TweetFollow Us on Twitter

Appletalk Protocol
Volume Number:5
Issue Number:7
Column Tag:Forth Forum

Related Info: AppleTalk Mgr

Appletalk Protocol Handlers

By Jörg Langowski, MacTutor Editorial Staff

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

“Appletalk protocol handlers”

Many of you may have used Appletalk in one or the other of their programs, but the way it really works is an interesting mystery to most of us. Since a recent project of mine will have to use some of the low-level features of Appletalk, I’d like to describe some of the hooks built into it that allow you to set up your own network protocols or change those provided by Apple.

Long-time readers of MacTutor will remember that we had a series of articles on Appletalk in V1#10 and #11 already; also one of my Forth columns (V4#9) showed some examples how to use the Appletalk services from Mach2. All these articles were mainly dealing with the high-level features of Appletalk, ATP and higher. The way the low-level stuff works was more or less taken for granted, and that’s the way 95% of all programs would normally use Appletalk. Why and when do we have to take a closer look?

Imagine, for instance, a program that implements a bridge between two Appletalk networks. One may be the Localtalk connection that your Mac is hooked up to through the serial port, the other the Ethernet that you have plugged into your Ethernet card. Apple’s Network CDEV lets you change from one network to the other, but you can’t (yet) choose two networks simultaneously. Infosphere’s LIAISON™, however, allows you to do just that, bridging Localtalk and Ethernet by a process that runs on your Mac in the background. Thus, there exists at least one example to show that an Appletalk bridge can be implemented as a background process on the Mac. (The other solution, of course, being a hardware box like Kinetics’ FastPath or the Gatorbox). Such programs must use the Appletalk routines at a lower level; and I’ll give some examples how to do that in the following.

DDP packets

Remember how internet addressing works on Appletalk: Each local network has a unique network number, each device on the network a unique node number, and each separate process on the device a unique socket number.

When a process on the Mac (e.g. a word processing program) wants to communicate with another device on the network (let’s say, a printer), it will first look up its internet address using the name binding protocol described in the articles mentioned above. Once the internet address is known, it can then send out a packet to the remote device over the network or receive packets from it. The two devices can be either on the same local network, or on two different networks that are connected through bridges. Depending whether the remote device is on the same local network or not, the Appletalk driver will send your data to the network in either of two different formats. You normally don’t see the difference; the datagram delivery protocol (DDP) takes care of checking whether the destination network number is the same as your own network number or not. The two different formats are called long or short DDP packets, and their format is shown in Fig. 1.

Fig.1 : short (left) and long (right) DDP packets

Typically, when the two communicating nodes are on the same local network, DDP will send short packets. When the two nodes are on different networks, DDP will send long packets; also when the two nodes are on the same network, but the sending node doesn’t know its own network number. In that case it will set the source network number of the packet to zero and send a long packet anyway.

The first two header bytes after the flag bytes (destination and source node #) determine the two nodes on the local network that communicate with each other. In a short packet, the destination node number is the number of the final node of the communication link. However, for a long packet that is routed through a bridge, the immediate destination node is that bridge; therefore the first header byte contains the bridge’s node number and the final destination is given further down in the packet.

The distinction between the two packet formats is made in the third byte of the header, the LAP protocol type. LAP stands for link access protocol, the lowest level of the Appletalk protocol which delivers data from one node to the other on the same local network. The LAP protocol then determines what to do with the packet after is has been received.

Node addressing

There is a lot of traffic going on on a typical Appletalk network, and each node has to filter out only those packets that it needs to receive, that is, those where the destination node ID matches its own ID, or where the destination ID is $FF (broadcast packets). This is a task that has to be done by dedicated hardware. We cannot expect the Macintosh CPU to look at each single packet and see whether it has the correct ID; doing that, we wouldn’t have time for doing any other work.

Fortunately, the Macintosh’s 8530 SCC chip (serial communications controller) can be programmed to automatically detect a flag byte - a 01111110 sequence - followed by an address byte - the destination address -, and send an interrupt only if the received address matches a preset value. That way a node will ignore all packets except those that it is actually supposed to receive.

