TweetFollow Us on Twitter

Fine Tune MPW
Volume Number:6
Issue Number:7
Column Tag:Mac Workshop

Fine Tuning Code With MPW

By Allen Stenger, Gardena, CA

Tuning with MPW

[Allen Stenger works on the F-15 radar software for Hughes Aircraft Co. His technical interests are software reliability, computer architecture, and computer languages. Programming the Macintosh has been his hobby for the past five years.]

The Macintosh Programmer’s Workshop documentation does a good job of describing how to use the performance analysis tools, but it does not explain what to do with the results. This article is a tutorial on how to tune a program with MPW, using the performance reports as a guide to which areas of the program are most in need of improvement.

For the example program we will use a dragon-curve drawer. This is an example in the Smalltalk books, and Listing 1 is a straightforward translation of the Smalltalk-80 program into SemperSoft Modula-2. This straightforward program takes about 8 seconds (477 ticks) to draw the dragon. This is not extremely slow, but one imagines that it could be done faster. In fact, we will be able to get a 16-times speedup with some simple transformations, and by being a little trickier we will get a 22-times speedup.

This is an artificial example, for a couple of reasons. First, for any imaginable use to which DrawDragon might be put, its present performance is adequate--there is no practical value to speeding it up. Second, the MPW tools would normally be applied to much larger programs, and are in some ways an overkill for this simple example.

Speculations

We will start out with some speculations on the causes of the slowness of the straightforward dragon. After doing the tuning we will revisit these and see how good our intuition was.

From inspecting the code, one might generate a list of possible “problem areas” such as the following:

Use of recursion. According to the folklore of programming, recursive programs are slow, and certainly the Dragon procedure seems to spend most of its time calling itself rather than doing any useful work.

Use of high-order language. Traditionally, in order to get the highest performance, one must write in assembly language. The SemperSoft compiler is a one-pass compiler, and presumably does little optimization.

Use of range-checking. This example is compiled with checks on, which in some programs can cause a significant slowdown.

Use of floating-point. This example was run on a Macintosh Plus, which has no floating-point hardware and does all floating point in software.

Graphics operations. These typically take a lot of CPU time. (There might not be much we can do about this one, since the program’s whole purpose is to draw on the screen.)

Tuning -- Preparation

We can instrument the dragon program following the recipes in the MPW manual, Chapter 14 (the method is the same regardless of language, although the interface details vary slightly). Here we will only change the calling program, DrawDragon, and leave the other modules undisturbed. Since the performance measurements are done by random sampling of the program counter, the whole program will be instrumented merely by starting the measurement at the beginning of the run and ending it at the end - it is not necessary to modify each routine. The instrumented DrawDragon module is shown in Listing 2.

The performance analyzer yields an execution “profile” of the program, characterizing it by where it spends its time. It is usually only helpful to look at the top five routines - everything below that takes such a small amount of time that, even if we could eliminate a routine totally, it would have a negligible effect on the timing. Here, on our first run, we need only look at the #1 routine, since it takes 72.6% of the time (total time for the program is 493 ticks). This is the Pack4 routine, which is not in the Dragon program -- it is the SANE floating-point routines, as may be looked up in Inside Macintosh. So our first tuning step is to reduce the amount of time spent doing floating-point work.

Tuning -- First Pass

Some people (particularly FORTH fans) advocate doing no floating point at all, but using instead scaled integer arithmetic. For most programs, eliminating floating point altogether would be a drastic operation. For our little DrawDragon program it is not so bad, but let’s see what else we could do first. Unfortunately the report does not break down the floating-point operations used, but by examining the code we see that each line drawn requires 2 integer-to-float conversions, 2 float-to-integer conversions, 3 floating-point multiplies, and 1 each sine and cosine. It seems likely that most of the floating-point time is spent on the sine and cosine, with the multiplies coming in a distant second. Further examination of the program reveals that sine and cosine are called with only 4 possible arguments (0, 90, 180, and 270 degrees), so this suggests the use of a look-up table storing the values of sine and cosine for these arguments.

Making this change and re-running the program and reports shows that this does cause a large speedup - the timing is now 86 ticks, or 5.7 times faster. The top item on the performance report is still Pack4 with 41.6%, so our next step is to try to eliminate still more floating-point operations.

