TweetFollow Us on Twitter

Parsing with YACC
Volume Number:6
Issue Number:4
Column Tag:Language Translation

Introduction to Parsing and Inside YACC

By Clifford Story, Mount Prospect, IL

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Part I. Intoduction to Parsing

A. Introduction

This is the first of a series of articles on language translation. This is commonly called “parsing”, and I will no doubt lapse from time to time into this usage, but it is better to reserve the word for one phase of translation.

The techniques I will discuss are used in compilers and interpreters, of course, but also in many more-common circumstances. For example, when you add a formula to a speadsheet, the application must translate the formula into a form it can use. Many database programs let you specify formats for input fields -- these must translate your format, and then use the result to translate the input. Consider the expression search in MPW. I guarantee you there’s a translator operating there. And, of course, my own program Idealiner uses a translator when you specify topic numbers.

All the code examples in this series of articles will be MPW tools, to minimize interface considerations. I doubt if you’ll see a single Macintosh trap before the tenth article. I will focus instead on the internals of language translation.

Language translation can be divided into three stages: first, the LEXICAL ANALYZER (also called the “scanner”) divides the input text into individual symbols, pieces like identifiers, operators and constants; then the PARSER interprets the sequence of symbols according to the language’s grammar; and lastly the CODE GENERATOR responds in an appropriate fashion to the statements the parser has processed. These three phases operate simultaneously, the parser calling the lexical analyzer for input, and then calling the code generator for output.

A(1). Parsing

The first three parts in the series will focus on parsing.

The first part of the article (this very one) will introduce parsing and the parser-generator YACC (Yet Another Compiler Compiler). YACC converts a set of GRAMMAR RULES into C source for a parser that will accept that grammar. You still have to write the lexical analyzer and the code generator (although YACC provides a framework for code generation) but YACC takes care of the most tedious part of the job.

The second part will go beneath the surface and explore the inner workings of YACC. This will be somewhat technical, and may seem unnecessary, but it will provide an essential foundation for later topics. The article will cover deriving parse tables from YACC output, parsing expressions by hand (using the parse tables), and YACC’s debug output.

The next article will discuss ambiguities, association and error detection. An understanding of the first two topics are essential to writing correct and efficient grammars. The third covers detecting and reporting errors by type and location.

A(2). Lexical Analysis

With the third article, I will return to the first stage of language translation, lexical analysis. The article will begin with a discussion of state machines, then present a simple but effective table-driven analyzer.

The fourth article will be an excursion into a seemingly unrelated field: hash tables and binary trees. The idea is to develop some tools to increase the power of the lexical analyzer in the following article.

The fifth article will extend the analyzer by adding a symbol table. The routines developed in the fifth article will give us a way to save symbols; the example program will be an improved version of the MPW Canon tool.

A(3). And a Useful Example

Now, I’m pretty sure of the preceding, because I’ve already written the articles! What follows is a forecast of what I’ll do next.

The plan is to build an MPW tool that will preprocess either Pascal or C source files and convert inline assembly code into Pascal inline routines or C direct functions, as appropriate. That is, you will be able to write assembly language instructions, and the preprocessor will convert your assembly into machine language. Your assembler routines will be declared with high-level headers, a la Lightspeed C, and you will be able to refer to routine arguments and local variables by name, rather than indexing off the stack, a real convenience. I’m going to write this tool because, damn it, I want to use it!

This will be a major project: I’ll need to parse Pascal and C well enough to find routines, and I’ll need to parse assembler completely. I’ll then need to write a more-or-less complete assembler. It could take six or eight columns.

B. Grammar Descriptions

Here’s a reference for this topic: Compilers: Principles, Techniques and Tools, by Aho, Sethi and Ullman (Addison-Wesley 1986). You may have heard of some of these guys. I will refer to it as “ASU”.

A computer language is composed of a set of symbols (the “words” of the language), and a set of grammar rules that determine how these words are formed into statements (the “sentences” of a computer language). As I said earlier, the lexical analyzer is in charge of extracting the “words” from the input; it is the job of the parser to make meaningful “sentences” from these “words”.

