TweetFollow Us on Twitter

Con't Neural Nets
Volume Number:6
Issue Number:11
Column Tag:Programmer's Workshop

Continuous Neural Networks

By Wayne Joerding, Pullman, WA

Code for Continuous Neural Networks

Introduction

For the past few years there has been considerable renewed interest in the use of Neural Networks in such diverse areas as cognitive science, artificial intelligence, and physics. My interest in the subject derives from a paper by K. Hornik, M. Stinchcombe, and H. White who show that a three layer feedforward neural network can approximate any continuous nonlinear function to any desired degree of accuracy by expanding the number of units in the hidden layer. This result probably explains the success physicist have had in using neural networks to model nonlinear dynamic systems, i.e. chaos. I plan to investigate the use of neural networks to model economic behavior (yes, I’m an economist).

Programming neural networks presents several problems, among them the algorithms which compute an output for the network and a method of training the network. This article, after a brief introduction to neural networks which can be skipped by those already familiar with the topic, describes code to compute with and train a particular type of neural network. The code is sometimes more awkward than is strictly needed for this article since it is to be put into a friendlier interface I am developing with Prototyper™. In fact the current code has no interface at all so you’ll need to add appropriate printf statements in order to see the results. The code is written in Lightspeed C™ with double floating point data. If you don’t have a math coprocessor then performance should be significantly reduced.

Neural Networks

For an excellent introduction to neural networks see Neural Computing: Theory and Practice by P. D. Wasserman. A neural network is a collection of simple processing units which are connected to each other. The output of one unit helps determine the output of other units in a potentially simultaneous system. The neural network originated as a model of neural activity and is inherently parallel, but can be modeled on a sequential machine like the Macintosh. My work concerns a particular type of neural network called a layered feedforward network. In this system the units are organized into layers; an input layer, a number of hidden layers, and an output layer. The output layer has only one unit. Each unit is connected to all the units in the previous layer by a linear relationship, n = Wa where n is the net input level to units of a layer, a is the output (activation) level of units in the previous layer, and W is a matrix with appropriate dimensions.

Figure 1.

A simple three layer network is shown in Figure 1. In this example, the connection between the input layer and the output layer can be represented by a 2X2 matrix W. The hidden units are depicted with a line in the middle because they behave differently than input and output units. An input unit is nothing more than the input value to the network, it does no processing of this value. For example, if one were trying to model the behavior of stock prices then the two input values might be last periods stock price and earnings. The hidden units on the other hand have some simple processing capability. Each hidden unit takes its net input, as described by the formula above, and transforms this value by a simple nonlinear relationship, called a squashing function or an activation function. The result of the squashing function is then passed along to the next layer as the output of the hidden unit. In the example, the single output unit combines the outputs of each hidden unit to form the output for the network.

A tiny bit of algebra should make this example clear. Let x = (x1 , x2) be the values of the input variable, i.e. the outputs of the input layer. Let W be the connection between the input layer and the output layer and n = (n1, n2) be the net inputs values to the hidden layer units. Then n = Wx. Breaking this down further, let Wij be the connection between input unit i and hidden unit j, then n1 = W11*x1 + W21*x2 and n2 = W12*x1 + W22*x2. Let a = (a1,a2) be the output values of each hidden unit, then a1 = f(n1) and a2 = f(n2) where f() represents the squashing function. Finally, let o be the output value, and V the connections between the hidden layer and the output layer, a 2X1 matrix, then o = Va. Again breaking this down further, let Vk be the connection between hidden unit k and the output unit, then o = V1*a1 + V2*a2.

Important characteristics of a neural network are determined by the squashing function. A common squashing function is the threshold function which outputs a zero if the net input is less than some threshold number, and a one otherwise. I am interested in continuous squashing functions because the output of a neural network with a continuous squashing function is a continuous variable, which is more appropriate for most economic data. The most common squashing function is the logistic function and is used in the code shown here. This choice can easily be changed.

Thus, mathematically, neural networks are fairly simple constructs. Their appeal comes from their demonstrated ability to model strikingly intuitive relationships reminiscent of human mental activity. This ability is accomplished by choosing the parameters, the elements of W and V in our example, so that input values generate the desired output. For example, the weights W and V can be chosen along with a threshold squashing function to create the logical XOR operation.

The process of choosing parameters is often called training. Training comes in two varieties, supervised and unsupervised. I will only consider the supervised variety, in which a neural network is thought to be trained by presenting it with input values and desired output levels. There are many specific techniques for supervised training, the most commonly discussed being back propagation. But, conceptually, supervised training is nothing more than finding parameter values that cause the neural network to optimize some objective criteria, and the most common objective criteria is the sum of squared deviations of the output from some target variable. Thus, traditional nonlinear least squares methods can be used for training. That is the approach taken.

Computation

In this section I introduce the code relevant to computing the output of a neural network from a given input. This code is contained in the listing “Compute SS.c”, along with code for the training methods to be used later. First, examine the NeuralNet structure defined in listing “Neural Network.h”. Most of the fields are relevant to training and the user interface, the only fields needed for computing output are the first three, OutLayer, Units[MaxLay], and W[MaxLay-1]. OutLayer basically defines the number of layers in the network and must be less than or equal to MaxLay-1. Units[] specifies the number of units in each layer, however, remember that the number of units in the output layer must be one, i.e. Units[OutLayer] must be 1. Note the type, method, and squash fields, to be used in the future to allow for different types of neural networks, methods of training, and different squashing functions.

There are two functions that compute output, ComputOutputOnly(), and ComputeOutputJac() which also computes the derivative of the squashing function and the Jacobian, used by the Gauss-Newton training method. Calculation of the analytical derivative of the network function is only slightly more expensive than computation of the network itself, so analytical derivatives are used in the Gauss-Newton method, instead of approximate derivatives as is more common. These functions call matrix manipulation routines defined in “DTypeMatrixObject.c” and “DTypeVectorObject.c”.

Training

I have investigated two training methods, a gradient and a non-gradient method. I have found gradient method, Gauss-Newton, difficult to work with because of network saturation resulting in an ill conditioned Jacobian matrix. Consequently, I have also coded a non-gradient method due to Hooke and Jeeves, see Methods of Optimization by G. R. Walsh. This method is slower but should work under almost all conditions. Finally, both types of methods suffer from the local minima problem, which appears to be rather serious for neural network models. In the future I plan to experiment with the simulated annealing method to overcome the local minima problem.

Regardless of the the method, the objective is to minimize a sum of squares objective criteria. The calculation of the sum of squares function is accomplished in both Compute_SS() and Compute_SS_Jac(), the latter function calculating the Jacobian matrix as well as the sum of squares function and is only used by the gradient method. The code for the sum of squares function is straightforward but rather complicated when the Jacobian is also to be computed. Actual definition of the Jacobian formula goes beyond this article, but is available from the author upon request.

The two gradient methods, Gauss-Newton and quasi Gauss-Newton, are defined in the file “Gradient methods.c”. The two driver routines are do_GaussNewton() and do_quasiGaussNewton(). Within each you will see considerable use of printf() and other awkward output functions I have uses at this stage for obtaining results and debugging. This code follows the methods described in Numerical Methods for Unconstrained Optimization and Nonlinear Equations by J. E. Dennis and R. B. Schnabel.

The calculation of the next quasi-Newton step in the minimization process involves an ordinary least squares repression of residuals on the gradient. The code for doing this is in the file “Ord Least Squares.c”. The algorithm used for regression uses the method of “QR decomposition” rather than the more common Gaussian elimination. The reason for this is that the QR decomposition is somewhat more numerically stable and since I plan to use neural networks to model chaotic systems it is crucial that the maximum degree of stability be attained. The cost is that although Gaussian elimination takes about n3/3 operations, the QR method takes about 2n3/3 operations.

The non-gradient method is coded in file “Search methods.c” It looks more complicated that it is but the interested reader should consult the Walsh book cited earlier for a detailed description.

Miscellaneous

There are several other files provided that are peripheral to the main body of code. The main() function is defined in “Neural Network Main.c”. “Setup Network.c” contains code used to initialize or manipulate various data structures. “General.c” is just a convenient place for a few functions that are used in more than one other file. “test data.c” contains some test data I have used to test the methods, however, the gradient methods completely fail with this data. It is only include here so that you can see how to run the routines The gradient methods seem to work better with larger data sets. Finally, the Lightspeed C project should include “MacTraps”, “Math881”, “stdio881”, and “storage”. I haven’t tried my code without the Math881 option on, but I know of no reason it shouldn’t work with this option off, a necessity for machines without the 68881 math coprocessor.