Tuning -- Second Pass

After scrutinizing the improved program some more, we may remember that the reason we put in the sines and cosines in the first place was to handle drawing of lines at arbitrary angles. For the 4 angles that we actually use, the sines and cosines have integer values, so (for our particular case) there is no need for floating point anyway! We therefore make a simple re-coding of the Go procedure to do all calculations as integers. (Since the routine is now getting faster, there are not enough program-counter samples to get a good breakdown of where the time is spent, so we will also draw the dragon 10 times in a loop and divide by 10 to get the time per dragon.) Upon re-running this, we find that the time has decreased to 30 ticks (2.9 times faster), and the top 5 routines in the performance report are all QuickDraw routines and comprise 73.2% of the time. Further improvement seems to depend on inventing some way of drawing lines faster than QuickDraw can, which seems a dim hope.

Tuning -- Third Pass

Surprisingly, this is possible, in the special case we are dealing with (which has only horizontal and vertical lines). By trying some separate timing tests, it appears that our lines can be drawn in 1/3 less time by using FillRect rather than Line. Implementing this leads to a program which runs in 22 ticks (1.4 times faster), for an overall improvement over the straightforward Dragon of 22:1. This speedup requires changes to only one routine, Go. The revised Pen module is shown in Listing 3.

Speculations Inspected

The big winners among our speculations were floating point and graphics operations. Floating point took up most of the time in the original program, and by eliminating it we were able to get most of the speedup. Graphics operations take up most of the remaining time, and although we made some reduction in this, it seems unlikely that there is much more we can do. Possibly we could do something sneaky such as building the whole picture in memory without using graphics operations, then copying it to the screen with CopyBits; but this would be very complicated and perhaps not much of an improvement. (One of the hardest parts of tuning is knowing when to stop. Most programs can be improved indefinitely, but they gradually get more complicated and error-prone.)

The issue of recursion turned out to be a red herring. The total time spent in the Dragon procedure is only 3.9% of the total, and this includes the recursive calls. Recursion has a bad reputation, for two reasons. First is the bad recursion examples often given in textbooks (usually factorials or Fibonacci numbers), which can be done more simply and faster by iteration. Second, in some older languages and implementations, either there is no recursion in the language, so it must be simulated by the program (FORTRAN), or it is treated as a special case (JOVIAL, PL/I) and really is much slower because it requires a special dynamic allocation of variables rather than the normal static allocation. In more modern languages such as Pascal or Modula-2, all variables are dynamically allocated and recursive calls are no different (and therefore no slower) than other calls.

The impact of using a high-order language or of range checking varies a great deal depending on the program and on the language implementation. In this example most of the time was taken by things outside the generated code, which seems to be inherent in the particular problem being solved and not likely to be affected much by the implementation language. In the final version of the program, the Modula-2 routines take a total of only 13.3%, so re-writing in assembly or taking out the range checks could not possibly save more than this. The typical Macintosh application tends to consist mainly of calls to the Toolbox, interspersed with occasional calculations, so the timing of a tuned program tends to be dominated by the Toolbox time and does not depend greatly on the implementation language. For programs such as spreadsheets and compilers this is not true, since they really do spend a great deal of time on internal calculations, but it is true of most applications.

Conclusion

By applying the MPW performance analysis tools and making the improvements suggested by the program profile, we were able to speed up the dragon-drawer 22 times. The value of the execution profile is in telling us what not to look at. Most of a program’s execution time is spent in a few very places, and we should concentrate our efforts on those few places. (In Quality Control this is called the principle of the “vital few and the trivial many.”) Profiles are more valuable for large programs, since there is more to ignore there. In any case, success in tuning depends on measurement.

For Further Reading

Jon Louis Bentley, Writing Efficient Programs. Prentice-Hall, 1982. An excellent book on tuning; of value both to the professional programmer and the hobbyist. Our Dragon example illustrates his principles Space-For-Time Rule 2 -- Store Precomputed Results (sine and cosine tables), and Procedure Rule 2 -- Exploit Common Cases (eliminate floating-point since not needed in our case, and use FillRect for faster horizontal and vertical line drawing). He gives many other principles which we did not have a chance to use. In the beginning of the book he goes through 10 steps of optimizing an Approximate Travelling-Salesman Tour to get an overall improvement of 17:1.

Adele Goldberg and David Robson, Smalltalk-80: The Language and Its Implementation. Addison-Wesley, 1983. The source of the Dragon program (on pp. 372-3).

Donald E. Knuth, “An Empirical Study of FORTRAN Programs”, Software--Practice and Experience, v. 1 (1971), pp. 105-133. Source of the term “profile.” This article is written from the viewpoint of a compiler developer, and considers several levels of optimization which can be applied to programs. Many examples of optimization.

