TweetFollow Us on Twitter

Precise timing
Volume Number:6
Issue Number:6
Column Tag:Assembly Lab

Related Info: Time Manager

Mac II Timing

By Oliver Maquelin, Stephan Murer, Zurich, Switzerland

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Precise timing on the Macintosh II

[Olivier Maquelin and Stephan Murer are both researchers and teaching assistants at the Swiss Federal Institute of Technology in Zurich, Switzerland. Currently they are involved with dataflow multiprocessor project and working towards their Ph.D. thesis. The working environment at the institute consists of about 80 networked Mac IIs including five Appleshare fileservers, some Laserprinters, a Scanner, two MicroVAXes and some communication hardware. We are programming in Pascal and Modula-2 under MPW and make use of many other Mac applications.]

The Problem

Determining time or measuring the duration of some process from within a program is a task most programmers have had to face at least once in their careers. For that reason, most operating systems, including the Mac OS, offer services to determine the current time and date. Unfortunately, in some cases the resolution or the accuracy of the system clock is not sufficient to solve the task at hand. We had that problem lately, as we wanted to develop a profiler to test programs written in P1-Modula-2 under MPW. The Time Manager provides only delays with 1 ms accuracy, which is much too long to measure the execution time of small procedures. The timer we want to describe here is accurate to a couple of microseconds, depending on how it is used.

The Idea

A straightforward way to measure time on a Mac is to use the global variable Ticks, which is incremented during each Vertical Blanking interrupt, that is every 16.63 ms. A more complicated, but much more precise way to do it is to use one of the hardware timers, which are decremented every 1.2766 µs. The Mac Plus and SE have two such timers, which are used by the Sound Manager and the Disk Driver. The Mac II has four of them, two being used by the Sound Manager and the Disk Driver as in the older machines, one being used to generate the Vertical Blanking signal, and the last one being currently unused by the Mac OS.

We could have used the fourth timer, but that would have meant installing an interrupt routine in the VIA dispatch table and setting up the VIA, and there was the risk of someone else using that timer. We decided instead to use the already set up Vertical Blanking timer in conjunction with the global variable Ticks. Because we don’t need to modify the configuration of that counter, multiple applications can use our Timer module at the same time without interfering with another. A minor complication in doing so is that the timer does not directly generate an interrupt. Instead, each time it reaches zero, bit 7 of VIA2 buffer B is inverted. This bit is used as an output and drives the CA1-pin of VIA1, an interrupt being generated at each transition from 0 to 1. For that reason, the state of VIA2 buffer B has also to be taken into account.

Determining Time

To determine the current time, four different values must be read: the low and high bytes of the Vertical Blanking timer, that must be read separately from the VIA (vT1C and vT1CH), the state of the Vertical Blanking signal (vBufB bit 7) and the global variable Ticks. The Vertical Blanking timer is set up to count repeatedly downwards from hex $196E (= 6510) to zero. In fact, due to a peculiarity of the 6522 VIA, zero is first followed by hex $FFFF (= -1), and then only by hex $196E, adding a supplementary step in the counting process. Each timing period lasts thus for 6512 cycles, which leads to the following formula to calculate the time in microseconds since startup:

{1}

viaVal = (vBufB bit 7) * 6512 - vT1CH * 256 - vT1C
time  = (2 * 6512 * (Ticks + 1) - viaVal) * 1.2766µs

Unfortunately, because all these values are constantly changing, it is not sufficient to simply read these values and apply the formula. Consider the following two examples, where the high byte of the counter is read first, then after about two microseconds the low byte:

counter value (hex): $0228value read from vT1CH (hex):   $02
counter value (hex): $0226value read from vT1C (hex):    $26

counter value (hex): $0200value read from vT1CH (hex):   $02
counter value (hex): $01FEvalue read from vT1C (hex):    $FE

In the first example everything went well. The resulting hexadecimal value is $0226, which corresponds to the last counter value. In the second example however, the resulting hexadecimal value is $02FE, which is much different from either $0200 or $01FE. Such errors always occur when the high byte of the counter changes between the two reads.

Different solutions to that problem exist. Our solution, shown as Pascal code below, relies on the fact that the time between two changes of the counter is relatively long. The values needed for the future computations are read once and a test is done to check if the high byte of the counter changed during that time. If it did, all the values are read a second time and should be valid. The variable hib also has to be read once more, in case the first read was from the special timer value hex $FFFF. Interrupts are disabled to make sure that all these operations are done without interruption. The variable Ticks can be read safely as long as interrupts are disabled, because it is incremented by the Vertical Blanking interrupt handler.