A bit of terminology: classes of symbols (such as “integer” or “identifier”) are called TOKENS, and specific instances of tokens (such as “252” or “sysbeep”) are called LEXEMES. The lexical analyzer will typically determine both the type and value of a symbol that it reads; the former is the token classification and the latter is the lexical value. The parser cares about tokens; the code generator cares about values.

I guarantee that I will use the word “token” to mean both token and lexeme. The meaning should be clear from the context.

B(1). Grammar Rules

A grammar rule is called a PRODUCTION. It is a substitution rule; the single symbol of the left-hand side (often, but not by me, abbreviated LHS) produces the expansion on the right-hand side (RHS). Here’s an example:

 stmt -> ID ‘=’ expr ‘;’

A ‘stmt’ can be expanded to (that’s what the ‘->’ means) a series of symbols consisting of an ‘ID’, an ‘=’ sign, and ‘expr’ and a semicolon. Symbols within quotation marks are explicit, and must appear as written; other symbols are token classes.

Recursive definition is permitted. Here’s an example:

 expr -> expr ‘+’ NUM

Applying this rule to the first, we discover that:

 stmt -> ID ‘=’ expr ‘+’ NUM ‘;’
 stmt -> ID ‘=’ expr ‘+’ NUM ‘+’ NUM ‘;’

And so on. It is possible to determine a complete language such as Pascal or C with relatively few such productions, even though there are infinitely-many legal statements in the language.

Now, everyone can make up his own conventions, of course, but I will distinguish two kinds of non-explicit symbols by showing one in all-caps and one in all-lower-case. All-caps symbols are defined by the lexical analyzer, not by the parser. Thus, they will not appear on the left-hand side of any production. These symbols are call TERMINALS, because they terminate expansion. When you expand to a terminal, you can expand no further. The lower-case symbols are, surprise!, NON-TERMINALS. They are defined by the parser rather than the lexical analyzer, appear somewhere as the left-hand side of one or more productions, and do not terminate expansion. These distinctions are important!

As the above examples suggest, several productions can share the same left-hand side:

 expr -> expr ‘+’ NUM
 expr -> NUM

This pair of productions expands to arbitrary sums. Just start with the first production and substitute the first production into it to add another term, or the second to terminate the expansion.

B(2). An Example Grammar

This will be fun. If you don’t want to mess with abstract symbols, just skip this whole section; the result is all you need. My development of the grammar won’t be very theoretical, though.

A parser reads the input symbols from left to right, until it has read the right-hand side of a production. Then it REDUCES the input, running the production backwards and replacing the right-hand side with the left-hand side. This is the point at which code is generated, and expressions evaluated: when a reduction occurs.

So to see if a grammar does what we want, we can start with a test statement that should be accepted by the grammar, and see what happens when we play parser.

The grammar we are shooting for will accept simple algebraic expressions, involving addition, subtraction, multiplication and division of numbers.

B(2)(a). First Try

Earlier, we saw productions that can expand to arbitrary sums:

 expr -> expr ‘+’ NUM
 expr -> NUM

We can add a few more to get the other three usual operators:

/* 1 */

 (1)  expr -> expr ‘+’ NUM
 (2)  expr -> expr ‘-’ NUM
 (3)  expr -> expr ‘*’ NUM
 (4)  expr -> expr ‘/’ NUM
 (5)  expr -> NUM

Let’s try a simple test:

 NUM ‘+’ NUM ‘*’ NUM
 -> expr ‘+’ NUM ‘*’ NUM

(rule 5; remember that we read from the left)

 -> expr ‘*’ NUM (rule 1)
 -> expr (rule 3)

The addition was the first thing to go; therefore, it was performed first. This is contrary to our expectations, I hope (my past as a math teacher shows itself!). The grammar won’t work. We need to make sure that multiplication and division are performed before addition and subtraction.

B(2)(b). Second Try

So let’s introduce another non-terminal. We want to cluster products together, to ensure that they are evaluated first, so let’s make them a separate non-terminal:

/* 2 */

 (1)  expr -> expr ‘+’ term
 (2)  expr -> expr ‘-’ term
 (3)  expr -> term
 (4)  term -> term ‘*’ NUM
 (5)  term -> term ‘/’ NUM
 (6)  term -> NUM

Now try the test string again:

 NUM ‘+’ NUM ‘*’ NUM
 -> term ‘+’ NUM ‘*’ NUM
    (rule 6)
 -> expr ‘+’ NUM ‘*’ NUM
    (rule 3)
 -> expr ‘+’ term ‘*’ NUM
    (rule 6)

Oops, it looks like we have a choice here: rule 1 or rule 4. We really don’t, though; reducing by rule 1 would leave us with “expr ‘*’ NUM”, and we don’t have any rule with “expr ‘*’” in it.