Mike Morton, “Faster Bitmap Rotation”. MacTutor, v. 4 (1988), no. 11, pp. 86-90 (reprinted in The Definitive MacTutor, pp. 56-60). Another example of tuning, using only the total time of the routine as a measure and yielding a speedup of 3:1. Morton was careful to measure each attempted improvement to the routine; the exact method of measurement is not important, but you must measure.

Stephen Dubin, Thomas W. Moore, and Sheel Kishore, “Using Regions in Medicine with C”. MacTutor, v. 3 (1987), no. 10, pp. 27-31 (reprinted in The Essential MacTutor, pp. 146-150). Description of re-coding a routine to calculate the area of a region from Pascal or C to assembler, yielding a 1000:1 speedup.

James Plamondon, “Finding The Area Of A Region in C” (letter). MacTutor, v. 4 (1988), no. 4 (reprinted in The Definitive MacTutor, p. 699). Criticizes the previous reference for solving the wrong problem (i.e., working very hard to get a very good estimate of the area of a region drawn freehand). Gives a faster C routine for doing a less-accurate but adequate estimate. In most applications you have some leeway in the problem you solve, and you can use this to make the solution easier and faster. We did not take advantage of this in the DrawDragon program; one speedup we might have applied is to draw the line only one pixel wide (which is about twice as fast as drawing it 4 pixels wide). Bentley (reference above) also considers this in his Approximate Travelling-Salesman Tour -- since it is only an approximate solution anyway, there is little harm in going from floating-point to slightly less accurate scaled fixed point numbers.

Source Listings

Listing 1 - Straightforward Dragon

(******************************************************)
(*   *)
(* file:  DrawDragon.m      *)
(*   *)
(* Main program to test Dragon method.   *)
(*   *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(*   *)
(* Allen Stenger August 1989    *)
(*   *)
(******************************************************)

MODULE DrawDragon;

FROM InOutIMPORT WriteLong, WriteString, Read;
FROM InsideMac   IMPORT TickCount;
FROM DragonModuleIMPORT Dragon;
FROM PenIMPORT Home;

VAR
 oldTime,
 newTime: LONGINT;
 ch     : CHAR;

BEGIN
 oldTime := TickCount();
 
 Home;
 Dragon( 8 );
 
 newTime := TickCount();
 WriteString( “Run time is “ );
 WriteLong( newTime - oldTime, 6 );
 WriteString( “ -- press space to exit “ );
 Read( ch );
END DrawDragon.

(******************************************************)
(*   *)
(* file:  DragonModule.d    *)
(*   *)
(* Implementation of Dragon method from                    *)
(* Goldberg and Robson,     *)
(* Smalltalk-80:  The Language and Its   *)
(*   Implementation, pp. 372-3.      *)
(*   *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(*   *)
(* Allen Stenger August 1989    *)
(*   *)
(******************************************************)

DEFINITION MODULE DragonModule;

PROCEDURE Dragon( order : INTEGER );

END DragonModule.

(******************************************************)
(* file:  DragonModule.m    *)
(* Dragon method - see definition module for         *)
(* description.    *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(* Allen Stenger August 1989    *)
(******************************************************)

IMPLEMENTATION MODULE DragonModule;

FROM PenIMPORT Go, Turn;

PROCEDURE Dragon( order : INTEGER );
BEGIN
 IF order = 0
 THEN 
 Go( 10 );
 ELSE
 IF order > 0
 THEN
 Dragon( order - 1 );
 Turn( 90 );
 Dragon( 1 - order );
 ELSE
 Dragon( -1 - order );
 Turn( -90 );
 Dragon( 1 + order );
 END; (* IF *)
 END; (* IF *)
END Dragon;

BEGIN
END DragonModule.

(******************************************************)
(* file:  Pen.d    *)
(* Implements some of the methods for the Pen class  *)
(* in Smalltalk-80.  *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(* Allen Stenger August 1989    *)
(******************************************************)

DEFINITION MODULE Pen;

(*
 Go in the current direction the specified distance
 (units of pixels).
*)
PROCEDURE Go( distance : CARDINAL );

(*
 Change the current direction by turning degrees 
 (positive degrees = clockwise).
*)
PROCEDURE Turn( degrees : INTEGER );

(*
 Move to original pen position.
*)
PROCEDURE Home;

END Pen.