LAP protocol handlers

Now, a packet is arriving that carries the correct node number in its header, what are we going to do with the data? Whatever we do, we should do it fast, because data is arriving at a rate of 260 KBaud. The SCC’s internal buffer holds three bytes, so we have only 95 µs to take any action required. The decision what to do with the packet depends on the value of the third header byte, the LAP protocol field. Each packet structure (DDP long/short, other structures that you might have implemented) corresponds to a different protocol number.

For each protocol number that the node understands, there will be an entry in a protocol handler table consisting of the protocol number and the handler’s address. The low-level packet reception routine will search the table for the protocol number, and transfer control to the corresponding handler if it is found. Otherwise, the packet will just be ignored.

The protocol handler table is located in the Appletalk global variable area; the address of this area is kept in the low-memory global ABusVars ($02D8). The structure of the Appletalk global variable area is described in part in Inside Macintosh II-328, the protocol table is not specified there. This is because the format of the protocol table depends on the specific Appletalk implementation, the MPP driver in the System file expects a different format than that in ROM. As an example, I’ll give the format for the MacII (and SE) when Appletalk has been loaded from ROM:

0 sysLAPAddr This node ID (byte)

1 toRHA read header area (24 bytes)

25 sysABridge Node ID of a bridge on the

local network (byte)

26 sysNetNum This network number (word)

28 vSCCEnable status register value to

re-enable SCC interrupts

(word)

(some unspecified bytes)

36 LAPprotNums LAP protocol numbers

(8 bytes)

44 LAPprotProcs LAP protocol handlers

(32 bytes = 8 pointers)

Each entry in the protocol table is either a protocol number at (36+i) and a corresponding address at (44 + 4*i) with i=0 to 7, or $FF and a zero address for free slots in the table. We see that a maximum of eight different protocols are allowed; this is because checking of the protocol type and control transfer to the handler must be completed in the allowed time frame of 95 µs.

Thus, when the protocol number of the packet corresponds to a valid protocol handler in the table, control will be transferred to that protocol handler. This month’s example program contains a protocol handler that can be installed instead of the default handler for long DDP packets (LAP type 2). A warning in advance: Installing this handler will completely screw up most of your Appletalk services, since your Mac won’t understand long DDP packets correctly anymore.

The default DDP protocol, after reading the packet header (Fig. 1), gets the address of a socket listener routine from the socket table, where socket numbers and listener routine pointers are arranged similar to the protocol handlers in the protocol table. The socket table is also kept in the ABusVars block pointed to by A2. The default protocol handler transfers control to a socket listener if it finds one in the table. For long DDP packets, we will now replace the default handler by one that simply reads the packet data into a buffer and does nothing else. You may then - from Mach2 - look at the packet data in the buffer. To restore normal Appletalk operation, you must disable and re-enable Appletalk from the Chooser. This restores the default handlers.

The new handler code is defined in the word myLAP2. When a packet arrives, it will first verify whether the destination network is the local network. If so, it will read the packet data into a buffer which is located just in front of the handler code. It will then construct a short DDP packet out of the long one by stripping all the network information. This packet could then be re-sent to the network; setting the SetSelfSend flag to true, the same node would receive it again, this time through the LAP type 1 protocol handler. The corresponding code is commented out, since it did not work for me in this simple manner. So far, the protocol handler can only be used to look at the raw packet data. I’ll keep you informed when I’ve found the reason why.

attach.ph and detach.ph are used to insert and remove handlers in the protocol table. A handler can only be attached to a protocol type if that type is not yet present in the table; therefore to change the LAP type 2 handler we have to remove the old one, then install the new one. change.prots gets a block in system heap space, moves the handler code with the buffer areas into that block, and installs the new protocol handler.

This almost concludes my short introduction into low-level Appletalk stuff; a lot of the information presented here is not documented in any Apple documentation that I’m aware of and could only be found out by disassembling into ROM. Disassembly also showed me the function of two more Appletalk system globals, the procedure pointers ATalkHk1 ($B14) and ATalkHk2 ($B18). Both are active when they are non-NIL: ATalkHk1 seems to be called on each _Control call to the .MPP driver, and ATalkHk2 on every writeLAP call. ATalkHk2, in particular, would enable you to define alternate link access protocols, as for Ethernet, ISDN, and the like (for more detail on this, see the Alternate Appletalk Connections Reference, APDA #KNB007).