{2}

DisableInterrupts;

hib0 := vT1CH; (* read the high byte a first time at *)

buf := vBufB;  (* read all the values needed *)
lob := vT1C;
hib := vT1CH;  (* read the high byte a second time *)

(* if the high byte changed in between... *)
IF hib <> hib0 THEN
BEGIN 
 (* read all the values once more *)
 buf := vBufB; lob := vT1C;
 (* in case first read of hib was $FF *)
 hib := vT1CH;
END;

(* the Ticks can be read safely here *)
myTicks := Ticks;
EnableInterrupts;

A last problem occurs when the Vertical Blanking signal becomes high after interrupts have been disabled and before the timer has been read. In that case, the state of the VIA reflects the beginning of the new timing interval, while the Ticks variable still contains the old tick value. This can be handled by testing if the value read from the VIA is within a small number (i.e. 10) of cycles from the beginning of the interval, and incrementing the number read from the Ticks variable by one if this is the case. Such small numbers can not be read after the Vertical Blanking interrupt, because of the execution time of the interrupt handler.

The Unit Timer

The unit Timer exports procedures to initialize, start and stop software timers and allows any number of them to be active (i.e. started but not yet stopped) at the same time. When stopped, they contain the measured time as a 64 bit wide number of cycles (32 bits allow only measurements up to 1.5 hours). They can be started and stopped repeatedly and will then contain the total time they have been running. A constant to convert the 64 bit format into an extended real value in milliseconds is provided for convenience.

Because we want to use these timing routines in a profiler, they should not only be accurate, they also should not disturb the temporal behavior of the code they are timing, even if many measurements are being done at the same time. Because the execution time of a procedure can be very short, this is only possible if the routines execute very fast (a few microseconds) or through some kind of compensation. In our case, the execution time of the routines is about 35µs and a compensation is needed. For that purpose, a counter tracking the total time spent in the routines StartTimer and StopTimer is maintained. In addition, the processor cache is disabled during these routines in order to keep the execution time as constant as possible and to reduce the influence on other parts of the code.

It is interesting to note that a single number is sufficient to contain the state of a timer during its whole existence. To implement the compensation, a single global counter is needed, that contains a running total of the time spent in the routines to be compensated for. The algorithm used here is in fact very simple. As can be seen below, StartTimer subtracts the current time from the timer value and adds the current compensation value, while StopTimer adds the current time to the timer value and subtracts the compensation value. Before doing that, both procedures add their expected execution time to the compensation value. After calls to InitTimer, StartTimer and StopTimer in sequence, timer contains thus the value: 0 - Time1 + 35µs + Time2 - (35µs + 35µs) = Time2 - Time1 - 35µs, which is the time difference between the two calls minus the compensation.

{3}

InitTimer (timer):
 timer := 0;

StartTimer (timer):
 totalComp := totalComp + 35µs;
 timer := timer - ActualTime + totalComp;

StopTimer (timer):
 totalComp := totalComp + 35µs;
 timer := timer + ActualTime - totalComp;

Using the unit Timer

Consider the following example that shows the usage of the Timer unit. The main program contains two FOR-loops that are both executed 100 times. The first loop does nothing and the second calls repeatedly the empty procedure Dummy. Three timers are used in that example. Timer t1 measures the execution time of the first loop, timer t2 does the same for the second loop and timer t3 measures the total execution time.

{4}

 PROCEDURE Dummy; BEGIN END;

 ...
 (* Initialize the three timers *)
 InitTimer (t1); InitTimer (t2);
 InitTimer (t3);

 StartTimer (t3);

 StartTimer (t1);
 (* First loop *)
 FOR i := 1 TO 100 DO END;StopTimer (t1);

 StartTimer (t2);
 (* Second loop *)
 FOR i := 1 TO 100 DO Dummy END; StopTimer (t2);

 StopTimer (t3);
 ...

The following table shows the resulting timer values with and without compensation and with the processor cache enabled or disabled. In the compensated case the value of timer t3 is roughly equal to the sum of t1 and t2, as would be expected from an ideal timer. In the uncompensated case the execution time of StartTimer and StopTimer is added once to the value of t1 and t2 and five times to t3 (about 175µs). This example also shows that in this case using the processor cache leads to a speed improvement of 30 - 40% and that the execution time of the procedure Dummy is about 1.5µs. This seems reasonable, since the compiler generates only a RTS instruction for such a procedure.