 -> expr ‘+’ term
   (rule 4)
 -> expr
 (rule 1)

So the multiplication happened first, just like we wanted.

B(2)(c). Third Try

Suppose, however, that we wanted the addition to occur first. Then we need to add some parentheses:

/* 3 */

 (1)  expr -> expr ‘+’ term
 (2)  expr -> expr ‘-’ term
 (3)  expr -> term
 (4)  term -> term ‘*’ NUM
 (5)  term -> term ‘/’ NUM
 (6)  term -> ‘(‘ expr ‘)’
 (7)  term -> NUM

Now we treat an addition or subtraction that occurs within parentheses as if the sum or difference was a ‘term’ (rule 6). And that should do it.

C. YACC: Yet Another Compiler Compiler

YACC is a UNIX tool that builds parsers from grammars. We can take the grammar just developed, supplement it with a minimal bit of C code, and YACC will write the complete parser for us. Or, if the parser is only a small part of a big program, YACC will write that small part, and we can then link it to the main program. In either case, YACC saves us from the unbearable tedium of computing parse tables by hand.

A YACC input file is divided into three parts: the declaration part, the grammar part, and the program part. (Remind you of anything? My past as a COBOL programmer coming out!) The three sections are separated by lines beginning:

 %%

YACC writes a C source file as its output; it will also write a file of parser information if you desire it. We’ll look at that next time.

C(1). The Declaration Section

The declarations include a set of C-style declarations that are used by YACC to build the parser. For now, there are only two sorts of declarations that concern us.

The first is the “%token” declaration. YACC will automatically recognize one-character tokens like ‘+’ and ‘-’. All other terminal tokens must be declared with the %token statement, e.g.,

 %token NUM

Non-terminals do not need to be declared; they are implicitly declared in the grammar rules.

The second declaration type lets us pass regular C declarations through YACC to the C compiler. These look like this:

/* 4 */

 %{
 #define blip 12
 %}

Anything between the %{ and the %} is passed through unchanged, and written by YACC to the C source file.

It is customary to include a #define for YYSTYPE. What is YYSTYPE? It is the type of the parser’s stack. For now, there’s no need to worry about it. It is “int” by default, and int will work fine for what we’re doing this month. Later, after I’ve discussed how the parser operates, and we know what sort of things go on the stack, we’ll come back to it.

C(2). The Grammar Section

The grammar section includes all the grammar productions, like those we discussed earlier. They are written in a somewhat non-standard format (taking ASU’s notation as the standard, which I think is reasonable). They also provide a framework for code generation.

C(2)(a). Production Rule Format

The arrow in productions is replaced with a colon, and productions with the same left-hand side are combined into one, with the right-hand sides separated with vertical bars, |. The last right-hand side is terminated with a semicolon. The usual practice is to format the productions like this:

/* 5 */

 expr : expr ‘+’ term
 | expr ‘-’ term
 | term
 ;

 term : term ‘*’ NUM
 | term ‘/’ NUM
 | ‘(‘ expr ‘)’
 | NUM
 ;

in place of:

 expr -> expr ‘+’ term
 expr -> expr ‘-’ term
 expr -> term
 term -> term ‘*’ NUM
 term -> term ‘/’ NUM
 term -> ‘(‘ expr ‘)’
 term -> NUM

C(2)(b). Code Generation

You can follow each right-hand side with some pseudo-C code that the parser will then call when the production rule is executed (i.e., if you read that stuff about reductions, when the input is reduced by that production).

