = alloc_ptr->ptr;
 else {
 HLock(alloc_ptr->platform_hdl);
 ptr = *alloc_ptr->platform_hdl;
 }

 HUnlock(alloc_array);

 return ptr;

} /* MMUse */

void MMUnuse(hdl_t hdl)
{

 alloc_rec*alloc_ptr;

 alloc_ptr = (*alloc_array)[hdl];

 if ( --alloc_ptr->access_cnt > 0 )
 return;/* handle is still in use, keep it locked */

 alloc_ptr->ptr = NULL;

 HUnlock(alloc_ptr->platform_hdl);

} /* MMUnuse */

Memman opens a temp file that stores any paged data. Memman defines a function, MMPage(), that is used to page data to disk. This would probably be called from the GrowZone or could be setup to be called automatically by MMAlloc() (if NewHandle() failed).

Here’s a simple implementation of MMPage():

/* 6 */

/* page out “needed” bytes of data */
void MMPage(long needed)
{

 alloc_rec*alloc_ptr;
 long   total = 0;
 long   i;
 long   size;

 size = GetHandleSize(alloc_array);
 HLock(alloc_array);

 alloc_ptr = *alloc_array;

 /* go through all allocations paging them out until total >= needed 
*/
 for ( i = 0; i < size; ++i  ) {
 if ( alloc_ptr->location == -1 ) {
 long   offset;

 offset = get_disk_block(alloc_ptr->size);
 write_data(alloc_ptr->platform_hdl,
 alloc_ptr->size,offset);
 alloc_ptr->location = offset;
 DisposHandle(alloc_ptr->platform_hdl);
 
 if ( (total += alloc_ptr->size) >= needed )
 break;
 }
 }

 HUnlock(alloc_array);

} /* MMPage */

You might consider writing MMPage() so that it pages allocations in a “least recently used” fashion. The way Memman does this is by keeping a field (a short) in the alloc_rec that is incremented every time MMUse() is called on the allocation. Allocations with the smallest “time stamp” are the oldest and are paged first. This reduces the likelihood of a lot of swapping to and from disk because an allocation is paged and then read back in, etc.

Ideally, you’ll keep track of any “free” blocks within your temp file and reuse these (a free block is one to which data was paged and then re-read into memory; thus, the block is no longer being used).

Debugging - The Best Benefit

The final benefit of Memman is the automatic debugging it provides. There are several debugging tools that can be built into this memory model.

The first is inherent in the design: Handles are always locked when they are being used. It is a common plague of the Macintosh that a lot of bugs are caused by unlocked handles. With Memman, this is no longer an issue.

The other tools must be added to the memory manager. The following is a list of things we’ve added to Memman at the office. It is by no means an exhaustive list. It seems we are always finding new debugging code to add. You should surround all your debugging code with

/* 7 */

#ifndef NDEBUG
...
#endif

so that it can be turned off easily for the shipping product.

Overdraft Protection

We’ve changed MMAlloc() so that it always allocates 2 bytes more than requested. These two bytes are then set to some unlikely value like 0x1234. Every time MMUse() or MMUnuse() are called, the last two bytes of the allocation are checked and Memman asserts if the value isn’t 0x1234. This catches those pesky bugs where the program writes past the end of an allocation (at a resolution that even Protected Memory can’t achieve!).

Corruption Police

Our Memman has an extra field (a short) in the alloc_rec. This field is used to store a checksum of the data. A checksum of the allocation’s data is stored at MMUnuse() time when the access_cnt gets set to zero (we use a public domain CRC routine). Whenever MMUse() is called, this checksum is verified and Memman asserts if the checksum doesn’t match. This catches memory corruption errors.

The Enforcers

Whenever MMFree() is called, every byte of the allocation’s data is set to 0xff before DisposHandle() is called. This sets up a condition that will always produce incorrect results if an allocation is accessed after it is disposed.

Whenever MMUnuse() is called and the access_cnt gets set to zero, HandToHand() is called on the allocation to duplicate it. The old Handle has every byte set to 0xff and is then disposed. This is the Memman equivalent of Heap Scrambling.

Conclusion

We are using Memman at our office. It has already proved invaluable in weeding out bugs and cleaning up the way we look at memory allocations. Our Memman has been ported to the Mac, Windows and Unix without a hitch.