(******************************************************)
(* file:  Pen.m    *)
(* Pen methods - see definition module for                 *)
(* descriptions.   *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(* Allen Stenger August 1989    *)
(******************************************************)

IMPLEMENTATION MODULE Pen;

FROM Terminal  IMPORT ClearScreen;
FROM InOutIMPORT Write;
FROM MathLib0  IMPORT sin, cos, entier, real, pi;
FROM InsideMac IMPORT Line, MoveTo, PenSize;

CONST
 DegreesToRadians = pi / 180.;
 (* conversion factor *)

VAR
 currentDegrees  : [0..359];
 (* direction we are
 facing -- 0 = right. *)

PROCEDURE Go( distance : CARDINAL );
VAR
 currentRadians  : REAL;
 realDistance  : REAL;
BEGIN
 currentRadians := DegreesToRadians 
 * real( currentDegrees );
 realDistance := real( distance );
 Line(  entier( realDistance 
 * cos( currentRadians ) ),
 entier( realDistance 
 * sin( currentRadians ) )
 );
END Go;

PROCEDURE Turn( degrees : INTEGER );
VAR
 tempDegrees:  INTEGER; 
BEGIN
 tempDegrees := INTEGER(currentDegrees) + degrees;
 DEC( tempDegrees, 360 * ( tempDegrees DIV 360 ) );
 IF tempDegrees < 0 
 THEN INC( tempDegrees, 360 );
 END; (* IF *)
 currentDegrees := tempDegrees;
END Turn;

PROCEDURE Home;
BEGIN
 MoveTo( 110, 200 );
 currentDegrees := 270; (* facing up *)
END Home;

BEGIN
 ClearScreen;
 Write( 0C );  (* graphics initialization kludge *)
 PenSize( 4, 4 );
END Pen.
Listing 2 - Instrumented DrawDragon module
(******************************************************)
(* Main program to test Dragon method.   *)
(* This version includes MPW performance analyzer    *)
(* calls.   *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(* Allen Stenger August 1989    *)
(******************************************************)

MODULE DrawDragon;

FROM InOutIMPORT WriteLong, WriteString, Read;
FROM InsideMac   IMPORT TickCount;
FROM PerformIMPORT InitPerf, PerfControl, 
 PerfDump, TermPerf, 
 TP2PerfGlobals;
FROM DragonModuleIMPORT Dragon;
FROM PenIMPORT Home;

VAR
 oldTime,
 newTime: LONGINT;
 ch     : CHAR;
 thePerfGlobals : TP2PerfGlobals;
 junk : BOOLEAN;

BEGIN
 (* Initialize performance measurement *)
 thePerfGlobals := NIL;
 IF InitPerf(  
 thePerfGlobals, (* measurement block *)
 20,    (* sample interval *)
 8,(* bucket size *)
 TRUE,  (* measure ROM *)
 TRUE,  (* measure application *)
 “CODE”,(* resource type to 
 measure *)
 0,(* ROM ID *)
 ‘’,    (* ROM name *)
 FALSE, (* measure RAM misses *)
 0,0,0  (* for RAM misses *)
 )
 THEN
 ELSE WriteString( “Initialization failed” );
 END; (* IF *)
 
 (* Start performance measurement *)
 junk := PerfControl( thePerfGlobals, TRUE );
 
 oldTime := TickCount();

 Home;
 Dragon( 8 );
 
 newTime := TickCount();
 
 (* End performance measurement *)
 IF 0 = PerfDump(  thePerfGlobals,
 “DrawDragon.dump”,(* dump file for 
 results *)
 FALSE, (* histograms *)
 0 (* histograms *)
 )
 THEN
 ELSE WriteString( “PerfDump failed” );
 END; (* IF *)
 TermPerf( thePerfGlobals );
 
 WriteString( “Run time is “ );
 WriteLong( newTime - oldTime, 6 );
 WriteString( “ -- press space to exit “ );
 Read( ch );
END DrawDragon.
Listing 3 - Tuned Pen module
(******************************************************)
(* file:  Pen.m    *)
(* Pen methods - see definition module for                 *)
(* descriptions.   *)
(* This version contains improvements suggested by   *)
(* running MPW performance analysis tools.                 *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(* Allen Stenger August 1989    *)
(******************************************************)

IMPLEMENTATION MODULE Pen;

FROM Terminal  IMPORT ClearScreen;
FROM InOutIMPORT Write;
FROM InsideMac   IMPORT FillRect, SetRect;
FROM InsideMac   IMPORT black, Rect;