Compensation Cache Timer t1 Timer t2 Timer t3

27 (= 35µs) On 0.167ms 0.314ms 0.480ms

27 (= 35µs) Off 0.271ms 0.465ms 0.738ms

0 (Off) On 0.202ms 0.349ms 0.651ms

0 (Off) Off 0.306ms 0.499ms 0.910ms

Concluding remarks

As the previous example shows, our timer routines can give very accurate results. Also, because no interrupt routines are used and because the configuration of the hardware timers is not modified, there are no compatibility problems and no unwanted interactions with system routines. A few things have to be kept in mind however. First, our timer works only on the Macintosh II (probably also on the Macintosh IIx and on the SE/30, but we could not test this). Second, measurements of small execution times must be done several times in order to detect slowdowns due to interrupt routines, which have execution times ranging between 60µs and 1ms or more. And third, the compensation value depends not only on the routines themselves but also on the calling sequence generated by the compiler. For example, using timers stored in an array will be slower than using timers stored as variables, because of the additional array indexing operations. When the processor cache is enabled it further depends on how much of the calling sequence is contained in the cache.

*--------------------------------------------
*
*IMPLEMENTATION of UNIT Timing
*
*Version 1.0 / O. Maquelin / 22-May-89
*
**** Runs only on Macintosh II ***
*
* --------------------------------------------
 
 CASE ON
 MACHINEMC68020  ; needs 68020 instructions

HWNonPortable EQU1 ; needs Mac II hardware
onMac EQU 0
onNuMac EQU 1

 INCLUDE‘HardwareEqu.a’
 INCLUDE‘SysEqu.a’

 EXPORT (unitComp, totComp): DATA
 EXPORT (INITTIMER,STARTTIMER,STOPTIMER)           : CODE

ClkPerTickEQU  13024 ; cycles per tick
 ;(16.663 ms)

Timer RECORD0  ; local definition of
 ; Timer
hi DS.L 1 ; high longword
lo DS.L 1 ; low longword
 ENDR

* --------------------------------------------
*
*Declaration of the exported variables
*
* --------------------------------------------

unitCompRECORD EXPORT; 27 cycles 
 DC.L 27; compensation (35µs)
 ENDR

totComp RECORD EXPORT; totComp initially
hi DC.L 0 ; zero
lo DC.L 0
 ENDR

* --------------------------------------------
*
*PROCEDURE InitTimer(VAR t:TimeRec)
*
*Initializes a timer (t := 0)
*
* --------------------------------------------

INITTIMER PROC EXPORT
 MOVE.L (SP)+,A0 ; get return address
 MOVE.L (SP)+,A1 ; get address of t
 CLR.L  (A1)+  ; clear two longwords
 CLR.L  (A1)
 JMP  (A0); back to caller
 ENDPROC

* --------------------------------------------
*
*PROCEDURE GetTime (hi: D0.L; lo: D1.L)
*
*GetTime returns the actual time in 
*clock cycles (1.2766 µs per
*cycle) in the registers D0 and D1. Time 
*is determined from the
*global variable Ticks and from the 
*state of VIA 2.
*
* --------------------------------------------

GetTime PROCENTRY

 MOVE.L #VBase2,A1; get base address of 
 ; VIA2
 MOVE SR,-(SP) ; disable interrupts
 ORI  #$0700,SR
 MOVE.B vT1CH(A1),D1; read high byte of
 ; timer 1
 MOVE.B vBufB(A1),D0; read state of
 ; pseudo-VBL
 MOVE.B vT1CH(A1),D2; read low byte of
 ; timer 1
 ROR.W  #8,D2
 MOVE.B vT1CH(A1),D2; read high byte 
 ; second time
 CMP.B  D1,D2  ; if both are equal we 
 ; are done,
 BEQ.S  @1; else read everything 
 ; once more
 MOVE.B vBufB(A1),D0; read state of
 ; pseudo-VBL
 MOVE.B vT1C(A1),D2; read low byte of 
 ; timer 1
 ROR.W  #8,D2
 MOVE.B vT1CH(A1),D2; read high byte of
 ; timer 1
 
@1 ROR.W#8,D2  ; exchange low and high 
 ; byte
 MOVEQ  #7,D1  ; first phase of the 
 ; tick?
 BTST.L D1,D0
 BNE.S  @2ADD.W  #ClkPerTick/2,D2; no, correct 
 ; number of cycles