Listing:  Neural Network.h

/* Constants and structure definitions */

#define _MC68881_

#include <stdio.h>
#include <math.h>

#define MaxLay   5
#define ActiveNets 4

/*---- return codes for linesearch ----*/
#define LINEOK   0
#define LINENOTOK  1

/*---- return codes for gradient methods ----*/
#define FAIL     0
#define METGRADTOL 1
#define METSTEPTOL 2
#define LINEFAIL 4
#define EXCEDITNLIM 8
#define SINGJAC  16/* if Jacobian is singular */
#define NETSAT   32

/*---- codes used in Hooke & Jeeves search method ----*/
#define CHANGED  1

/*---- codes for type of network ----*/
#define SigUB    1
#define SigB2  /* biased Sigma network */
#define Lin 3  /* Linear model */

/* codes for squashing function */
#define Logistic 1 /* logistic squash function */
#define hyperTan 2 /* hypebolic tangent */
#define Thresh   3 /* threshold squashing function */

/* codes for estimation method */
#define BackProp 1
#define SimAnn   2 /* Simulated annealing */
#define GaussNew 3 /* Gauss Newton method */
#define qGaussNew4 /* quasi Gauss Newton metho*/
#define HookeJeeves6/*Hooke & Jeeves method for direct search*/

#define DataType double

typedef struct /*type for a matrix of floating values*/
{
 int rows,cols;
 double ** cells;
}DTypeMatrix;
 
typedef struct /*type for a vector of floating values*/
{
 int rows;
 double ** cells;
}DTypeVector;

typedef struct /*type for neural network data struc*/
 {
unsigned int OutLayer;
unsigned int Units[MaxLay];
DTypeMatrix W[MaxLay-1];
double  gradtol;
double  steptol;
double  maxstep;
double  maxrelstep;
unsigned int itnlimit;
short int usemaxstep;
short int type;  /* the type of network */
short int method;/* method to use */
short int squash;/* squashing function to use */
short int valid;
short int prtitinfo;
short int saveout;
}NeuralNet;

/*-------------------------- Prototypes ------------*/
/*---- Prototypes for Neural Network Main.c ----*/
 main(void);
 printf(char *, ...);
FILE *  fopen(char *,char *);
   fclose(FILE *);
   fprintf(FILE *, char *, ...);
 Estimate(void);
 
/*---- Prototypes for General.c ----*/
 RestoreParms(DTypeVector *);
 SaveParms(DTypeVector *);
 NotYetAvail(void);
 HandleOutOfMem(void);
 
 do_HookeJeeves(void);
 ExMove(void);
 PatMove(void);
 SetInitStep(void);
 AllotSearchWorkSpace(void);
 LockSearchWorkSpace(void);
 UnlockSearchWorkSpace(void);

/*---- Prototypes for Gradient methods.c ----*/
 do_GaussNewton(void);
 do_quasiGaussNewton(void);
 ComputegradSSforqGN(void);
 AppendResidZeros(void);
 AppendMuIdentity(void);
 LineSearch(double *);
 ConstrainStep(void);
 UpdateParms(DataType);
 StopYet(double,int,int);
 StopAtFirst(double);
double  Compute_minlambda(void);
 AllotGradientWorkSpace(void);
 LockGradientWorkSpace(void);
 UnlockGradientWorkSpace(void);

/*---- Prototypes for Ord Least Squares.c ----*/
 OLSbyQRmethod(DTypeMatrix *,DTypeVector *,DTypeVector *,DTypeVector 
*);
 ComputeQY(DTypeMatrix *,DTypeVector *,DTypeVector *);
 SolveRbY(DTypeMatrix *,DTypeVector *,DTypeVector *);
 QRDecomposition(DTypeMatrix *,DTypeVector *,DTypeVector *);
 WriteYXToFile(FILE *, DTypeVector *, DTypeMatrix * );

/*---- Prototypes for Compute_SS.c ----*/
 logisticSquash_dSquash(DTypeVector *,DTypeVector *);
DataType  ComputeOutputJac(void);
 ComputeJacobian(DataType *);
double  Compute_SS_Jac(void);
 logisticSquash(DTypeVector *);
DataType  ComputeOutputOnly(void);
double  Compute_SS(void);
 HLock_Alpha_dSquash(void);
 HUnlock_Alpha_dSquash(void);
 HLock_Alpha(void);
 HUnlock_Alpha(void);
 
/*---- Prototypes for Setup Network.c ----*/
 SetupNetDefaults(void);
 AllotInitNewNetWeights(void);
 HLockNet(void);
 HUnlockNet(void);
 DisplayNet(void);
 InitWeights(DTypeMatrix *);
 SetupTolerances(void);

/*---- Prototypes for DTypeMatrix.c ----*/
 AllotDTypeMatrix(DTypeMatrix *,int,int);
 DisplayDTypeMatrix(DTypeMatrix *);
 WriteMatrixToFile(FILE *,DTypeMatrix * );
 ClearDTypeMatrix(DTypeMatrix *);
 Matrix_by_Vec(DTypeMatrix *,DTypeVector *,DTypeVector *);     
 Matrix_by_Diag(DTypeMatrix *,DTypeVector *,DTypeMatrix *);
 Matrix_by_Matrix(DTypeMatrix *,DTypeMatrix *,DTypeMatrix *);

/*---- Prototypes for DTypeVector.c ----*/
double  L2Norm(DTypeVector *);
DataType  Vec_by_Vec(DTypeVector *,DTypeVector *);
 CopyDTypeVector(DTypeVector *,DTypeVector *);
 AllotDTypeVector(DTypeVector *,int);
 DisplayDTypeVector(DTypeVector *);
 WriteVectorToFile(FILE *,DTypeVector *);
 ClearDTypeVector(DTypeVector *);
 
/*---- Prototypes for testdata.c ----*/
 SetTestNet(NeuralNet *);
 testData(NeuralNet *);
 testJacobian(DTypeMatrix *,DTypeVector *,DTypeVector *,DTypeVector *);
 testdepdata(NeuralNet *);
Listing:  Compute SS.c

#include “Neural Network.h”
#include <math.h>

extern FILE * Jac;

extern NeuralNet * theNet;
extern DTypeVector yData;
extern DTypeMatrix XData;
extern DTypeVector Alpha[];
extern DTypeMatrix  Jac_T;
extern DTypeVector Resid;
extern DTypeVector dSquash[];
extern DTypeMatrix  Phi, T2;

/******************************************************/
/*------------------
 Logistic squashing function and its derivative.
*/
static void logisticSquash_dSquash(vector,dvector)
 DTypeVector * vector;
 DTypeVector * dvector;
{
 register int    i;
 register DataType temp;
 register DataType * cell;
 register DataType * dcell;
 
 cell = *vector->cells;
 dcell = *dvector->cells;
 
 for(i=0; i<vector->rows; i++, cell++, dcell++)
 { temp = exp(-*cell);
 *cell = 1/(1+temp);
 *dcell = (*cell)*(1.0-*cell);
 }
}

/*------------------
 Compute output for the neural net where the input 
 values are specified by the Alpha[0] vector.  Also 
 computes derivative of 
 squash function.
*/
static DataType  ComputeOutputJac()
{
int i;
 
for(i=0; i < theNet->OutLayer-1; i++)
/* skip the output layer since don’t want squash */
{Matrix_by_Vec(&theNet->W[i],&Alpha[i],&Alpha[i+1]);
 logisticSquash_dSquash(&Alpha[i+1], &dSquash[i+1]);
}
Matrix_by_Vec(&theNet->W[theNet->OutLayer-1], &Alpha[theNet->OutLayer-1], 
&Alpha[theNet->OutLayer]);
 /* no squash for output layer */
return(**Alpha[theNet->OutLayer].cells);
}

/*------------------
 Compute Jacobian for the SS problem where the input     values are specified 
by the Alpha[0] vector.   Expects activation values for each layer in 
Alpha[i], i=1,..,OutLayer
*/
static void ComputeJacobian(jcell)
DataType* jcell; 
{
int i,j,k;
int OL;
DataType * acell;/* pntr to elem of Alpha vec */
DataType * pcell;/* pntr to elements of Phi matrix */
 
OL = theNet->OutLayer;

/*** 1st, get the alpha values just prior to output ***/
acell = *Alpha[OL-1].cells+Alpha[OL-1].rows-1;
for(i=0;i<Alpha[OL-1].rows;i++,acell--,
 jcell-=Jac_T.cols)
 *jcell = *acell;