Here’s an example. Suppose you have the production rules:

 expr : expr ‘+’ term
 | expr ‘-’ term
 | term
 ;

The question is, what is the value of the “expr”? In the first case, it’s the value of the first token of the right-hand side plus the value of the third; in the second, it’s the first minus the third; and in the third, it’s just the value of the first token. So we write:

/* 6 */

 expr : expr ‘+’ term
 {
 $$ = $1 + $3;
 }

 | expr ‘-’ term
 {
 $$ = $1 - $3;
 }

 | term
 {
 $$ = $1;
 }

 ;

This isn’t hard to figure out; $$ is the value of the left-hand side, $1 is the value of the first token of the right-hand side, $3 the value of the third token. Using those symbols, you just write straight C code. You are not limited to a single line, and you can call routines that you have written elsewhere. Don’t forget the braces or the semicolons.

C(3). The Program Section

The program section is made up of straight C code, and is copied unaltered into the C source file. While YACC requires that you supply some routines to it, you can put them in another file, and this section can be completely empty. In simpler cases, however, the program section allows you to write your entire program in the YACC source file.

Here’s what YACC requires: a lexical analyzer, called yylex(), and an error routine, yyerror(). Common sense requires a main() routine as well.

The prototype for yylex() is:

/* 7 */

 int yylex();

The parser routine, called yyparse(), will call yylex() whenever it needs input. yylex() reads the next token, sets the global variable “yylval” to the value of the token (optional; this is the “$” value used in the production code), and returns the token type. You might wonder where it reads the token from, since it hasn’t any arguments. The answer is, it uses global variables of some sort, such as a global string or a global file reference, that is set up by the main() routine.

The error routine is:

/* 8 */

 void yyerror(char *message);

The message is generated by the parser when it detects an error; yyerror()’s job is to notify the user that something has gone wrong. Of course, you don’t have do live with YACC’s default error messages, which are rather unilluminating; you can call yyerror() yourself. More on this in a future article.

D. An MPW Hex Calculator

Now for some real code. Our example program is an MPW tool, a hex calculator. It will evaluate expressions using +, -, * and /, and will also properly evaluate expressions with parentheses in them. The name of the tool is “Hex”; you can invoke it with an expression, e.g.:

 Hex ‘2 - ( 3 - 4 )’

in which case it will evaluate, print the result, and exit. Notice that in this case, the expression must be in quotation marks, or MPW will treat each token separately. Note also that the tokens must be separated by spaces. This is to simplify the lexical analyzer; we will relax this requirement in a future version.

The tool may also be invoked without an expression to evaluate. It will then go into a loop, reading in expressions and evaluating them, e.g.:

 Hex
 ? 2 - ( 3 - 4 )
 = 3
 ? 64 * 8
 = 320
 ?

The loop ends on a blank line.

Here are the input globals and the code for the main() routine:

/* 9 */

char    *input;
char    *token;

void main(int argc, char *argv[])
 {
 
 char   thestring[256];
 
 if (argc < 1)
 printf(“\tImpossible error!\n”);
 else if (argc > 2)
 printf(“\tHey!  One at a time!\n”);
 else if (argc == 2)
 {
 input = argv[1];
 yyparse();
 }
 else
 {
 printf(“? “);
 while (strlen(gets(thestring)) > 2)
 {
 input = &thestring[2];
 yyparse();
 printf(“? “);
 }
 }
 
 }

“input” is the input buffer, and holds the expression to evaluate. “token” is filled by yylex() with the current token. It’s useful for debugging and error reporting. Finally, in the read loop, notice that the gets() routine will read the “? ” prompt as well as the expression, this being MPW, which is why “input” points to thestring[2].

D(1). The Lexical Analyzer and Error Routines

This is about as simple as a lexical analyzer can be. The strtok() routine will return the tokens in the input string, so long as they’re separated by spaces, or newline at the end of input. Then if sscanf() can read a hex number, that’s what the token must be; if it isn’t a number, it must be an operator or a parenthesis, so return the first character.

This routine is so simple it is vulnerable to pathological input -- please don’t TRY to break it! Where’s the challenge? This is just a stopgap, good enough to serve until we get a real lexical analyzer.

/* 10 */

int yylex()
 {
 
 if (input == 0)
 token = strtok(0, “ “);
 else
 {
 token = strtok(input, “ “);
 input = 0;
 }
 
 if (token == 0)
 return(‘\n’);
 else if (sscanf(token, “%x”, &yylval) == 1)
 return(NUM);
 else
 return(token[0]);
 }

The error routine is even simpler. It just prints out the parser’s default error message, which is the blindingly helpful “syntax error”. We do add the current token, which may be helpful.