Listing 1: LAP protocol handler example
only forth also assembler

\ Appletalk LAP protocol handler example
\ 12.05.89 JL
$904 constant currentA5

DECIMAL

12 constant ioCompletion
18 constant ioFileName
18 constant userData
24 constant ioRefNum
26 constant csCode
27 constant ioPermission
28 constant socket
28 constant protType
30 constant addrBlock
30 constant handler

9constant mppUnitNum 
mppUnitNum 1+ negate 
 constant mppRefNum

\ LAP defs
1constant LAPshortDDP
2constant LAPLongDDP
-94constant lapProtErr
-95constant lapExcessCollns

243constant lapWrite
244constant lapDetachPH
245constant lapAttachPH

-1 constant lapOverrunErr
-2 constant lapCRCErr
-3 constant lapUnderrunErr
-4 constant lapLengthErr

\ DDP defs
5constant ddpHdSzShort
13 constant ddpHdSzLong

1constant ddpRTMP
2constant ddpNBP
3constant ddpATP

$7Fconstant ddpMaxWKS
586constant ddpMaxData
$3ff  constant ddpLengthMask
128constant ddpWKS

-91constant ddpSktErr
-92constant ddpLenErr
-93constant ddpNoBridgeErr

\ CsCode values for DDP Control calls- MPP
246constant ddpWrite
247constant ddpCloseSkt
248constant ddpOpenSkt

256constant setSelfSend

$1FA  constant pRamByte
$1FB  constant SPConfig
$291  constant portBUse
$2D8  constant ABusVars
$2DC  constant ABusDCE

\ ABusVars block
0  constant sysLAPAddr
1  constant toRHA
8  constant dstNetNum
25 constant sysABridge
26 constant sysNetNum
28 constant vSCCEnable

header handler.start
header ATPblock 50 allot
header LAP1block 8 allot
header packet 586 allot
.trap   _control,async  $a404
.trap   _newptr,sys$a51E
CODE myLAP2
 moveq.l#ddpHdSzLong-2,D3
 move.w sysNetNum(a2),D2
 jsr    (a4)
 bne    @2
 cmp.w  dstNetNum(a2),d2
 bne    @1
 lea    packet,a3
 move.l #586,d3
 jsr    2(a4)
 bne    @2
 lea    LAP1block,a0
 move.b toRHA(a2),(a0)    \ dest node ID
 move.b toRHA+1(a2),1(a0) \ source node ID
 move.b #1,2(a0) \ LAP type = 1
 move.b toRHA+3(a2),3(a0) \ length field MSB
 move.b toRHA+4(a2),4(a0) \ length field LSB
 move.b toRHA+13(a2),5(a0)\ dest skt number
 move.b toRHA+14(a2),6(a0)\ src skt number
 move.b toRHA+15(a2),7(a0)\ DDP prot type
\_debugger
\ set up parameter block for LAPwrite call
\lea    ATPblock,a0
\move.w #mppRefNum,ioRefNum(a0)
\move.l #0,ioCompletion(a0)
\move.w #LAPwrite,csCode(a0)
\lea    LAP1block,a1
\move.l a1,addrBlock(a0)
\move.w vSCCEnable(a2),sr \ re-enable interrupts
\_control,async
@2 rts
@1 moveq.l#0,d3
 jmp    2(a4)
END-CODE
header handler.end
: call.mpp
 mppRefNum  [‘] ATPBlock ioRefNum + w!
 [‘] ATPBlock call control
;
: attach.ph ( protType handler -- flag )
 ( handler )  [‘] ATPBlock handler + !
 ( protType ) [‘] ATPBlock protType + c!
 lapAttachPH  [‘] ATPBlock csCode + w!
 call.mpp
;
: detach.ph ( protType -- flag )
 ( protType ) [‘] ATPBlock protType + c!
 lapDetachPH  [‘] ATPBlock csCode + w!
 call.mpp
;
: set.self.send ( self_send_flag | old_flag -- )
 setSelfSend [‘] ATPBlock csCode + w!
 ( flag ) [‘] ATPBlock 28 + c!
 call.mpp drop \ result code
 [‘] ATPBlock 29 + c@
;
: get.sys.block  
    [‘] handler.end [‘] handler.start - 
    MOVE.L (A6)+,D0
    _newptr,sys ( get memory block in system heap )
    MOVE.L A0,-(A6)
;
: change.prots { | protPtr -- }
 get.sys.block -> protPtr
 protPtr IF
 [‘] handler.start protPtr 
 [‘] handler.end [‘] handler.start - cmove
 2 detach.ph 
 abort” Could not detach protocol handler”
 2 [‘] myLAP2 [‘] handler.start -
 protPtr +
 attach.ph
 abort” Could not attach protocol handler”
 255 set.self.send drop
 ELSE .” Could not get memory for protocol handler”
 THEN
 cr .” Buffer area is at “ protPtr 50 + . cr
;