/**** Second, calculate the Phi_OL-1 matrix and use with the second to 
last layer ****/
Phi.cols = theNet->W[OL-1].cols;
Matrix_by_Diag(&theNet->W[OL-1], &dSquash[OL-1], &Phi);
acell = *Alpha[OL-2].cells + Alpha[OL-2].rows-1;
 
for(j=0; j<Alpha[OL-2].rows; j++, acell--)
{pcell = *Phi.cells + (Phi.cols-1);
 
 for(k=0; k<Phi.cols; k++, pcell--, 
 jcell -= Jac_T.cols)
 *jcell = (*acell)*(*pcell);
}

/**** Third, calculate Jacobian values for any other layers ****/
 
for(i=OL-3; i>-1; i--)
 
 /* indexing specifies the Alpha vector */
{T2.cols = theNet->W[i+1].cols;
 Matrix_by_Matrix(&Phi, &theNet->W[i+1], &T2);
 Phi.cols = T2.cols;
 Matrix_by_Diag(&T2, &dSquash[i+1], &Phi);
 acell = *Alpha[i].cells + Alpha[i].rows-1;  
 /* points to the last element of the Alpha[i] vec */
 for(j=0; j<Alpha[i].rows; j++, acell--)
 { pcell = *Phi.cells + (Phi.cols-1);
 for(k=0; k<Phi.cols; k++, pcell--, 
 jcell -= Jac_T.cols)
 *jcell = (*acell)*(*pcell);
 }
 }
}

/*------------------
 Compute the sum of squares and Jacobian for net.
 Output layer must be a singleton, so that dependent 
 values can be represented as a vector of scalars.  
 Because the SS function is only appropriate
 for scalars, to use vector output variables would 
 need to formulate a multidimensionl
 sum of squares criteria.
*/
double Compute_SS_Jac()
{
inti;
DataType * y;    /* pntr to actual dependent value */
DataType * r;  /* pntr to cells of residual vec */
DataType * jcell;/* pntr to cells of Jacobian 
 matrix, stored as transpose */
double SS;
DataType * handle; /* used for pseudo vector */
 
HLock(Phi.cells);
HLock(T2.cells);
HLock_Alpha_dSquash();

Alpha[0].cells = & handle;
y = *yData.cells;
r = *Resid.cells;
 
jcell = *Jac_T.cells + (Jac_T.rows-1)*Jac_T.cols;  
SS = 0.0;
for(i=0; i < XData.rows; i++, r++, jcell++)
{
 handle = *XData.cells + i*XData.cols;
 *r = y[i] - ComputeOutputJac();
 SS += (double)pow( *r , 2);
 ComputeJacobian(jcell);
}

HUnlock(Phi.cells);
HUnlock(T2.cells);
HUnlock_Alpha_dSquash();
return(SS);
}

/*------------------
 Logistic squashing function and its derivative.
*/
static void logisticSquash(vector)
DTypeVector * vector;
{
register inti;
register DataType  * cell;
 
cell = *vector->cells;
 
for(i=0; i<vector->rows; i++, cell++)
 *cell = 1/(1+exp(-*cell));
}

/*------------------
 Compute output for the neural net where the input values are specified 
by the Alpha[0] vector.
*/
static DataType  ComputeOutputOnly()
{
int i;
 
for(i=0; i < theNet->OutLayer-1; i++)
{Matrix_by_Vec(&theNet->W[i],&Alpha[i],&Alpha[i+1]);
 logisticSquash(&Alpha[i+1]);
}
 Matrix_by_Vec(&theNet->W[theNet->OutLayer-1], 
 &Alpha[theNet->OutLayer-1], 
 &Alpha[theNet->OutLayer]);
return(**Alpha[theNet->OutLayer].cells);
}

/*------------------
 Compute the sum of squares
*/
double Compute_SS()
{
inti;
DataType * y;
double SS;
DataType * handle; /* used for pseudo vector */
double r = 0.0;

HLock_Alpha();
 
Alpha[0].cells = & handle;
y = *yData.cells;
SS = 0.0;
for(i=0; i < XData.rows; i++)
{
 handle = *XData.cells + i*XData.cols;
 r = y[i] - ComputeOutputOnly();
 SS += (double)pow( r , 2);
}

HUnlock_Alpha();
 
return(SS);
}

/*------------------*/
static void HLock_Alpha_dSquash()
{
int i;
 
for(i=0; i<theNet->OutLayer; i++)
{HLock(Alpha[i].cells);
 HLock(dSquash[i].cells);
}
}

static void HUnlock_Alpha_dSquash()
{
int i;
 
for(i=0; i<theNet->OutLayer; i++)
{HUnlock(Alpha[i].cells);
 HUnlock(dSquash[i].cells);
}
}

static void HLock_Alpha()
{
int i;
 
for(i=0; i<theNet->OutLayer; i++)
 HLock(Alpha[i].cells);
}

static void HUnlock_Alpha()
{
int i;
 
for(i=0; i<theNet->OutLayer; i++)
 HUnlock(Alpha[i].cells);
}
Listing:  General.c

#include “Neural Network.h”
#include <math.h>

extern FILE * Jac;

extern NeuralNet * theNet;
extern DTypeVector yData;
extern DTypeMatrix XData;
extern DTypeVector Alpha[];
extern DTypeVector Pi;
extern DTypeVector Diag;

/*----------------------
 Restore the weight parameters in vector Pi to W[i] 
 for use in line search algorithm.
*/
RestoreParms(vec)
DTypeVector * vec;
{
int j,k,N;
DataType * v;
DataType * w;
 
v = *vec->cells;
for(j=0; j<theNet->OutLayer; j++)
{N = (theNet->W[j].rows)*(theNet->W[j].cols);
 w = *theNet->W[j].cells;
 for(k=0; k<N; k++, w++, v++)
 *w = *v;
}
}

/*----------------------
 Save the weight parameters in vector Pi for use in 
 line search algorithm.
*/
SaveParms(vec)
DTypeVector * vec;
{
int j,k,N;
DataType * v;
DataType * w;
 
v = *vec->cells;
for(j=0; j<theNet->OutLayer; j++)
{N = (theNet->W[j].rows)*(theNet->W[j].cols);
 w = *theNet->W[j].cells;
 for(k=0; k<N; k++, w++, v++)
 *v = *w;
}
}

NotYetAvail()
{
printf(“chosen method not yet available”) , ExitToShell();
}

HandleOutOfMem()
{
printf(“Out of memory”) , ExitToShell();
}
Listing:  Neural Network Main.c

#include “Neural Network.h”
#include <math.h>

/*---- Debuging prototypes and structs ----*/
Stestnet(NeuralNet *);
FILE * Jac;
/*----------------------------------------*/

/*** Global structures *****************/
NeuralNet * theNet;/* pointer to a NeuralNet struc */
NeuralNet Nets[ActiveNets];

DTypeVector yData;
DTypeMatrix XData;
DTypeMatrix Jac_T;
DTypeVector Pi, Diag;
DTypeVector Resid;
DTypeVector gradSS;
DTypeMatrix Phi, T2;
DTypeVector dSquash[MaxLay];
DTypeVector Alpha[MaxLay];

/******************************************************/
main()
{
theNet = &Nets[0];
printf(“this is test\n”);
if((Jac = fopen(“Testdata:Jacobian”,”w”))==NULL)
{printf(“Can’t open file”);
 ExitToShell();
}

SetupNetDefaults();
SetTestNet(theNet);
AllotInitNewNetWeights();
testData(theNet);

Estimate();
theNet->method = HookeJeeves;
Estimate();

fclose(Jac);

}

/******************************************************/

Estimate()
{
int termcode;  

HLock(yData.cells);
HLock(XData.cells);
 
switch(theNet->method)
{case BackProp:
 { break;
 }
 case SimAnn:
 { break;
 }
 case HookeJeeves:
 { AllotSearchWorkSpace();
 LockSearchWorkSpace();
 termcode = do_HookeJeeves();
 UnlockSearchWorkSpace();
 break;
 }
 case GaussNew:
 { AllotGradientWorkSpace();
 LockGradientWorkSpace();
 termcode = do_GaussNewton();
 UnlockGradientWorkSpace();
 break; 
 }
 case qGaussNew:
 { AllotGradientWorkSpace();
 LockGradientWorkSpace();
 termcode = do_quasiGaussNewton();
 UnlockGradientWorkSpace();
 break; 
 }
 default:
 NotYetAvail();
 }

HUnlock(yData.cells);
HUnlock(XData.cells);
 
return(termcode);
}
Listing:  Setup Network.c

#include “Neural Network.h”
#include <math.h>

extern NeuralNet * theNet;
extern DTypeVector yData;
extern DTypeMatrix XData;
extern DTypeVector Alpha[];
extern DTypeMatrix  Jac_T;
extern DTypeVector Pi, Diag;
extern DTypeVector Resid;
extern DTypeVector  gradSS;
extern DTypeVector dSquash[];
extern DTypeMatrix  Phi, T2;

double  CalcMachEPS();