/* 11 */

#define yyerror(x)
 {
 printf(“\t%s [%s]\n”, x, token);
 return(0);
 }

(This is divided into separate lines to fit in Mac Toot’s narrow columns; that’s not the way we’d write it in C, of course!) Note the return statement. yyerror is called from within the parser routine yyparse(), so that’s what we’re returning from. The effect is to abort the translation.

D(2). The Grammar

The grammar we will use is the same as that developed earlier. There’s one additional production: we have to give YACC a START SYMBOL, which is the left-hand side of the first production. In this case, “prob” is short for “problem”.

 prob -> expr ‘\n’

The newline is a single-character token returned by yylex() to signal the end of input. So if the entire input string is an expression, we’ve got a complete problem. Any other occurrence of a newline is an error.

/* 12 */

 prob -> expr ‘\n’
 expr -> expr + term
 expr -> expr - term
 expr -> term
 term -> term * NUM
 term -> term / NUM
 term -> ( expr )
 term -> NUM

D(3). The Value Calculation and Output

Here’s the actual YACC input file, declaration and grammar sections. The declaration section consists of a single %token declaration, making NUM a terminal symbol. The grammar section includes all the productions listed above, each with some associated code.

/* 13 */

%token  NUM

%%

prob  : expr
 {
 printf(“\t= %X\n”, $1);
 return(0);
 }
 
 ;
 
expr  : expr ‘+’ term
 {
 $$ = $1 + $3;
 }
 
 | expr ‘-’ term
 {
 $$ = $1 - $3;
 }
 
 | term
 {
 $$ = $1;
 }
 
 ;

term  : term ‘*’ NUM
 {
 $$ = $1 * $3;
 }
 
 | term ‘/’ NUM
 {
 $$ = $1 / $3;
 }
 
 | ‘(‘ expr ‘)’
 {
 $$ = $2;
 }
 
 | NUM
 {
 $$ = $1;
 }
 
 ;

D(4). The Make File

YACC goes right into your make file, just like any other MPW tool. Hmm. I thought I said that YACC was a UNIX tool... The truth is that there is an MPW version of YACC available, called MACYACC (I have renamed the tool on my system to make typing easier).

#14

 Hex.c ƒ Hex.make Hex.y
 Yacc -VHex.out Hex.y
 Hex.c.o ƒ Hex.make Hex.c
 C -r Hex.c
 Hex ƒƒ Hex.make Hex.c.o
 Link -w -t MPST -c ‘MPS ‘ 
 Hex.c.o 
 “{Libraries}”Interface.o 
 “{CLibraries}”CRuntime.o 
 “{CLibraries}”StdCLib.o 
 “{CLibraries}”CSANELib.o 
 “{CLibraries}”Math.o 
 “{CLibraries}”CInterface.o 
 “{Libraries}”ToolLibs.o 
 -o Hex

E. Review of Abraxas’ MACYACC

MACYACC is a port of Abraxas’ PCYACC to the Macintosh. It functions as an MPW tool; you can call it from a make file just like a compiler. Abraxas sells it in two versions: The Personal Version for $139.00 includes the YACC tool itself and a small set of examples; the Professional Version for $395.00 includes that, plus MACLEX (a lexical analyzer generator) and two floppies of big examples, including grammars for C++, Hypertalk, SQL, Pascal, K & R C, ANSI C, and so on.

I won’t hide the ball; my recommendation is that you buy the Personal Version and skip the Professional Version.

E(1). Buy the Personal Version

Here’s why you should buy the Personal Version: because it works. You can just stick it in your make file and forget it.

The guys at Abraxas are apparently not too attuned to the Mac and MPW, so the port from the PC is pretty brutal. There are a lot of irritating little things, non-standard behavior and so forth. For example, to get a list of the command-line options, you don’t type “help yacc”; no, you invoke the tool itself without any options. The tool, when called with arguments, writes out a few lines of copyright information and the name of the grammar file it is processing, contrary to the MPW rule that a compiler should run silently. You can’t quiet it by directing standard output to Dev:Null, because it writes error messages to standard output. Abraxas converted the PCYACC manual by simply replacing all occurrences of “PCYACC” with “MACYACC”, which provides a lot of laughs. And so on.