VAR
 currentDegrees  : [0..359];
 (* direction we are
 facing -- 0 = right. *)
 currentH,
 currentV : CARDINAL;(* where situated *)
 
PROCEDURE Go( distance : CARDINAL );
CONST
 LineSize = 4;
VAR
 lineRect : Rect;
BEGIN
 CASE currentDegrees OF
 0:SetRect( lineRect, currentH, currentV, 
 currentH + distance + LineSize,
 currentV + LineSize ); 
 INC( currentH, distance ); |
 90:    SetRect( lineRect, currentH, currentV, 
 currentH + LineSize,
 currentV + distance + LineSize
 ); 
 INC( currentV, distance ); |
 180: SetRect( lineRect, currentH - distance,
 currentV, 
 currentH + LineSize,
 currentV + LineSize ); 
 DEC( currentH, distance ); |
 270: SetRect( lineRect, currentH, 
 currentV - distance, 
 currentH + LineSize,
 currentV + LineSize ); 
 DEC( currentV, distance ); 
 END; (* CASE *)
 FillRect( lineRect, black );
END Go;

PROCEDURE Turn( degrees : INTEGER );
VAR
 tempDegrees:  INTEGER; 
BEGIN
 tempDegrees := INTEGER(currentDegrees) + degrees;
 DEC( tempDegrees, 360 * ( tempDegrees DIV 360 ) );
 IF tempDegrees < 0 
 THEN INC( tempDegrees, 360 );
 END; (* IF *)
 currentDegrees := tempDegrees;
END Turn;

PROCEDURE Home;
BEGIN
 currentH := 110;
 currentV := 200;
 currentDegrees := 270; (* facing up *)
END Home;

BEGIN
 ClearScreen;
 Write( 0C );  (* graphics initialization kludge *)
END Pen.

 
AAPL
$111.78
Apple Inc.
-0.87
MSFT
$47.66
Microsoft Corpora
+0.14
GOOG
$516.35
Google Inc.
+5.25

MacTech Search:
Community Search:

Software Updates via MacUpdate

LibreOffice 4.3.5.2 - Free Open Source o...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
CleanApp 5.0.0 Beta 5 - Application dein...
CleanApp is an application deinstaller and archiver.... Your hard drive gets fuller day by day, but do you know why? CleanApp 5 provides you with insights how to reclaim disk space. There are... Read more
Monolingual 1.6.2 - Remove unwanted OS X...
Monolingual is a program for removing unnecesary language resources from OS X, in order to reclaim several hundred megabytes of disk space. It requires a 64-bit capable Intel-based Mac and at least... Read more
NetShade 6.1 - Browse privately using an...
NetShade is an Internet security tool that conceals your IP address on the web. NetShade routes your Web connection through either a public anonymous proxy server, or one of NetShade's own dedicated... Read more
calibre 2.13 - Complete e-library manage...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
Mellel 3.3.7 - Powerful word processor w...
Mellel is the leading word processor for OS X and has been widely considered the industry standard since its inception. Mellel focuses on writers and scholars for technical writing and multilingual... Read more
ScreenFlow 5.0.1 - Create screen recordi...
Save 10% with the exclusive MacUpdate coupon code: AFMacUpdate10 Buy now! ScreenFlow is powerful, easy-to-use screencasting software for the Mac. With ScreenFlow you can record the contents of your... Read more
Simon 4.0 - Monitor changes and crashes...
Simon monitors websites and alerts you of crashes and changes. Select pages to monitor, choose your alert options, and customize your settings. Simon does the rest. Keep a watchful eye on your... Read more
BBEdit 11.0.2 - Powerful text and HTML e...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
ExpanDrive 4.2.1 - Access cloud storage...
ExpanDrive builds cloud storage in every application, acts just like a USB drive plugged into your Mac. With ExpanDrive, you can securely access any remote file server directly from the Finder or... Read more