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

BetterTouchTool 1.84 - Customize Multi-T...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom... Read more
Dropbox 8.4.21 - Cloud backup and synchr...
Dropbox is an application that creates a special Finder folder that automatically syncs online and between your computers. It allows you to both backup files and keep them up-to-date between systems... Read more
OmniGraffle Pro 6.6.1 - Create diagrams,...
OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use... Read more
OmniGraffle 6.6.1 - Create diagrams, flo...
OmniGraffle helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use Graffle to... Read more
f.lux 37.7 - Adjusts the color of your d...
f.lux makes the color of your computer's display adapt to the time of day, warm at night and like sunlight during the day. Ever notice how people texting at night have that eerie blue glow? Or wake... Read more
BBEdit 11.6.1 - Powerful text and HTML e...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
ScreenFlow 6.1 - Create screen recording...
ScreenFlow is powerful, easy-to-use screencasting software for the Mac. With ScreenFlow you can record the contents of your entire monitor while also capturing your video camera, microphone and your... Read more
Microsoft Office 2016 15.25 - Popular pr...
Microsoft Office 2016 - Unmistakably Office, designed for Mac. The new versions of Word, Excel, PowerPoint, Outlook and OneNote provide the best of both worlds for Mac users - the familiar Office... Read more
FileZilla 3.21.0 - Fast and reliable FTP...
FileZilla (ported from Windows) is a fast and reliable FTP client and server with lots of useful features and an intuitive interface. Version 3.21.0: Fixed Vulnerabilities Fixed a string format... Read more
Fantastical 2.2.5 - Create calendar even...
Fantastical 2 is the Mac calendar you'll actually enjoy using. Creating an event with Fantastical is quick, easy, and fun: Open Fantastical with a single click or keystroke Type in your event... Read more

Pokemon GO update: Take me to your leade...
The Team Leaders in Pokemon GO have had it pretty easy up until now. They show up when players reach level 5, make their cases for joining their respective teams, and that's pretty much it. Light work, as Floyd Mayweather might say. [Read more] | Read more »
Ruismaker FM (Music)
Ruismaker FM 1.0 Device: iOS Universal Category: Music Price: $4.99, Version: 1.0 (iTunes) Description: Following up on the success of Ruismaker, here's her crazy twin-sister, designed for people who want to design their own... | Read more »
Space Marshals 2 (Games)
Space Marshals 2 1.0.15 Device: iOS iPhone Category: Games Price: $5.99, Version: 1.0.15 (iTunes) Description: The sci-fi wild west adventure in outer space continues with Space Marshals 2. This tactical top-down shooter puts you in... | Read more »
Dungeon Warfare (Games)
Dungeon Warfare 1.0 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0 (iTunes) Description: Dungeon Warfare is a challenging tower defense game where you become a dungeon lord to defend your dungeon against greedy... | Read more »
Solitairica (Games)
Solitairica 1.0.7 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0.7 (iTunes) Description: Solitairica takes RPG combat and challenging rogue-like progression to a fresh new place—the world of solitaire! | Read more »
Bowmasters tips, tricks and hints
At least for this writer, archery was one of the more pleasant surprises of the 2016 Rio Olympics. As opposed to target shooting with guns, which was dreadfully boring, watching people shoot arrows at targets was pretty darn cool. [Read more] | Read more »
Best apps for watching live TV
The Olympics have come and gone, leaving nearly everyone in a temporary state of "What the heck am I going to watch on TV right now?" Besides old reruns of Golden Girls, but that goes without saying. [Read more] | Read more »
What is Flip Diving, and why has it take...
Move over Pokemon GO. There's a new king in town, and it's "the world's #1 cliff diving game." [Read more] | Read more »
5 places where Pokemon GO is still numbe...
In the U.S., the bloom is off the Pokemon Go rose ever so slightly. It's still doing great, sitting atop the top grossing chart as it has for some time, but it's no longer among the top 10 free apps in downloads, possibly because darn near... | Read more »
Madden NFL Mobile: How defense has chang...
Saying that defense is not a priority in Madden NFL Mobile is a bit of an understatement. In asynchronous head-to-head play, you don't take control of your defenders at all, as the AI manages them while your opponent plays offense. When it's your... | Read more »