The Fully-Worked-Out example requires Quick C to compile. Quick C requires Windows. The example is a graphics program; it requires a CGA monitor to run. Like I said, a lot of laughs...

Somehow, though, I find myself comforted by all that evidence of MACYACC’s lowly origin. Why? Because it means that those nice PC programmers have already debugged the thing for us! The internal code changes between the two versions were probably minimal and I doubt if the guts of the program were touched at all. So what has worked on the PC in the past should continue to work on the Mac. (Abraxas tells me that PCYACC has been out for five years, and MACYACC for two. Lotsa time for a shakedown.)

I did some comparisons. I converted the same grammar files with MACYACC and the Unix YACC from the Apollo at work. The parse tables were identical. In fact, I took an example from ASU and submitted it to both YACCs; all three parse tables were identical, except that ASU’s had error conditions in some places where the two YACC tables had reductions, which means that the YACC tables would take longer to catch some errors (more on this in a later article).

So I conclude: if you plan to write parsers, MACYACC is a whole lot easier than deriving parse tables by hand. (This is the voice of experience talking! I derived the parse table for my Idealiner parser by hand.)

E(2). Complaints with MACYACC

Now here are some complaints:

(1) The -t and -T command line options are very badly explained; I had to get Abraxas to tell me just what they are supposed to do. They cause the YACC-generated parser to write a special dump file. Unfortunately, this file is created untyped; you have to set its type to TEXT before you can even read it. And then it’s not too useful (see next month’s installment).

(2) MPW 2.0.2 is included on the disk. Or is it? Only the MPW Shell is there! This is totally weird. No tools, no startup script, nothing but the shell. C‘mon, guys, all or nothing! I don’t know what you can accomplish with just the shell. (Of course, people likely to be interested in Yacc are also likely to have MPW already.)

(3) The manual isn’t the worst I’ve ever seen but you’ll do a lot better if you don’t rely on it as a tutorial. If you can get a hold of the YACC chapter from a UNIX system manual, use that instead. It’s a lot clearer. With luck, this series of articles will repair some of the deficiencies of the manual.

One problem with YACC is that it came out of UNIX, and so is filled with obscure identifiers. What, for example, are “yyval” and “yylval”? I was not able to find the answer in the MACYACC manual. (“yylval” is a global used to return the value of the token read by the function yylex() -- you gotta know that! “yylval”, I’m pretty sure, is the value of the left-hand side of the last reduction.)

When TML came out with their MPW Pascal, they included four floppies (with the complete MPW system) and an inch of documents in a custom cardboard box, and priced the thing at $125.00. That means that they probably got about $70.00 from dealers. Abraxas, as far as I know, sells only directly to customers. For twice the price, they should be able to come up with a comparable package; most importantly, they should write a useful manual, and get a Mac programmer to do a real port.

On the other hand, they haven’t many Mac customers, and so they haven’t felt inclined to spend much effort on the Mac product. Or is it the other way around?

E(3). Skip the Professional Version

For an extra $256.00, you can get the Professional Version: the Personal Version, plus two disks of example grammars and a third with MACLEX. Is it worth the money? No.

These three disks come with no written manual. Most examples have sketchy read-me files instead. Not sufficient. You are on your own if you want to use them.

Abraxas itself admits that Lex is useless; they recommend building lexical analyzers by hand, as you can do a better job that way. This is, apparently, the prevailing wisdom; I found the same advice in a UNIX book.

As for the example grammars: These are direct ports from the PC. Many of the source files do not even have Macintosh file types! A few examples present the grammar only; most include enough code to get a syntax checker going but, of course, omit code generation. So the grammars are what counts. But how much is a grammar description of an existing language really worth?

Consider: a few years ago, Apple put out a wall poster with the complete syntax of Pascal. (If anyone has one of those posters and is tired of it, I’d be delighted to take it off his hands...) You could take that poster and write a grammar description in about ten minutes. So why should you pay $256.00?