Even if porting is not an issue for you, the memory model laid out in this article is valuable for any situation. Indeed, the Memman model, I believe, is ideal for every situation and has become an integral part of all the code that I currently write and plan on writing.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

MacFamilyTree 8.2.5 - Create and explore...
MacFamilyTree gives genealogy a facelift: modern, interactive, convenient and fast. Explore your family tree and your family history in a way generations of chroniclers before you would have loved.... Read more
Hopper Disassembler 4.3.2- - Binary disa...
Hopper Disassembler is a binary disassembler, decompiler, and debugger for 32- and 64-bit executables. It will let you disassemble any binary you want, and provide you all the information about its... Read more
GraphicConverter 10.5.1 - $39.95
GraphicConverter is an all-purpose image-editing program that can import 200 different graphic-based formats, edit the image, and export it to any of 80 available file formats. The high-end editing... Read more
Delicious Library 3.7 - Import, browse a...
Delicious Library allows you to import, browse, and share all your books, movies, music, and video games with Delicious Library. Run your very own library from your home or office using our... Read more
Adobe Animate CC 2017 18.0.0.107 - Anima...
Animate CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Flash Professional customer). Animate CC 2018 (was Flash CC) lets you... Read more
Adobe After Effects CC 2018 15.0 - Creat...
After Effects CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous After Effects customer). The new, more connected After Effects CC... Read more
Adobe Premiere Pro CC 2018 12.0.0 - Digi...
Premiere Pro CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Premiere Pro customer). Adobe Premiere Pro CC 2018 lets you edit... Read more
Alarm Clock Pro 10.3 - $19.95
Alarm Clock Pro isn't just an ordinary alarm clock. Use it to wake you up in the morning, send and compose e-mails, remind you of appointments, randomize the iTunes selection, control an internet... Read more
Adobe Lightroom 20170919-1412-ccb76bd] -...
Adobe Lightroom is available as part of Adobe Creative Cloud for as little as $9.99/month bundled with Photoshop CC as part of the photography package. Lightroom 6 is also available for purchase as a... Read more
Adobe Illustrator CC 2018 22.0.0 - Profe...
Illustrator CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Illustrator customer). Adobe Illustrator CC 2018 is the industry... Read more

ICEY (Games)
ICEY 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: ICEY is a 2D side-scrolling action game. As you follow the narrator's omnipresent voice, you will see through ICEY's eyes and learn the... | Read more »
The best new games we played this week -...
We've made it, folks. Another weekend is upon us. It's time to sit back and relax with the best new releases of the week. Puzzles, strategy RPGs, and arcade games abound this week. There's a lot of quality stuff to unpack this week, so let's hop... | Read more »
Wheels of Aurelia (Games)
Wheels of Aurelia 1.0.1 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0.1 (iTunes) Description: | Read more »
Halcyon 6: Starbase Commander guide - ti...
Halcyon 6 is a well-loved indie RPG with stellar tactical combat and some pretty good writing, too. It's now landed on the App Store, so mobile fans, if you're itching for a good intergalactic adventure, here's your game. Being a strategy RPG, the... | Read more »
Game of Thrones: Conquest guide - how to...
Fans of base building games might be excited to know that yet another entry in the genre has materialized - Game of Thrones: Conquest. Yes, you can now join the many kingdoms of the famed book series, or create your own, as you try to conquer... | Read more »
Halcyon 6: Starbase Commander (Games)
Halcyon 6: Starbase Commander 1.4.2.0 Device: iOS Universal Category: Games Price: $6.99, Version: 1.4.2.0 (iTunes) Description: An epic space strategy RPG with base building, deep tactical combat, crew management, alien diplomacy,... | Read more »
Legacy of Discord celebrates its 1 year...
It’s been a thrilling first year for fans of Legacy of Discord, the stunning PvP dungeon-crawling ARPG from YOOZOO Games, and now it’s time to celebrate the game’s first anniversary. The developers are amping up the festivities with some exciting... | Read more »
3 reasons to play Thunder Armada - the n...
The bygone days of the Battleship board game might have past, but naval combat simulators still find an audience on mobile. Thunder Armada is Chinese developer Chyogames latest entry into the genre, drawing inspiration from the explosive exchanges... | Read more »
Experience a full 3D fantasy MMORPG, as...
Those hoping to sink their teeth into a meaty hack and slash RPG that encourages you to fight with others might want to check out EZFun’s new Eternity Guardians. Available to download for iOS and Android, Eternity Guardians is an MMORPG that lets... | Read more »
Warhammer Quest 2 (Games)
Warhammer Quest 2 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Dungeon adventures in the Warhammer World are back! | Read more »