@2 MOVE.L Ticks,D1 ; read Ticks
 MOVE (SP)+,SR ; enable interrupts
 CMP.W  #ClkPerTick-10,D2; was the value 
 ; of Ticks valid?
 BLE.S  @3
 ADDQ #1,D1 ; no, correct the value 
 ; read
 
@3 MULU.L #ClkPerTick,D0:D1; convert ticks 
 ; to cycles and
 EXT.L  D2; subtract VIA value
 SUB.L  D2,D1
 MOVEQ  #0,D2
 SUBX.L D2,D0
 
 RTS
 ENDPROC

* --------------------------------------------
*
*PROCEDURE StartTimer (VAR t: Timer)
*
*Starts a timer (t := t - Time+totComp;
*totComp := totComp+unitComp)
*
* --------------------------------------------

STARTTIMERPROC EXPORT
 
 MOVEC  CACR,D0  ; disable cache, save
 ; old state
 MOVE.L D0,A0
 AND.B  #$FE,D0
 MOVEC  D0,CACR
 MOVE.L unitComp,D0; increment total 
 ; compensation
 ADD.L  D0,totComp.lo
 BCC.S  @1; is there a carry to 
 ; add
 ADDQ #1,totComp.hi; yes, increment 
 ; high word
 
@1 JSR  GetTime  ; determine actual time
 MOVE.L 4(SP),A1 ; get address of t
 MOVE.L totComp.hi,D2; subtract 
 ; compensation
 SUB.L  totComp.lo,D1
 SUBX.L D2,D0
 
 MOVE.L Timer.hi(A1),D2; subtract result
 ; from timer
 SUB.L  D1,Timer.lo(A1)
 SUBX.L D0,D2
 MOVE.L D2,Timer.hi(A1)
 MOVEC  A0,CACR  ; restore cache state
 MOVE.L (SP)+,A0 ; return to caller
 ADDQ #4,SP
 JMP  (A0)
 ENDPROC

* --------------------------------------------
*
*PROCEDURE StopTimer(VAR t: Timer)
*
*Stops a timer (t := t + Time - totComp;
*totComp := totComp + unitComp)
*
* --------------------------------------------

STOPTIMER PROC EXPORT

 MOVEC  CACR,D0  ; disable cache, save
 ; old state
 MOVE.L D0,A0
 AND.B  #$FE,D0
 MOVEC  D0,CACR
 
 MOVE.L unitComp,D0; increment total 
 ; compensation
 ADD.L  D0,totComp.lo
 BCC.S  @1; is there a carry to 
 ; add
 ADDQ #1,totComp.hi; yes, increment 
 ; high word
 
@1 JSR  GetTime  ; determine actual time
 MOVE.L 4(SP),A1 ; get address of t
 MOVE.L totComp.hi,D2; subtract 
 ; compensation
 SUB.L  totComp.lo,D1
 SUBX.L D2,D0
 
 MOVE.L Timer.hi(A1),D2; add result to 
 ; timer
 ADD.L  D1,Timer.lo(A1)
 ADDX.L D0,D2
 MOVE.L D2,Timer.hi(A1)
 
 MOVEC  A0,CACR  ; restore cache state
 
 MOVE.L (SP)+,A0 ; return to caller
 ADDQ #4,SP
 JMP  (A0)
 ENDPROC

 END

UNIT Timing;

INTERFACE

{$PUSH} {$J+}

{ The actual variables and code are contained in a
  separate assembly language file. The assembled  
  output must be linked with programs using this   
  unit }

TYPE
 Timer = COMP;

CONST
 MsPerClock = 1.2766E-3;

VAR
 unitComp: LONGINT;{ Compensation for one call }
 
 totComp: COMP;  { Accumulated compensation }

{$POP}

PROCEDURE InitTimer (VAR t: Timer);
{ Initializes a timer (t := 0) }

PROCEDURE StartTimer (VAR t: Timer);
{ Starts a timer (t := t - Time + totComp;
  totComp := totComp + unitComp) }

PROCEDURE StopTimer (VAR t: Timer);
{ Stops a timer (t := t + Time - totComp;
  totComp := totComp + unitComp) }

END.