Well, Abraxas also includes grammars to languages that are not so well-documented. You won’t find Hypertalk on any poster, for example, and if you want to see its grammar, Abraxas presents it for you. Whether that is worth $256.00 is a judgment call; in my judgment, it is not.

I think that if Abraxas cleaned up the code (i.e., did a complete port) and wrote a manual, they could justify selling the Professional Version for, say, $195.00. Without a manual, and with code designed for the PC, $395.00 is way out of line.

Column Tag: Letters

Parse Table Correction

By Kirk Chase, Editor, MacTutor

Parse Table Correction

Kirk Chase

MacTutor

Unfortunately, Clifford Story’s second part in his Language Translation Series was missing the parse table. Here it is for you now:

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

MacUpdate Desktop 6.0.8 - Search and ins...
MacUpdate Desktop 6 brings seamless 1-click installs and version updates to your Mac. With a free MacUpdate account and MacUpdate Desktop 6, Mac users can now install almost any Mac app on macupdate.... Read more
BitTorrent Sync 2.1.1 - Sync files secur...
BitTorrent Sync allows you to sync unlimited files between your own devices, or share a folder with friends and family to automatically sync anything. File transfers are encrypted. Your information... Read more
Quicksilver 1.3.0 - Application launcher...
Quicksilver is a light, fast and free Mac application that gives you the power to control your Mac with keystrokes alone. Quicksilver allows you to find what you need quickly and easily, then act... Read more
iWatermark Pro 1.72 - Easily add waterma...
iWatermark Pro is the essential watermarking app for professional, business, and personal use. iWatermark, is the number 1 and only watermarking tool available for all 4 platforms iPhone/iPad, Mac,... Read more
RapidWeaver 6.3 - Create template-based...
RapidWeaver is a next-generation Web design application to help you easily create professional-looking Web sites in minutes. No knowledge of complex code is required, RapidWeaver will take care of... Read more
Adobe Photoshop CC 2015 16.0.1 - Profess...
Photoshop CC 2015 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Photoshop customer). Photoshop CS6 is still available for purchase (... Read more
Together 3.4.6 - Store and organize all...
Together helps you organize your Mac, giving you the ability to store, edit and preview your files in a single clean, uncluttered interface. Smart storage. With simple drag-and-drop functionality,... Read more
Monosnap 3.1.0 - Versatile screenshot ut...
Monosnap lets you capture screenshots, share files, and record video and .gifs! Capture: Capture full screen, just part of the screen, or a selected window Make your crop area pixel perfect with... Read more
Cocktail 8.5.1 - General maintenance and...
Cocktail is a general purpose utility for OS X that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
Vienna 3.0.6 :5eaf312: - RSS and Atom ne...
Vienna is a freeware and Open-Source RSS/Atom newsreader with article storage and management via a SQLite database, written in Objective-C and Cocoa, for the OS X operating system. It provides... Read more

Five Nights at Freddy's 4 has Been...
In keeping with tradition, Five Nights at Freddy's 4 has made its way to the App Store with zero warning fanfare. Honestly I'd be disappointed it if happened any other way at this point. [Read more] | Read more »
Doom & Destiny Advanced (Games)
Doom & Destiny Advanced 2.3.4.0 Device: iOS Universal Category: Games Price: $.99, Version: 2.3.4.0 (iTunes) Description: ---SUPER GIGA LAUNCH DISCOUNT! Get it now for cheap or pay more later!---An additional 143 MB download is... | Read more »
Five Nights at Freddys 4 (Games)
Five Nights at Freddys 4 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: This time, the terror has followed you home. | Read more »
This Week at 148Apps: July 27-31, 2015
Winding Down July With 148Apps How do you know what apps are worth your time and money? Just look to the review team at 148Apps. We sort through the chaos and find the apps you're looking for. The ones we love become Editor’s Choice, standing out... | Read more »
You'll Want to Keep an Eye Out for...
If you're the kind of person who had fun hunting down and completing all the codex puzzles in Assassin's Creed 2, then are you ever in for a treat. The Guides looks like it's going to be a very robust collection of similarily odd, seemingly... | Read more »
Vivid Games has Announced Real Boxing 2...
The original Real Boxing was a pretty impressive bit of fisticuffs, but if the trailer Vivid Games is showing off for GamesCom is any indication Real Boxing 2 is going to be even better. [Read more] | Read more »
PAC-MAN Championship Edition DX - Tips,...
[Read more] | Read more »
Card King: Dragon Wars - Tips, Tricks an...
[Read more] | Read more »
Pac-Man Championship Edition DX has brou...
Bandai Namco has released Pac-Man Championship Edition DX on iOS and Android, which features the classic arcade gameplay that we've all grown to love. Pac-Man Championship Edition DX can be enjoyed in much shorter bursts than the arcade versions... | Read more »
Cosmonautica (Games)
Cosmonautica 1.1 Device: iOS Universal Category: Games Price: $6.99, Version: 1.1 (iTunes) Description: Cast off! Are you ready for some hilarious adventures in outer space? | Read more »