/******************************************************/
SetupNetDefaults()
{
SetupTolerances();
theNet->OutLayer = 2;
theNet->Units[0] = 0;
theNet->Units[1] = 2;
theNet->itnlimit = 15;
theNet->maxstep = 10.0;   /* default step limit */
theNet->maxrelstep = .1;
theNet->usemaxstep = TRUE;
theNet->type = SigUB;
theNet->method = HookeJeeves;
theNet->squash = Logistic;
theNet->valid = FALSE;
}

/*------------------
Allot memory for weight matrices and initialize weight values.  Expects 
the number of units in each layer to be already defined.
*/
AllotInitNewNetWeights()
{
int i;
 
for(i=0; i<theNet->OutLayer; i++)
{/* ---- allot memory for Weight matrices ----*/
 AllotDTypeMatrix(&(theNet->W[i]), theNet->Units[i+1], theNet->Units[i]);
 
 /*---- initialize parameter values ----*/
 HLock(theNet->W[i].cells);
 InitWeights(&(theNet->W[i]));
 HUnlock(theNet->W[i].cells);
}
}

HLockNet()
{
int i;
 
for(i=0; i<theNet->OutLayer; i++)
 HLock(theNet->W[i].cells);

}

HUnlockNet()
{
int i;

for(i=0; i<theNet->OutLayer; i++)
 HUnlock(theNet->W[i].cells);
}

DisplayNet()
{
int i;
printf(“Output layer is %d \n”,theNet->OutLayer);
for(i=0; i<=theNet->OutLayer; i++)
printf(“Neurons in layer %d is %d\n”,i,theNet->Units[i]);
for(i=0; i<theNet->OutLayer; i++)
{
 printf(“Weight matrix for layer %d is:\n”,i);
 DisplayDTypeMatrix(&theNet->W[i]);
}
}

InitWeights(matrix)
DTypeMatrix * matrix;/* weight matrix to use in network calculation
 */
{
inti,j,k;
DataType * cell;
DataType d = .10;

cell = *matrix->cells;
for(i=0, k=0; i<matrix->rows; i++) 
{
 for(j=0; j<matrix->cols; j++, k++, d = d+.01) 
 *(cell + (i*matrix->cols + j)) = d*(DataType)pow(-1,k);
}
}

SetupTolerances()
{
theNet->gradtol = .000001;
theNet->steptol = .000000000001;
}
Listing:  test data.c

#include “Neural Network.h”
#include <math.h>

extern DTypeVector yData;
extern DTypeMatrix XData;
extern DTypeVector Alpha[];

SetTestNet(net)
NeuralNet * net;
{
net->OutLayer = 2;
net->Units[0] = 3;
net->Units[1] = 2; 
net->Units[2] = 1;
net->method = GaussNew;
net->maxstep = 1.0;
}

testData(net)
NeuralNet * net;
{
inti,j,k,m;
DataType * cell;
DataType * ycell;
int Obs = 16;
int grid = 4;
int Parms = net->Units[0];
DataType data;
 
AllotDTypeMatrix(&XData,Obs,net->Units[0]);
AllotDTypeVector(&yData,Obs);

HLock(XData.cells);
HLock(yData.cells);
cell = *XData.cells; 
ycell = *yData.cells;
for(j=0; j<Obs; j++)
 *(cell + (j*XData.cols + 0)) = 1.0;
for(j=0, k=1, m=0; j<Obs; j++, k++)
{if(k==Obs/grid+1) k=1;
 if(k==1) m += 1;
 *(cell + (j*XData.cols + 1)) = 10*m;
 *(cell + (j*XData.cols + 2)) = 10*k;
}
for(j=0; j<Obs; j++)
 ycell[j]=pow(*(cell+(j*XData.cols+1)),.2)*pow(*(cell+(j*XData.cols+2)),.8);

HUnlock(XData.cells);
HUnlock(yData.cells);
}
Listing:  DTyperMatrixObject.c

/*------ Double FloatMatrix --------------*/
#include “Neural Network.h”
#include <math.h>

AllotDTypeMatrix(matrix,r,c)
DTypeMatrix * matrix;
intr,c;
{
matrix->rows = r;
matrix->cols = c;
matrix->cells = (DataType **) NewHandle( r*c*sizeof(DataType) );
if(!matrix->cells) HandleOutOfMem();
}

WriteMatrixToFile(jac,matrix)
FILE * jac;
DTypeMatrix * matrix;
{
inti,j;
DataType * cell;
 
HLock(matrix->cells);
 
cell = *matrix->cells;
for(i=0; i<matrix->rows; i++) 
{
 for(j=0; j<matrix->cols; j++)  
 fprintf(jac,”%.5lf“,*(cell + (i*matrix->cols + j)) );
 fprintf(jac,”\n”);
}
HUnlock(matrix->cells); 
}

DisplayDTypeMatrix(matrix)
DTypeMatrix *matrix;
{
inti,j;
DataType * cell;
 
HLock(matrix->cells);
 
cell = *matrix->cells;
for(i=0; i<matrix->rows; i++) 
{
 for(j=0; j<matrix->cols; j++)  
 printf(“(%.5le)  “,*(cell + (i*matrix->cols + j)) );
 printf(“\n”);
}
HUnlock(matrix->cells); 
}

ClearDTypeMatrix(matrix)
DTypeMatrix *matrix;
{
inti,j;
DataType * cell;
 
HLock(matrix->cells);
 
cell = *matrix->cells;
for(i=0; i<matrix->rows; i++) 
{
 for(j=0; j<matrix->cols; j++) 
 *(cell + (i*matrix->cols + j)) = 0.0;
}
HUnlock(matrix->cells);
}

/*---------------------- 
 postmultiply matrix by vector, result in prod 
 no checking for conformability
*/
Matrix_by_Vec(matrix,vector,prod)  
DTypeMatrix *  matrix;  
DTypeVector *  vector;  
DTypeVector *  prod; 
{
register inti;
register intj;
register intR;
register intC;
register DataType temp;
register DataType * y;
register DataType * row;
register DataType * vec;

R = matrix->rows;
C = matrix->cols;
vec = *vector->cells;
y = *prod->cells;
for(i=0; i<R; y++, i++)
{row = *matrix->cells + i*C;
 temp = (*row)*(*vec);
 for(j=1; j<C; j++)  
 temp += (*(row+j))*(*(vec+j));
 *y = temp;
}
}

/*---------------------- 
postmultiply matrix by diagonal matrix, result in prod no checking for 
conformability diagonal matrix must be square, stored as a vector
*/
Matrix_by_Diag(matrix,diag,prod)
DTypeMatrix *  matrix;
DTypeVector *  diag;
DTypeMatrix *  prod;/
{
register inti;
register intj;
register intR;
register intC;
register DataType * y;
register DataType * row;
register DataType * vec;

R = matrix->rows;
C = matrix->cols;
vec = *diag->cells;
row = *matrix->cells;
y = *prod->cells;
for(i=0; i<R; i++)
{for(j=0; j<C; j++, row++, y++)  
 *y = (*row)*(*(vec+j));
}
}

/*---------------------- 
 postmultiply matrix1 by matrix1, result in prod 
 no checking for conformability
*/
Matrix_by_Matrix(matrix1,matrix2,prod)
DTypeMatrix *  matrix1;
DTypeMatrix *  matrix2;
DTypeMatrix *  prod;
{
register inti;
register intj;
register intk;
register intC1;
intR1;
register intC2;
register DataType sum;
register DataType * y;
register DataType * row;
register DataType * col;
 
R1 = matrix1->rows;
C1 = matrix1->cols;
C2 = matrix2->cols;
y = *prod->cells;
 
for(i=0; i<R1; i++)
{for(j=0; j<C2; j++) 
 { col = *matrix2->cells + j;
 row = *matrix1->cells + i*C1;
 sum = 0.0;
 for(k=0; k<C1; k++, col += C2, row++)
 sum += (*row)*(*(col));
 *(y + i*C2 +j) = sum;
 }
}
}
Listing:  DTypeVectorObject.c