PROGRAM TimingTest;

USES Timing;

VARi: INTEGER;
 t1, t2, t3: Timer;

PROCEDURE Dummy; BEGIN END;

BEGIN
 unitComp := 0;
 InitTimer (t1);
 InitTimer (t2);
 InitTimer (t3);
 StartTimer (t3);
 StartTimer (t1);
 FOR i := 1 TO 100 DO { empty loop };
 StopTimer (t1);
 StartTimer (t2);
 FOR i := 1 TO 100 DO Dummy;
 StopTimer (t2);
 StopTimer (t3);
 Write (t1 * MsPerClock: 16: 3);
 Write (t2 * MsPerClock: 16: 3);
 Write (t3 * MsPerClock: 16: 3);
 WriteLn;
END.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Tor Browser Bundle 7.0.7 - Anonymize Web...
The Tor Browser Bundle is an easy-to-use portable package of Tor, Vidalia, Torbutton, and a Firefox fork preconfigured to work together out of the box. It contains a modified copy of Firefox that... Read more
Data Rescue 5.0.1 - Powerful hard drive...
Data Rescue’s new and improved features let you scan, search, and recover your files faster than ever before. We have modernized the file-preview capabilities, added new files types to the recovery... Read more
Alfred 3.5.1 - Quick launcher for apps a...
Alfred is an award-winning productivity application for OS X. Alfred saves you time when you search for files online or on your Mac. Be more productive with hotkeys, keywords, and file actions at... Read more
Tunnelblick 3.7.3 - GUI for OpenVPN.
Tunnelblick is a free, open source graphic user interface for OpenVPN on OS X. It provides easy control of OpenVPN client and/or server connections. It comes as a ready-to-use application with all... Read more
DEVONthink Pro 2.9.16 - Knowledge base,...
Save 10% with our exclusive coupon code: MACUPDATE10 DEVONthink Pro is your essential assistant for today's world, where almost everything is digital. From shopping receipts to important research... Read more
AirRadar 4.0 - $9.95
With AirRadar, scanning for wireless networks is now easier and more personalized! It allows you to scan for open networks and tag them as favourites or filter them out. View detailed network... Read more
ForkLift 3.0.8 Beta - Powerful file mana...
ForkLift is a powerful file manager and ferociously fast FTP client clothed in a clean and versatile UI that offers the combination of absolute simplicity and raw power expected from a well-executed... Read more
Opera 48.0.2685.50 - High-performance We...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
FotoMagico 5.5 - Powerful slideshow crea...
FotoMagico lets you create professional slideshows from your photos and music with just a few, simple mouse clicks. It sports a very clean and intuitive yet powerful user interface. High image... Read more
Adobe Audition CC 2018 11.0.0 - Professi...
Audition CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Audition customer). Adobe Audition CC 2018 empowers you to create and... Read more

Wheels of Aurelia (Games)
Wheels of Aurelia 1.0.1 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0.1 (iTunes) Description: | Read more »
Halcyon 6: Starbase Commander guide - ti...
Halcyon 6 is a well-loved indie RPG with stellar tactical combat and some pretty good writing, too. It's now landed on the App Store, so mobile fans, if you're itching for a good intergalactic adventure, here's your game. Being a strategy RPG, the... | Read more »
Game of Thrones: Conquest guide - how to...
Fans of base building games might be excited to know that yet another entry in the genre has materialized - Game of Thrones: Conquest. Yes, you can now join the many kingdoms of the famed book series, or create your own, as you try to conquer... | Read more »
Halcyon 6: Starbase Commander (Games)
Halcyon 6: Starbase Commander 1.4.2.0 Device: iOS Universal Category: Games Price: $6.99, Version: 1.4.2.0 (iTunes) Description: An epic space strategy RPG with base building, deep tactical combat, crew management, alien diplomacy,... | Read more »
Legacy of Discord celebrates its 1 year...
It’s been a thrilling first year for fans of Legacy of Discord, the stunning PvP dungeon-crawling ARPG from YOOZOO Games, and now it’s time to celebrate the game’s first anniversary. The developers are amping up the festivities with some exciting... | Read more »
3 reasons to play Thunder Armada - the n...
The bygone days of the Battleship board game might have past, but naval combat simulators still find an audience on mobile. Thunder Armada is Chinese developer Chyogames latest entry into the genre, drawing inspiration from the explosive exchanges... | Read more »
Experience a full 3D fantasy MMORPG, as...
Those hoping to sink their teeth into a meaty hack and slash RPG that encourages you to fight with others might want to check out EZFun’s new Eternity Guardians. Available to download for iOS and Android, Eternity Guardians is an MMORPG that lets... | Read more »
Warhammer Quest 2 (Games)
Warhammer Quest 2 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Dungeon adventures in the Warhammer World are back! | Read more »
4 of the best Halloween updates for mobi...
Halloween is certainly one of our favorite times for mobile game updates. Many popular titles celebrate this spooky season with fun festivities that can stretch from one week to even the whole month. As we draw closer and closer to Halloween, we'... | Read more »
Fire Rides guide - how to swing to succe...
It's another day, which means another Voodoo game has come to glue our hands to our mobile phones. Yes, it's been an especially prolific month for this particular mobile publisher, but we're certainly not complaining. Fire Rides is yet another... | Read more »