Price Scanner via MacPrices.net

MacBook 12 Retina Pundit’s New Favorite Mac
If you’re eyeing the purchase of a new 12-inch Retina MacBook, but wondering if you can live with a single USB-C port, 2011-level CPU performance, and the unorthodox keyboard, you should find... Read more
PDF Element Tool Kit For PDF For Windows 10,...
South Surrey, British Columbia based software developer Wondershare has posted an interesting infographic tracking the development of Microsoft’s flagship Windows operating system over the years,... Read more
27-inch 3.5GHz 5K iMac on sale for $81 off MS...
Adorama has the 27″ 3.5GHz 5K iMac on sale for $2218, $81 off MSRP, including a free copy of Apple’s 3-Year AppleCare Protection Plan. Shipping is free, and Adorama charges sales tax in NY & NJ... Read more
Back-to-School with Tablet and Smartphone Acc...
Belkin helps you prepare for the coming school year with a wide variety of the latest mobile and tablet accessories to outfit both grade school and college students. The line-up includes charging... Read more
11-inch MacBook Airs on sale for $100 off MSR...
Best Buy has 11-inch MacBook Airs on sale for $100 off MSRP. Choose free shipping or free local store pickup (if available). Sale prices for online orders only, in-store prices may vary: - 11″ 1.6GHz... Read more
iPad Air 2 on sale for up to $100 off MSRP
Best Buy has iPad Air 2s on sale for up to $100 off MSRP on their online store for a limited time. Choose free shipping or free local store pickup (if available). Sale prices available for online... Read more
Sale! 13-inch MacBook Pros on sale for $100 o...
B&H Photo has 13″ MacBook Pros on sale for $100 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.5GHz/500GB MacBook Pro: $999.99 save $100 - 13″ 2.7GHz/128GB Retina... Read more
Sale! Save $100 on 13-inch MacBook Airs this...
B&H Photo has the 13″ 1.6GHz/128GB MacBook Air on sale for $899.99 including free shipping plus NY tax only. Their price is $100 off MSRP, and it’s the lowest price available for this model.... Read more
Worldwide Tablet Market Decline Continues, Ap...
The worldwide tablet market declined -7.0% year-over-year in the second quarter of 2015 (2Q15) with shipments totaling 44.7 million units according to preliminary data from the International Data... Read more
TP-LINK TL-PA8030P KIT Powerline Featuring Ho...
Consumer and business networking products provider TP-LINK is now shipping its TL-PA8030P KIT AV1200 3-Port Gigabit Passthrough Powerline Starter Kit that expands your home’s network over its... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Infrastructure Engineer - *Apple* /Mac - Hil...
Infrastructure Engineer - Apple /Mac Job Code: 1608 # of openings: 1 Description Our fortune 500 client is looking to hire an experienced Infrastructure Engineer to join Read more
Executive Administrative Assistant, *Apple*...
…supporting presentation development for senior leadership. * User experience with Apple hardware and software is preferred. Additional Requirements The following list Read more
*Apple* Bus Company is now hirin - Apple Bus...
Apple Bus Company is now hiring school bus drivers in the Pettis County area. Class B CDL preferred. Free training provided. No nights or weekends required. Flexible Read more
*Apple* Certified Mac Technician - Updated 6...
…and friendly, hands-on technical support to customers troubleshooting and repairing Apple /Mac products with courtesy, speed and skill. Use your problem-solving skills Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.