/*------ DataType Vector ----------------------*/

#include “Neural Network.h”
#include <math.h>

/*-------------------- 
Compute the L2 norm of a vector
*/
double L2Norm(vec)
DTypeVector * vec;
{
register int i;
register int N = vec->rows;
register double norm = 0.0;
register DataType * cell = *vec->cells;

for(i=0; i<N; i++, cell++)
 norm += pow((double)*cell,2.0);
 
return(norm);
}

/*--------------------
Multiply vector 1 by vector 2 and return answer as scaler.
*/
DataType Vec_by_Vec(vec1,vec2)
DTypeVector * vec1;
DTypeVector * vec2;
{
register int i;
register DataType * cell1;
register DataType * cell2;
register DataType ans;
 
ans = 0.0;
cell1 = *vec1->cells;
cell2 = *vec2->cells;
for(i=0; i<vec1->rows; i++, cell1++, cell2++)
 ans += (*cell2)*(*cell1);
return(ans);
}
/*--------------------
 Copy vector vec1 to vec2.
*/
CopyDTypeVector(vec1,vec2)
DTypeVector * vec1;
DTypeVector * vec2;
{
register int i;
register DataType * cell1;
register DataType * cell2;
 
cell1 = *vec1->cells;
cell2 = *vec2->cells;
for(i=0; i<vec1->rows; i++, cell1++, cell2++)
 *cell2 = *cell1;
}

AllotDTypeVector(vector,r)
DTypeVector * vector;
intr;
{
vector->rows = r;
vector->cells = (DataType **) NewHandle( r*sizeof(DataType) );
if(!vector->cells) HandleOutOfMem();
}

DisplayDTypeVector(vector)/* clear vector */
DTypeVector *  vector;  /* address of vector record      */
{
inti;
DataType * cell;
 
HLock(vector->cells);
 
cell = *vector->cells;
for(i=0; i<vector->rows; i++) 
{
 printf(“(%.5le)  “,cell[i]);
}
printf(“\n”);

HUnlock(vector->cells); 
}

WriteVectorToFile(file,vector)
FILE * file;
DTypeVector * vector;
{
inti;
DataType * cell;
 
HLock(vector->cells);
 
cell = *vector->cells;
for(i=0; i<vector->rows; i++) 
{
 fprintf(file,”  %.5lf  “,cell[i]);
}
fprintf(file,”\n”);

HUnlock(vector->cells); 
}

ClearDTypeVector(vector)
DTypeVector *  vector;  /* address of matrix record
 */
{
inti;
DataType * cell;
 
HLock(vector->cells);
 
cell = *vector->cells;
for(i=0; i<vector->rows; i++) 
{
 cell[i] = 0.0;
}
HUnlock(vector->cells);
}
Listing:  Gradient Methods.c

#include “Neural Network.h”
#include <math.h>

extern FILE * Jac;

extern NeuralNet * theNet;
extern DTypeVector yData;
extern DTypeMatrix XData;
extern DTypeVector Alpha[];
extern DTypeMatrix  Jac_T;
extern DTypeVector Pi;
extern DTypeVector Diag;
extern DTypeVector Resid;
extern DTypeVector dSquash[];
extern DTypeVector gradSS;
extern DTypeMatrix  Phi, T2;

static unsigned inttotparms;
/*total parms in model,set by AllotGradientWorkSpace()*/

/*------------------------
Find parameter values that minimize sum of squares, uses line search 
method.
Expects:
 1. tolerance values gradtol, steptol; which are stored in NeuralNet 
structure.
 2. validly defined and alloted NeuralNet structure.
 3. input data in matrix XData and output data values in vector yData. 
Returns termcode FAIL if current parm value is not an 
 approximate critical point  
 METGRADTOL if norm of scaled gradient less than gradtol
 METSTEPTOL if scaled step is less than steptol
 LINEFAIL if linesearch failed to find next parm   
 distinct from current value
 EXCEDITNLIM if iteratation limit exceeded
 SINGJAC if Jacobian is singular
*/
do_GaussNewton()
{
int itncount = 0;/* start iteration count at zero */
int termcode = FAIL;
int retcode;
int sing; /* flag for singularity of Jacobian */
double SS = 0;
 
while(termcode == FAIL)
{itncount += 1;  /* increment iteration count */
 SS = Compute_SS_Jac();
 Matrix_by_Vec(&Jac_T, &Resid, &gradSS); 
 
 sing = OLSbyQRmethod(&Jac_T,&Pi,&Diag,&Resid);
 
 if(sing)
 termcode = SINGJAC;
 else
 { SaveParms(&Pi); 
 if(theNet->usemaxstep == TRUE)
 ConstrainStep();
 retcode = LineSearch(&SS);
 termcode = StopYet(SS,retcode,itncount);
 }
 }/* end of while(termcode == FAIL) */
return(termcode);
}

/*------------------------
 Find parameter values that minimize sum of squares, uses quasi Gauss-Newton 
method combined with line search.  Adds a nonsingular diagonal matrix 
to Jacobian to overcome singularity problems.  Takes more memory than 
Gauss-Newton. Similar to Levenberg-Marquardt but trust region is a constant 
since only trying to fix singularity of Jacobian problem.
Expects:
 1. tolerance values gradtol, steptol; which are stored in NeuralNet 
structure.
 2. validly defined and alloted NeuralNet structure.
 3. input data in matrix XData and output data values in vector yData.
 4. total number of parameters for model in “totparms”.
Returns termcode 
 FAIL if current parm value is not an approximate  
 critical point 
 METGRADTOL if norm of scaled gradient less than gradtol
 METSTEPTOL if scaled step is less than steptol
 LINEFAIL if linesearch failed to find next parm   
 distinct from current value
 EXCEDITNLIM if iteratation limit exceeded
 NETSAT if network is possibly oversaturated
*/
do_quasiGaussNewton()
{
int i;
int itncount = 0;/* start iteration count at zero */
int termcode = FAIL; 
int retcode;
int sing; /* flag for singularity of Jacobian */
double SS = 0;
 
while(termcode == FAIL)
{itncount += 1;  /* increment iteration count */
 ClearDTypeMatrix(&Jac_T);
 SS = Compute_SS_Jac(); 
 AppendResidZeros(); 
 AppendMuIdentity();
 ComputegradSSforqGN(); 
 sing = OLSbyQRmethod(&Jac_T,&Pi,&Diag,&Resid);    
 if(sing)
 termcode = NETSAT;
 else
 { SaveParms(&Pi); 
 if(theNet->usemaxstep == TRUE)
 ConstrainStep();
 retcode = LineSearch(&SS);
 termcode = StopYet(SS,retcode,itncount);
 }
 } /* end of while(termcode == FAIL) */
 return(termcode);
}

/*------------------------
 Append zeros to the Resid vector.
*/
static AppendResidZeros()
{
int i;
DataType * v;

v = *Resid.cells + XData.rows;
for(i=0; i<totparms; i++, v++)
 *v = 0.0;
}

/*------------------------
Special function to compute gradient for quasi Gauss-Newton method.
*/
static ComputegradSSforqGN()
{
register inti;
register intj;
register intR; /* number of rows in matrix   */
register intC; /* number of columns in matrix */
register DataType temp;
register DataType * y;
register DataType * row;
register DataType * vec;

R = Jac_T.rows;
C = Jac_T.cols;
vec = *Resid.cells;
y = *gradSS.cells;
for(i=0; i<R; y++, i++)
{row = *Jac_T.cells + i*C;
 temp = (*row)*(*vec);
 for(j=1; j<XData.rows; j++)
 temp += (*(row+j))*(*(vec+j));
 *y = temp;
}
}

/*------------------------
Append a matrix Mu times the Identity matrix to the Jacobian.
*/
static AppendMuIdentity()
{
register int i,j;
register DataType * jcell;
register DataType MuI = .001;
 
for(i=0; i<totparms; i++)
{jcell = *Jac_T.cells + XData.rows + i*Jac_T.cols;
 for(j=0; j<i; j++, jcell++)
 *jcell = 0.0;
 *jcell = MuI; 
 j++ , jcell++;
 for(; j<totparms; j++, jcell++)
 *jcell = 0.0;
}
}

/*----------------------
Constrain the step of a Gauss-Newton or quasi Gauss-Newton method.
*/
static ConstrainStep()
{
register int i;
register int N = Diag.rows;
register double snorm = 0.0;
register double pnorm = 0.0;
register DataType * cell;
register double K;
 
cell = *Diag.cells;
for(i=0; i<N; i++, cell++)
 snorm += pow((double)*cell,2.0);
cell = *Pi.cells;
for(i=0; i<N; i++, cell++)
 pnorm += pow((double)*cell,2.0);
K = (theNet->maxrelstep*pnorm/snorm) + (theNet->maxstep/sqrt(snorm));
cell = *Diag.cells;
for(i=0; i<N; i++, cell++)
 *cell = (*cell)*K;
}