Latest Forum Discussions

See All

Make your own Tribez Figures (and More)...
Make your own Tribez Figures (and More) with Toyze Posted by Jessica Fisher on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
So Many Holiday iOS Sales Oh My Goodness...
The holiday season is in full-swing, which means a whole lot of iOS apps and games are going on sale. A bunch already have, in fact. Naturally this means we’re putting together a hand-picked list of the best discounts and sales we can find in order... | Read more »
It’s Bird vs. Bird in the New PvP Mode f...
It’s Bird vs. Bird in the New PvP Mode for Angry Birds Epic Posted by Jessica Fisher on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Telltale Games and Mojang Announce Minec...
Telltale Games and Mojang Announce Minecraft: Story Mode – A Telltale Games Series Posted by Jessica Fisher on December 19th, 2014 [ permalink ] | Read more »
WarChest and Splash Damage Annouce Their...
WarChest and Splash Damage Annouce Their New Game: Tempo Posted by Jessica Fisher on December 19th, 2014 [ permalink ] WarChest Ltd and Splash Damage Ltd are teaming up again to work | Read more »
BulkyPix Celebrates its 6th Anniversary...
BulkyPix Celebrates its 6th Anniversary with a Bunch of Free Games Posted by Jessica Fisher on December 19th, 2014 [ permalink ] BulkyPix has | Read more »
Indulge in Japanese cuisine in Cooking F...
Indulge in Japanese cuisine in Cooking Fever’s new sushi-themed update Posted by Simon Reed on December 19th, 2014 [ permalink ] Lithuanian developer Nordcurrent has yet again updated its restaurant simulat | Read more »
Badland Daydream Level Pack Arrives to C...
Badland Daydream Level Pack Arrives to Celebrate 20 Million Downloads Posted by Ellis Spice on December 19th, 2014 [ permalink ] | Read more »
Far Cry 4, Assassin’s Creed Unity, Desti...
Far Cry 4, Assassin’s Creed Unity, Destiny, and Beyond – AppSpy Takes a Look at AAA Companion Apps Posted by Rob Rich on December 19th, 2014 [ permalink ] These day | Read more »
A Bunch of Halfbrick Games Are Going Fre...
A Bunch of Halfbrick Games Are Going Free for the Holidays Posted by Ellis Spice on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »

Price Scanner via MacPrices.net

The Apple Store offering free next-day shippi...
The Apple Store is now offering free next-day shipping on all in stock items if ordered before 12/23/14 at 10:00am PT. Local store pickup is also available within an hour of ordering for any in stock... Read more
It’s 1992 Again At Sony Pictures, Except For...
Techcrunch’s John Biggs interviewed a Sony Pictures Entertainment (SPE) employee, who quite understandably wished to remain anonymous, regarding post-hack conditions in SPE’s L.A office, explaining “... Read more
Holiday sales this weekend: MacBook Pros for...
 B&H Photo has new MacBook Pros on sale for up to $300 off MSRP as part of their Holiday pricing. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1699... Read more
Holiday sales this weekend: MacBook Airs for...
B&H Photo has 2014 MacBook Airs on sale for up to $120 off MSRP, for a limited time, for the Thanksgiving/Christmas Holiday shopping season. Shipping is free, and B&H charges NY sales tax... Read more
Holiday sales this weekend: iMacs for up to $...
B&H Photo has 21″ and 27″ iMacs on sale for up to $200 off MSRP including free shipping plus NY sales tax only. B&H will also include a free copy of Parallels Desktop software: - 21″ 1.4GHz... Read more
Holiday sales this weekend: Mac minis availab...
B&H Photo has new 2014 Mac minis on sale for up to $80 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 1.4GHz Mac mini: $459 $40 off MSRP - 2.6GHz Mac mini: $629 $70 off MSRP... Read more
Holiday sales this weekend: Mac Pros for up t...
B&H Photo has Mac Pros on sale for up to $500 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2599, $400 off MSRP - 3.5GHz 6-core Mac Pro: $3499, $... Read more
Save up to $400 on MacBooks with Apple Certif...
The Apple Store has Apple Certified Refurbished 2014 MacBook Pros and MacBook Airs available for up to $400 off the cost of new models. An Apple one-year warranty is included with each model, and... Read more
Save up to $300 on Macs, $30 on iPads with Ap...
Purchase a new Mac or iPad at The Apple Store for Education and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free,... Read more
iOS and Android OS Targeted by Man-in-the-Mid...
Cloud services security provider Akamai Technologies, Inc. has released, through the company’s Prolexic Security Engineering & Research Team (PLXsert), a new cybersecurity threat advisory. The... Read more

Jobs Board

*Apple* Store Leader Program (US) - Apple, I...
…Summary Learn and grow as you explore the art of leadership at the Apple Store. You'll master our retail business inside and out through training, hands-on experience, Read more
Project Manager, *Apple* Financial Services...
**Job Summary** Apple Financial Services (AFS) offers consumers, businesses and educational institutions ways to finance Apple purchases. We work with national and Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.