Price Scanner via MacPrices.net

Apple refurbished 13-inch MacBook Airs availa...
Apple has Certified Refurbished 2016 and 2015 13″ MacBook Airs now available starting at $849. An Apple one-year warranty is included with each MacBook, and shipping is free: - 2016 13″ 1.6GHz/8GB/... Read more
Apple refurbished iPad mini 2s available for...
Apple is offering Certified Refurbished iPad mini 2s for up to $80 off the cost of new minis. An Apple one-year warranty is included with each model, and shipping is free: - 16GB iPad mini 2 WiFi: $... Read more
Save up to $600 with Apple refurbished Mac Pr...
Apple has Certified Refurbished Mac Pros available for up to $600 off the cost of new models. An Apple one-year warranty is included with each Mac Pro, and shipping is free. The following... Read more
Mac Pros on sale for $200 off MSRP
B&H Photo has Mac Pros on sale for $200 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2799, $200 off MSRP - 3.5GHz 6-core Mac Pro: $3799, $200... Read more
Will We See A 10.5″ iPad Pro in 2017? – The ‘...
A MacRumors report, cites a research note from KGI Securities analyst Ming-Chi Kuo, saying a new size iPad model is in the works. According to the highly respected Cho, who has a strong track record... Read more
IOGEAR USB-C Docking Station Transforms Lapto...
IOGEAR has announced the launch of its innovative USB-C Docking Station with Power Delivery which turns USB-C enabled laptops into desktop workstations. The new IOGEAR USB-C Docking Station features... Read more
12-inch Retina MacBooks on sale for up to $10...
Amazon has 2016 12″ Apple Retina MacBooks on sale for $100 off MSRP. Shipping is free: - 12″ 1.1GHz Space Gray Retina MacBook: $1199 $100 off MSRP - 12″ 1.1GHz Silver Retina MacBook: $1224.99 $75 off... Read more
13-inch 2.5GHz MacBook Pro (Apple refurbished...
Apple has Certified Refurbished 13″ 2.5GHz MacBook Pros available for $829, or $270 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.5GHz MacBook Pros... Read more
21-inch iMacs on sale for up to $120 off MSRP
B&H Photo has 21″ iMacs on sale for up to $120 off MSRP including free shipping plus NY sales tax only: - 21″ 3.1GHz iMac 4K: $1379 $120 off MSRP - 21″ 2.8GHz iMac: $1199.99 $100 off MSRP - 21″ 1... Read more
Typinator 6.10 comes with 50 improvements – G...
Ergonis Software today announced release of Typinator 6.10, a new version of their text expander utility for macOS. Typinator 6.10 comes with 50 improvements, including new features, compatibility... Read more

Jobs Board

*Apple* Mobile Master - Best Buy (United Sta...
What does a Best Buy Apple Mobile Master do? At Best Buy, our mission is to leverage the unique talents and passions of our employees to inspire, delight, and enrich Read more
*Apple* Retail - Multiple Positions Akron, O...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Simply Mac *Apple* Specialist- Repair Techn...
…The Technician is a master at working with our customers to diagnose and repair Apple devices in a manner that exceeds the expectations set forth by Apple Read more
*Apple* Retail - Multiple Positions Germanto...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Professional Learning Specialist - A...
# Apple Professional Learning Specialist Job Number: 51234379 Portland, Maine, Maine, United States Posted: Aug. 18, 2016 Weekly Hours: 40.00 **Job Summary** The Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.