Price Scanner via MacPrices.net

Apple restocks full line of refurbished 13″ M...
Apple has restocked a full line of Apple Certified Refurbished 2017 13″ MacBook Pros for $200-$300 off MSRP. A standard Apple one-year warranty is included with each MacBook, and shipping is free.... Read more
13″ 3.1GHz/256GB MacBook Pro on sale for $167...
Amazon has the 2017 13″ 3.1GHz/256GB Space Gray MacBook Pro on sale today for $121 off MSRP including free shipping: – 13″ 3.1GHz/256GB Space Gray MacBook Pro (MPXV2LL/A): $1678 $121 off MSRP Keep an... Read more
13″ MacBook Pros on sale for up to $120 off M...
B&H Photo has 2017 13″ MacBook Pros in stock today and on sale for up to $120 off MSRP, each including free shipping plus NY & NJ sales tax only: – 13-inch 2.3GHz/128GB Space Gray MacBook... Read more
15″ MacBook Pros on sale for up to $200 off M...
B&H Photo has 15″ MacBook Pros on sale for up to $200 off MSRP. Shipping is free, and B&H charges sales tax in NY & NJ only: – 15″ 2.8GHz MacBook Pro Space Gray (MPTR2LL/A): $2249, $150... Read more
Roundup of Apple Certified Refurbished iMacs,...
Apple has a full line of Certified Refurbished 2017 21″ and 27″ iMacs available starting at $1019 and ranging up to $350 off original MSRP. Apple’s one-year warranty is standard, and shipping is free... Read more
Sale! 27″ 3.8GHz 5K iMac for $2098, save $201...
Amazon has the 27″ 3.8GHz 5K iMac (MNED2LL/A) on sale today for $2098 including free shipping. Their price is $201 off MSRP, and it’s the lowest price available for this model (Apple’s $1949... Read more
Sale! 10″ Apple WiFi iPad Pros for up to $100...
B&H Photo has 10.5″ WiFi iPad Pros in stock today and on sale for $50-$100 off MSRP. Each iPad includes free shipping, and B&H charges sales tax in NY & NJ only: – 10.5″ 64GB iPad Pro: $... Read more
Apple iMacs on sale for up to $130 off MSRP w...
B&H Photo has 21-inch and 27-inch iMacs in stock and on sale for up to $130 off MSRP including free shipping. B&H charges sales tax in NY & NJ only: – 27″ 3.8GHz iMac (MNED2LL/A): $2179 $... Read more
2017 3.5GHz 6-Core Mac Pro on sale for $2799,...
B&H Photo has the 2017 3.5GHz 6-Core Mac Pro (MD878LL/A) on sale today for $2799 including free shipping plus NY & NJ sales tax only . Their price is $200 off MSRP. Read more
12″ 1.2GHz Space Gray MacBook on sale for $11...
Amazon has the 2017 12″ 1.2GHz Space Gray Retina MacBook on sale for $100 off MSRP. Shipping is free: 12″ 1.2GHz Space Gray MacBook: $1199.99 $100 off MSRP Read more

Jobs Board

Product Manager - *Apple* Pay on the *Appl...
Job Summary Apple is looking for a talented product manager to drive the expansion of Apple Pay on the Apple Online Store. This position includes a unique Read more
*Apple* Retail - Multiple Positions - Farmin...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Frameworks Engineer, *Apple* Watch - Apple...
Job Summary Join the team that is shaping the future of software development for Apple Watch! As a software engineer on the Apple Watch Frameworks team you will Read more
*Apple* News Product Marketing Mgr., Publish...
Job Summary The Apple News Product Marketing Manager will work closely with a cross-functional group to assist in defining and marketing new features and services. Read more
Fraud Analyst, *Apple* Advertising Platform...
Job Summary Apple Ad Platforms has an opportunity to redefine advertising on mobile devices. Apple reaches hundreds of millions of iPhone, iPod touch, and iPad Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.