Price Scanner via MacPrices.net

Save $100 on 13″ MacBook Airs, prices start a...
Adorama has 2017 13″ MacBook Airs on sale today for $100 off MSRP including free shipping. Adorama charges NY & NJ sales tax only: – 13″ 1.8GHz/128GB MacBook Air (MQD32LL/A): $899, $100 off MSRP... Read more
1.4GHz Mac mini available for $399, $100 off...
TigerDirect has the 1.4GHz Mac mini on sale today for $399 including free shipping. Their price is $100 off MSRP, and it’s the lowest price available for this model. Although currently out of stock,... Read more
21″ 2.3GHz iMac on sale for $999, save $100
MacMall has the 21″ 2.3GHz iMac (MMQA2LL/A) on sale today for $999 including free shipping. Their price is $100 off MSRP, and it’s the lowest price available for this model. Read more
12″ iPad Pros on sale for $50 off MSRP, no ta...
Adorama has 12″ iPad Pros on sale today for $50 off MSRP. Shipping is free, and Adorama charges sales tax in NY & NJ only: – 12″ 64GB iPad Pro: $749, save $50 – 12″ 256GB iPad Pro: $899, save $50... Read more
9″ iPads on sale for $30 off, starting at $29...
MacMall has 9″ iPads on sale for $30 off including free shipping: – 9″ 32GB iPad: $299 – 9″ 128GB iPad: $399 Read more
Apple restocks full line of refurbished 13″ M...
Apple has restocked a full line of Apple Certified Refurbished 2017 13″ MacBook Pros for $200-$300 off MSRP. A standard Apple one-year warranty is included with each MacBook, and shipping is free.... Read more
13″ 3.1GHz/256GB MacBook Pro on sale for $167...
Amazon has the 2017 13″ 3.1GHz/256GB Space Gray MacBook Pro on sale today for $121 off MSRP including free shipping: – 13″ 3.1GHz/256GB Space Gray MacBook Pro (MPXV2LL/A): $1678 $121 off MSRP Keep an... Read more
13″ MacBook Pros on sale for up to $120 off M...
B&H Photo has 2017 13″ MacBook Pros in stock today and on sale for up to $120 off MSRP, each including free shipping plus NY & NJ sales tax only: – 13-inch 2.3GHz/128GB Space Gray MacBook... Read more
15″ MacBook Pros on sale for up to $200 off M...
B&H Photo has 15″ MacBook Pros on sale for up to $200 off MSRP. Shipping is free, and B&H charges sales tax in NY & NJ only: – 15″ 2.8GHz MacBook Pro Space Gray (MPTR2LL/A): $2249, $150... Read more
Roundup of Apple Certified Refurbished iMacs,...
Apple has a full line of Certified Refurbished 2017 21″ and 27″ iMacs available starting at $1019 and ranging up to $350 off original MSRP. Apple’s one-year warranty is standard, and shipping is free... Read more

Jobs Board

Project Engineer, *Apple* Education Profess...
Project Engineer, Apple Education Professional Services Job Number: 113143353New York City, New York, United StatesPosted: Oct. 17, 2017Weekly Hours: 40.00 Job Read more
Commerce Software Engineer, *Apple* Media P...
Commerce Software Engineer, Apple Media Products Job Number: 113092072New York City, New York, United StatesPosted: Oct. 19, 2017Weekly Hours: 40.00 Job Summary With Read more
Engineering Manager, *Apple* Retail Enginee...
# Engineering Manager, Apple Retail Engineering Job Number: 58139948 Santa Clara Valley, California, United States Posted: 20-Oct-2017 Weekly Hours: 40.00 **Job Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Commerce Engineer, *Apple* Media Products -...
Commerce Engineer, Apple Media Products (New York City) Job Number: 113028813New York City, New York, United StatesPosted: Sep. 20, 2017Weekly Hours: 40.00 Job Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.