/*----------------------
Alg A6.3.1 of Dennis and Shanabel.
Expects full Gauss-Newton step in vector Diag.
Must set the SS value.
Returns retcode = LINEOK if satisfactory new parm value found
 = LINENOTOK if can’t find a step small 
 enough to reduce SS 
*/
static LineSearch(ss_)
double * ss_;  /* pointer to value of Sum of Squares */
{
double ss;/* value of Sum of Squares */
double minlambda;
double initslope;/* initial slope of SS function */
double lambda = 1.0; 
int retcode = 2; /* return code for search */
double a = .0001;

initslope = -Vec_by_Vec(&gradSS,&Diag);
minlambda = Compute_minlambda();
SaveParms(&Pi);
while(retcode > 1) 
{
 UpdateParms(lambda);
 ss = Compute_SS();
 if(ss < *ss_ + a*lambda*initslope)
 { retcode = LINEOK;
 *ss_ = ss;
 }
 else if(lambda < minlambda)
 { retcode = LINENOTOK;
 RestoreParms(&Pi);
 }
 else 
 lambda = .1*lambda;
 }
return(retcode);
}

/*----------------------
Update weight params by lambda times step given in vector Diag.
Expects old weight values to be in the vector Pi.
*/
static UpdateParms(lambda)
DataType lambda;
{
int j,k,N;
DataType * p;  /* pointer to step value */
DataType * w_; /* pointer to previous weight values */
DataType * w;  /* pointer to weight matrix */
 
p = *Diag.cells;
w_ = *Pi.cells;
for(j=0; j<theNet->OutLayer; j++)
{N = (theNet->W[j].rows)*(theNet->W[j].cols);
 w = *theNet->W[j].cells;
 for(k=0; k<N; k++, w++, w_++, p++)
 *w = *w_ - lambda*(*p);
}
}
 
/*------------------------
Determine if should stop searching for minimum.
Expects step in vector Diag.
Returns termcode 
 FAIL if current parm value is not an approximate  
 critical point 
 METGRADTOL if norm of scaled gradient less than   
 gradtol
 METSTEPTOL if scaled step is less than steptol
 LINEFAIL if linesearch failed to find next parm   
 distinct from current value
 EXCEDITNLIM if iteratation limit exceeded
*/
static StopYet(ss,retcode,itncount)
double ss;
int retcode;/* return code from LineSearch() */
int itncount;  
{
int j,k,N;
DataType * v;  
DataType * w;  /* pointer to cell of weight matrix */
double rel = 0.0;/* hold value of relative gradient */
double max = 0.0;
inttermcode = FAIL;
 
if (retcode == LINENOTOK) 
 termcode = termcode | LINEFAIL;
 
/*---- First check for zero gradient ----*/
v = *gradSS.cells;
for(j=0; j<theNet->OutLayer; j++)
{N = (theNet->W[j].rows)*(theNet->W[j].cols);
 w = *theNet->W[j].cells;
 for(k=0; k<N; k++, v++, w++)
 { rel = fabs((double)((*v))*(fabs((double)(*w))/ss));
 max = (max < rel) ? rel : max;
 }
}
if (max < theNet->gradtol) termcode =(termcode | METGRADTOL);
 
/*---- Second check for zero step ----*/
v = *Pi.cells;
max = 0.0;
for(j=0; j<theNet->OutLayer; j++)
{N = (theNet->W[j].rows)*(theNet->W[j].cols);
 w = *theNet->W[j].cells;
 for(k=0; k<N; k++, v++, w++)
 { rel = fabs(((double)(*v-*w))/((double)(*w)));   /* don’t need abs(ss) 
since ss is always positive */
 max = (max < rel) ? rel : max;
 }
}
if (max < theNet->steptol) termcode =(termcode | METSTEPTOL);
 
if (itncount > theNet->itnlimit) termcode = (termcode | EXCEDITNLIM);

return(termcode);
}
 
/*----------------------
Compute the minimum lambda allowed for line search.
Any lambda value lower than this value would meet the stop criteria for 
minimum step anyway.
*/
static double Compute_minlambda()
{
int j,k,N;
DataType * p;
DataType * w;  /* pointer to cell of weight matrix */
double rellength = 0.0; 
double maxrel = 0.0;

p = *Diag.cells;
for(j=0; j<theNet->OutLayer; j++)
{N = (theNet->W[j].rows)*(theNet->W[j].cols);
 w = *theNet->W[j].cells;
 for(k=0; k<N; k++, p++, w++)
 { rellength = fabs((double)((*p)/(*w)));    
 if (maxrel < rellength) maxrel = rellength;
 }
}
rellength = theNet->steptol/maxrel;/* just using rellength to calculate 
return value */
return(rellength);
}

/*----------------------
Allot memory for data structures used by the Jacobian matrix and other 
structures used in minimization. Physical storage of Jacobian is as the 
transpose. Requires # observations from the data structure. Since is 
always run before method, also sets the totparms variable.
*/
AllotGradientWorkSpace()
{
int i;
int mxprms = 1;
 
totparms = 0;    
 
for(i=0; i<theNet->OutLayer; i++)
{totparms += (theNet->Units[i+1])*(theNet->Units[i]);
 
 AllotDTypeVector(&Alpha[i], theNet->Units[i]);
 AllotDTypeVector(&dSquash[i], Alpha[i].rows);
 if(Alpha[i].rows > mxprms) mxprms =  Alpha[i].rows;
 }
 AllotDTypeVector(&(Alpha[theNet->OutLayer]), 1);
 if (theNet->method == qGaussNew)
 { AllotDTypeMatrix(&Jac_T, totparms, XData.rows+totparms);
 AllotDTypeVector(&Resid,XData.rows+totparms);
 }
 else
 { AllotDTypeMatrix(&Jac_T,totparms,XData.rows);
 AllotDTypeVector(&Resid,XData.rows);
 }
 AllotDTypeVector(&Pi,totparms);
 AllotDTypeVector(&Diag,totparms);
 AllotDTypeVector(&gradSS,totparms);
 AllotDTypeMatrix(&Phi,1,mxprms);
 AllotDTypeMatrix(&T2,1,mxprms);
}

LockGradientWorkSpace()
{
 HLock(Resid.cells);
 HLock(Jac_T.cells);
 HLock(Pi.cells);
 HLock(Diag.cells);
 HLock(gradSS.cells);
 HLockNet();
}

UnlockGradientWorkSpace()
{
 HUnlock(Resid.cells);
 HUnlock(Jac_T.cells);
 HUnlock(Pi.cells);
 HUnlock(Diag.cells);
 HUnlock(gradSS.cells);
 HUnlockNet();
}
Listing:  Ord Least Squares.c

#include “Neural Network.h”
#include <math.h>

extern FILE * Jac;

/*------------------------
Compute the next step of iteration by solving linear system.
*/
OLSbyQRmethod(X,P,D,Y)
DTypeMatrix * X;/* pointer to transpose of explanatory data */
DTypeVector * P;/* pointer to Pi vector */
DTypeVector * D;/* pointer to Diag vector */
DTypeVector * Y;/* pointer to vector of dependent variables*/
{
int sing;

sing = QRDecomposition(X,P,D);
if(sing==FALSE)
{ComputeQY(X,P,Y);
 SolveRbY(X,D,Y);
}
return(sing);
}


/*------------------------
Compute Q*Y to get dependent variable for triangularized system, where 
Q=U(N)*U(N-1)*...*U(1), is the product of N elementary reflecting matrices. 
Uses output from QR decomposition.
*/
ComputeQY(Q,P,Y)
DTypeMatrix * Q;
DTypeVector * P;
DTypeVector * Y; /* vector of dependent values */
{
register inti;
register intk; 
register intM; 
register intN;
register DataTypesum;
register DataType* u;
register DataType* y;
register DataType* pi;
 
HLock(Q->cells);
HLock(P->cells);
HLock(Y->cells);
 
M = Q->cols;
N = Q->rows;
pi = *P->cells;
y = *Y->cells;

for(i=0; i<N; i++, pi++)
{u = *Q->cells +i*M;
 sum = 0.0;
 for(k=i; k<M; k++)
 sum += u[k]*y[k];
 sum = sum/(*pi);
 for(k=i; k<M; k++)
 y[k] -= sum*u[k];
}
 
HUnlock(Q->cells);
HUnlock(P->cells);
HUnlock(Y->cells);
}

/*------------------------
Algorithm 3.1.3 of Stewart. Solve linear system Rb=y for b, where R is 
an upper triangular nonsingular matrix.
R is stored as its transpose so R(i,j) is at jth row, ith column. The 
diagonal terms are in seperate vector D as described in Algorithm 5.3.8 
of Stewart.  Answer is returned in vector D.
*/
SolveRbY(R,D,Y)
DTypeMatrix * R;
DTypeVector * D;
DTypeVector * Y;
{
DataType  * r;
register inti;
register intj; 
register intM; 
register intN;
register DataType * b;/* pointer to parameter values */
register DataType * y;
register DataType sum;
register DataType * temp;
 
HLock(R->cells);
HLock(D->cells);
HLock(Y->cells);
 
r = *R->cells;
M = R->cols;
N = D->rows;
b = *D->cells;
y = *Y->cells;
for(i=N-1; i>-1; i--)
{sum = 0.0;
 for(j=i+1,temp = r+i+j*M; j<N; j++, temp = temp + M)
 sum += (*temp)*b[j];
 b[i] = (y[i]-sum)/b[i];
}
 
HUnlock(R->cells);
HUnlock(D->cells);
HUnlock(Y->cells);
}

/*--------------------
QR decomposition algorithm, see Algorithm 3.8 in Introduction to matrix 
Computations by G. Stewart, also Algorithm A3.2.1 in Numerical Methods 
for Unconstrained Optimization and Nonlinear Equations by Dennis and 
Shnabel.  Used to solve linear system Ax=b, where A is (MxM), x is (Nx1). 
For coding efficiency the input matrix A is the transpose of the matrix 
given in the statement of the algorithm available in above references. 
Assumes more observations than parameters, ie M>N.
*/

QRDecomposition(A,P,D)
DTypeMatrix * A; 
DTypeVector * P, * D;
{
register int k, j, i;
register intN;   /* number of rows in A*/
register intM;   /* number of columns in A */
int sing = FALSE;/* flag for singular A matrix */
DataType * kth_col;
DataType * pi; /* pointer to array for the pi values */
register DataType * diag;
register DataType * alpha;
register DataType * temp; /* temporary pointer */
register DataType sign;
register DataType aida, sigma, tau;
 
HLock(A->cells);
HLock(P->cells);
HLock(D->cells);
kth_col  = *A->cells;/* start off in row zero */
N = A->rows;
M = A->cols;
pi = *P->cells;
diag = *D->cells;
for(k=0; k<N; k++, kth_col = kth_col + M, pi++, diag++)
{
 aida = 0.0;/* initialize max abs value to zero */
 temp = kth_col+k;
 for(i=k; i<M; i++, temp++ )
 { tau = fabs(*temp);/* calculate aida */
 if(aida < tau) aida = tau;
 }
 if(aida == 0.0)
 { *pi = 0.0;  /* column is already triangular */
 *diag = 0.0;
 sing = TRUE;
 }
 else
 { 
 for(i=k, alpha = kth_col + k; i<M; i++, alpha++)
 *alpha = (*alpha)/aida;
 sigma = 0.0;
 temp = kth_col+k;
 if(*temp>0) sign = 1;/* calculate sign term */
 else sign = -1;
 for(i=k; i<M; i++, temp++ )
 sigma += (*temp)*(*temp);
 sigma = sign*sqrt(sigma);
 *(kth_col + k) += sigma;
 *pi = (*(kth_col+k))*sigma;
 *diag = -aida*sigma;

 for(j=k+1; j<N; j++)
 { 
 temp =kth_col+k;alpha=kth_col+k + (j-k)*M;
 tau = 0.0;
 for(i=k; i<M; i++, alpha++, temp++)
 tau += (*temp)*(*alpha);
 tau = tau/(*pi);
 temp =kth_col+k;
 alpha=kth_col+k + (j-k)*M;
 for(i=k; i<M; i++, alpha++, temp++)
 *alpha -= (*temp)*tau;
 }
 }
 }
HUnlock(A->cells);
HUnlock(P->cells);
HUnlock(D->cells);
return(sing);
}

WriteYXToFile(jac,vector,matrix)
FILE * jac;
DTypeVector * vector;
DTypeMatrix * matrix;
{
inti,j;
DataType * mcell;
DataType * vcell;
 
HLock(matrix->cells);
HLock(vector->cells);
mcell = *matrix->cells;
vcell = *vector->cells;
for(j=0; j<matrix->cols; j++)
{fprintf(jac,”%.5lf“,vcell[j]);
 for(i=0; i<matrix->rows; i++)
 fprintf(jac,”%.8lf“,*(mcell + (i*matrix->cols + j)) );
 fprintf(jac,”\n”);
}
HUnlock(matrix->cells);
HUnlock(vector->cells);
}

Listing:  Search methods.c

#include “Neural Network.h”
#include <math.h>

extern FILE *    Jac;

extern NeuralNet * theNet;
extern DTypeVector yData;
extern DTypeMatrix XData;
extern DTypeVector Alpha[];
extern DTypeVector Pi;
extern DTypeVector Diag;
extern DTypeVector gradSS;

static unsigned inttotparms;
static int itncount = 0;
static double baseSS;
static double patSS;
static double RelStep;
static DTypeVector * base;
static DTypeVector * base_;

/*----------------------
Hooke and Jeeve’s method for direct search to find least squares, see 
“Methods of Optimization” by G.R. Walsh.
Expects:
 1. tolerance value steptol; stored in NeuralNet structure.
 2. validly defined and alloted NeuralNet structure.
 3. input data in matrix XData and output data values in vector yData.
 4. total number of parameters for model in “totparms”.
Returns termcode = FAIL if current parm value is not an
 approximate critical point 
  = METSTEPTOL if scaled step is less  
 than steptol
  = EXCEEDITNLIM if iteratation limit  
 exceeded
*/
do_HookeJeeves()
{
int termcode = 0;
int success;
 
base = &Pi;
base_ = &gradSS;
RelStep = 1.0;
SaveParms(&gradSS);
 
printf(“Starting Hooke and Jeeves method\n”);      
while(termcode == 0)
{patSS = Compute_SS();
 success = ExMove();
 switch(success)
 { case TRUE:
 {
 PatMove()
 break;
 }
 case FALSE:
 {
 RelStep = .5*RelStep;
 if (RelStep < theNet->steptol)
 termcode = METSTEPTOL;
 else if (itncount > theNet->itnlimit)
 termcode = EXCEDITNLIM;  
 break;
 }
 } /* end of “switch(success)” */
 } /* end of “while(termcode == 0)” */
 return(termcode);
}

/*----------------------
Pattern move where previous successful steps given in Diag and current 
weights given in Pi.
*/
PatMove()
{
int j,k,N;
int flag = 0;
double ss;
DTypeVector * temp;
DataType * w;  /* pointer to weight matrix */
DataType * b;
DataType * b_;
 
SaveParms(base);
baseSS = patSS;
do
{
/*---- install new pattern step and update patSS ----*/
 b_ = *base_->cells;
 for(j=0; j<theNet->OutLayer; j++)
 { N = (theNet->W[j].rows)*(theNet->W[j].cols);
 w = *theNet->W[j].cells;
 for(k=0; k<N; k++, w++, b_++)
 *w = 2*(*w) - *b_;
 }
 patSS = Compute_SS();

/*---- try an exploratory step from new pattern ----*/
 ExMove();

/*---- check if explore step found better point ----*/
 if(patSS<baseSS)
 { temp = base_; 
 base_ = base;
 base = temp;
 SaveParms(base);/* save weights as new base */
 baseSS = patSS; /* reset the base SS value */
 }
 else
 { RestoreParms(base);
 temp = base_;   
 base_ = base;
 base = temp;
 flag = 1;/* set flag to exit pattern move */
 }
 } while(flag < 1);
printf(“patSS = %lf \n”,patSS);
}

/*----------------------
Do the exploratory moves. Resets patSS to minimum SS value found in exploratory 
search.
Returns success = TRUE if found SS reducing change 
 = FALSE if couldn’t find SS reducing 
 change
*/
ExMove()
{
int i,j,N;
int success;
double ss;/* value of SS for an exploratory move */
double ss_; 
DataType step;
DataType * w;
 
itncount +=1;
ss_ = patSS;
for(j=0; j<theNet->OutLayer; j++)
{N = (theNet->W[j].rows)*(theNet->W[j].cols);
 w = *theNet->W[j].cells;
 for(i=0; i<N; i++, w++)
 { step = RelStep*(fabs(*w) + theNet->maxstep);
 *w = *w + step;
 ss = Compute_SS();
 if(ss<ss_)
 ss_ = ss;
 else
 { *w = *w - 2.0*step;
 ss = Compute_SS();
 if(ss<ss_)
 ss_ = ss;
 else
 { *w = *w + step;
 }
 }
 } /* end of for(i=0; k<N; i++, w++) */
} /* end of for(j=0; j<theNet->OutLayer; j++) */
success = ( ss_ < patSS ) ? TRUE : FALSE;
patSS = ss_;
return(success);
}

/*----------------------
Allot memory for Alpha, Pi, and Diag data structures.
Requires # observations from the data structure.
Since is always run before execution of method, sets totparms variable.
*/
AllotSearchWorkSpace()
{
int i;
int mxprms = 1;

totparms = 0;    
 
for(i=0; i<theNet->OutLayer; i++)
{totparms += (theNet->W[i].rows)*(theNet->W[i].cols);
 AllotDTypeVector(&Alpha[i], theNet->Units[i]);
 if(Alpha[i].rows > mxprms) mxprms =  Alpha[i].rows;
}
AllotDTypeVector(&(Alpha[theNet->OutLayer]), 1);
AllotDTypeVector(&Pi,totparms);
AllotDTypeVector(&Diag,totparms);
AllotDTypeVector(&gradSS,totparms);
}

LockSearchWorkSpace()
{
HLock(Pi.cells);
HLock(Diag.cells);
HLock(gradSS.cells);
HLockNet();
}

UnlockSearchWorkSpace()
{
HUnlock(Pi.cells);
HUnlock(Diag.cells);
HUnlock(gradSS.cells);
HUnlockNet();
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Apple iOS 10.2.1 - The latest version of...
iOS 10 is the biggest release of iOS ever. A massive update to Messages brings the power of the App Store to your conversations and makes messaging more personal than ever. Find your route with... Read more
Apple Security Update 2016-003 Supplemen...
Apple Security Update is recommended for all users and improves the security of OS X. For detailed information about the security content of this update, please visit: http://support.apple.com/kb/... Read more
Apple macOS Sierra 10.12.3 - The latest...
With Apple macOS Sierra, Siri makes its debut on Mac, with new features designed just for the desktop. Your Mac works with iCloud and your Apple devices in smart new ways, and intelligent... Read more
BetterTouchTool 1.992 - Customize Multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom... Read more
Viber 6.5.5 - Send messages and make cal...
Viber lets you send free messages and make free calls to other Viber users, on any device and network, in any country! Viber syncs your contacts, messages and call history with your mobile device, so... Read more
Opera 42.0.2393.137 - High-performance W...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
iClock Pro 3.4.7 - Customize your menuba...
iClock Pro is a menu bar replacement clock for Apple's default clock. iClock Pro is an update, total rewrite and improvement to the popular iClock. Have the day, date and time in different fonts and... Read more
PhotoDesk 4.1.5 - Instagram client for p...
PhotoDesk lets you view, like, comment, and download Instagram pictures/videos. (NO Uploads! / Image Posting! Instagram forbids that! AND you need an existing Instagram account). But you can do so... Read more
Capo 3.5.1 - Slow down and learn to play...
Capo lets you slow down your favorite songs so you can hear the notes and learn how they are played. With Capo, you can quickly tab out your songs atop a highly-detailed OpenCL-powered spectrogram... Read more
HandBrake 1.0.2 - Versatile video encode...
HandBrake is a tool for converting video from nearly any format to a selection of modern, widely supported codecs. Features Supported Sources VIDEO_TS folder, DVD image or real DVD (unencrypted... Read more

Collect pets and sling arrows in Arcane...
Mobile gaming is a crowded market, but regular updates are a good way to keep us attention-short players keen. The brand new content in Arcane Online is a prime example. Published by Japanese developer Gala, Arcane Online is a fantasy MMO that... | Read more »
Super Mario Run dashes onto Android in M...
Super Mario Run was one of the biggest mobile launches in 2016 before it was met with a lukewarm response by many. While the game itself plays a treat, it's pretty hard to swallow the steep price for the full game. With that said, Android users... | Read more »
WarFriends Beginner's Guide: How to...
Chillingo's new game, WarFriends, is finally available world wide, and so far it's a refreshing change from common mobile game trends. The game's a mix of tower defense, third person shooter, and collectible card game. There's a lot to unpack here... | Read more »
Super Gridland (Entertainment)
Super Gridland 1.0 Device: iOS Universal Category: Entertainment Price: $1.99, Version: 1.0 (iTunes) Description: Match. Build. Survive. "exquisitely tuned" - Rock Paper Shotgun No in-app purches, and no ads! | Read more »
Red's Kingdom (Games)
Red's Kingdom 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Mad King Mac has kidnapped your father and stolen your golden nut! Solve puzzles and battle goons as you explore and battle your... | Read more »
Turbo League Guide: How to tame the cont...
| Read more »
Fire Emblem: Heroes coming to Google Pla...
Nintendo gave us our first look at Fire Emblem: Heroes, the upcoming mobile Fire Emblem game the company hinted at last year. Revealed at the Fire Emblem Direct event held today, the game will condense the series' tactical RPG combat into bite-... | Read more »
ReSlice (Music)
ReSlice 1.0 Device: iOS Universal Category: Music Price: $9.99, Version: 1.0 (iTunes) Description: Audio Slice Machine Slice your audio samples with ReSlice and create flexible musical atoms which can be triggered by MIDI notes or... | Read more »
Stickman Surfer rides in with the tide t...
Stickson is back and this time he's taken up yet another extreme sport - surfing. Stickman Surfer is out this Thursday on both iOS and Android, so if you've been following the other Stickman adventures, you might be interested in picking this one... | Read more »
Z-Exemplar (Games)
Z-Exemplar 1.4 Device: iOS Universal Category: Games Price: $3.99, Version: 1.4 (iTunes) Description: | Read more »

Price Scanner via MacPrices.net

Deal alert! 13-inch 2.0GHz MacBook Pros for $...
B&H Photo has the new 2016 13″ 2.0GHz non-Touch Bar MacBook Pros in stock today and on sale for $225 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.0GHz MacBook Pro... Read more
Free LibreOffice Portable 5.2.4 Complete Offi...
PortableApps.com and The Document Foundation have announce the release of LibreOffice Portable 5.2.4. LibreOffice Portable is an Open Source full-featured office suite — including a word processor,... Read more
Apple Planning Three New Tablets For 2017 – D...
Digitimes’ Rebecca Kuo and Joseph Tsai say that unnamed insider sources report Apple having three new tablets in the pipeline for 2017 release: a 9.7-inch model with a friendly price range, a new mid... Read more
Roundup of 15-inch Touch Bar MacBook Pro sale...
B&H Photo has the new 2016 15″ Apple Touch Bar MacBook Pros in stock today and on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.7GHz Touch Bar... Read more
Apple refurbished iPad Pros available for up...
Apple has Certified Refurbished 9″ and 12″ Apple iPad Pros available for up to $160 off the cost of new iPads. An Apple one-year warranty is included with each model, and shipping is free: - 32GB 9″... Read more
16GB iPad Air 2, Apple refurbished, available...
Apple has Certified Refurbished 16GB iPad Air 2s available for $319 including free shipping. A standard Apple one-year is included. Their price is $60 off original MSRP for this model. Read more
Apple iMacs on sale for up to $120 off MSRP
B&H Photo has 21″ and 27″ Apple iMacs on sale for up to $120 off MSRP, each including free shipping plus NY sales tax only: - 27″ 3.3GHz iMac 5K: $2199 $100 off MSRP - 27″ 3.2GHz/1TB Fusion iMac... Read more
Apple refurbished Apple TVs available for up...
Apple has Certified Refurbished 32GB and 64GB Apple TVs available for up to $30 off the cost of new models. Apple’s standard one-year warranty is included with each model, and shipping is free: -... Read more
Save up to $350 with Apple Certified Refurbis...
Apple has Certified Refurbished 2015 21″ & 27″ iMacs available for up to $350 off MSRP. Apple’s one-year warranty is standard, and shipping is free. The following models are available: - 21″ 3.... Read more
2015 12-inch Retina MacBooks, Apple refurbish...
Apple has Certified Refurbished 2015 12″ Retina MacBooks available for up to $410 off original MSRP. Apple will include a standard one-year warranty with each MacBook, and shipping is free. The... Read more

Jobs Board

*Apple* & PC Desktop Support Technician...
Apple & PC Desktop Support Technician job in Stamford, CT We have immediate job openings for several Desktop Support Technicians with one of our most well-known Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Site Security Manager - Apple (Unite...
# Apple Site Security Manager Job Number: 54692472 Culver City, California, United States Posted: Jan. 19, 2017 Weekly Hours: 40.00 **Job Summary** The Apple Read more
*Apple* macOS Systems Integration Administra...
…most exceptional support available in the industry. SCI is seeking an Junior Apple macOS systems integration administrator that will be responsible for providing Read more
*Apple* Retail - Multiple Positions- Deer Pa...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.