TweetFollow Us on Twitter

Record Definitions
Volume Number:5
Issue Number:2
Column Tag:Forth Forum

Record Definitions

By Jörg Langowski, MacTutor Editorial Staff

“Record definitions in Mach2”

Record structures and arrays are not part of standard Forth implementations. More than two years ago, in V2#7, I had given an example how to implement records. Mach2 has evolved since then, and so have ways of implementing new data structures, as you can see in the Object Forth project by Wayne Joerding that we recently discussed. For those of you who do not want a full object-oriented system, but still ways of defining data structures in an easy way, I have found two examples on the GEnie bulletin boards. Those examples show two fundamentally different approaches to deal with record definitions.

‘Local’ field names - method 1

The problem in setting up the Forth compiler to deal with record definition in a proper way is somewhat similar to implementing an object-oriented programming system. That is, just like a message is local to an object, and the same message may cause different effects on different objects, a field name should be local to a record. In the Pascal record definitions

\1

rec1 = record
 x: real;
 i: integer;
 y: real;
 end;

rec2 = record
 y: real;
 j: integer;
 x: real;
 end;

the field x would create a different offset into a record of type rec2 than for a rec1 type; and rec1.i, rec2.j would be valid while rec1.j, rec2.i would not. So if we define a field name as some kind of Forth word, this word should be in some ‘local vocabulary’ that belongs to the record definition and is only visible while the field reference is resolved.

The other requirement is that we should be able to pass a record as a parameter to a routine, so that given the pointer to a record on the stack, a Forth definition would know how to resolve the field reference. In a strongly typed language like Pascal this is easy; field references into record formal parameters can be resolved at compile time because the procedure arguments are of defined type. In Forth, typically the address of a data structure would be passed on the stack. However, at compile time there is no way we can restrict the type of argument that this address might later point to at run time! This problem could only be solved by type checking built into the record definition and deferring the resolution of the field reference to run time, some sort of ‘late binding’.

The first method of record definition (Listing 1), written by Waymen Askey of Palo Alto Shipping (I added some minor modifications, like floating point and array support), creates a local dictionary for each record template in the Forth dictionary space. When a record template is defined, using the syntax

\2

template rec1
 :real x
 :word i
 :byte c
tend  

its field names x, i and c are compiled into the dictionary together with relevant information for resolving the references. At the end of the template declaration, the dictionary links are changed in such a way that the ‘local’ names are skipped when the dictionary is searched. Let’s declare a record:

\3

rec1 structure myRec

A field of this record is later accessed by using the structure fetch/store words, s@ and s!.

myRec x s@ will put the value in field x of myrec on the floating point stack, and myRec i s@ will put the word value of field i on the stack. The trick Waymen used was to build some intelligence into the fetch/store words. When the record and field words, myRec and x for example, are executed or compiled into a definition, field type and offset are determined and kept in global variables. The s@ word will check these variables and know how to access the field, whether - in immediate execution - to do a byte, word or long word fetch, addressing into an array, or a ten-byte fetch onto the floating point stack for a real number; or at compile time create code that will do these things later.

The drawback of this approach is that field references can only be resolved at compile or immediate execution time. If we wanted to write a word that operates on a record whose address is passed on the stack, we couldn’t use the field names that were defined in the record template - they are only valid right after a record name was executed or compiled. Therefore, a definition like

\4

: getX { myRec -- } myRec x s@ ;  

must fail because myRec is a local variable, not a record name.

An example how to use this method of record declaration with various field types is given at the end of the listing. You see the drawback: Even though the record fields wavelength, temperature, and angle are all themselves structures of the same type parameter, there is no way to factor out the common code in

5

 cr curve1 wavelength name s^ count type .” = “
 curve1 wavelength value s@ f.
 curve1 wavelength unit s^ count type
 cr curve1 temperature name s^ count type .” = “
 curve1 temperature value s@ f.
 curve1 temperature unit s^ count type
 cr curve1 angle name s^ count type .” = “
 curve1 angle value s@ f.
 curve1 angle unit s^ count type

by using a word that would just print name, value and unit of any given parameter. If this problem was resolved, the record compiler would almost be perfect.

‘Global’ field names - method 2

Listing 2 shows a much simpler approach to structure definitions that does not do type checking. I downloaded this code from the Forth Roundtable on GEnie, and unfortunately have not the slightest idea who the author is. All I could find out was that the original code was probably posted on the East Coast Forth Board.

However, since this code solves one of our problems, record passing as formal parameters, I’d like to print it here. Its strategy is much more like that of the structure words built into MacForth Plus. Here, a record template is defined like

\6

RECORD Rectangle
        Global  SHORT: Top
        Global  Short: Left
        Global  Short: Bottom
        Global  SHORT: RIght
ENd.RECORD
 
Variable myRect Rectangle 4 - VALLOT ;

so the record name, when executed, simply leaves the record length on the stack for later ALLOT or VALLOT. The field names are words which add the field offset to an existing address on the stack, so they can be used in any context. We have to check ourselves whether the address is a valid record address and whether the field referenced actually exists in that record (if we care at all). All field names are global, and therefore must be unique; no two different record declarations can have fields of the same name at different offsets.

This approach is not so different from the very basic one that I used in most of my examples, where I simply defined field names as constants and added the offset to the record address.

What the Macintosh Forth world needs is really a combination of the two approaches, with type checking at compile time and local field names for convenience, and a possibility to resolve field references on record addresses at compile time without too much overhead. If one knew the type of the record passed on the stack ahead of time (which is usually the case), one could probably define some ‘field reference resolution word’ which computes an offset given a template and a field name. I hope I can show you an example in one of my next columns.

Upcoming: an update to Wayne Joerding’s Object Forth, and a review of PocketForth, a public domain 16-bit Forth that comes as an application and a desk accessory. Stay tuned.

Listing 1: Structure definitions with local field names
\ STRUCTUREs 2.5   for the Macintosh  MACH2
\ Jan 3, 1987 by Waymen Askey 
\ edited, floating point & array addition by 
\ J. Langowski @ MacTutor
\ This MACH2 extension is released for the public good; 
\ however, for those planning commercial use of this code, 
\ please notify  me so that I might know of its intended use.
\              Waymen Askey @ PASC
\  also GEnie MACH2 RoundTable.

only mac also sane also forth definitions
( VARIABLES used in STRUCTURE 2.5 )
decimal
variable current.template
variable op.type
variable A5offset ( holds the A5 offset to a structure )

( CODE word utilities used in STRUCTURE 2.5 )
code var.link  ( -- a | variable link pointer )
 lea $F7F8(A5),A0
 move.l A0,-(A6)
 rts
end-code

code a5@  ( -- a )
 move.l A5,-(A6)
 rts
end-code mach
  
code get.field  ( a1 a2 -- a3 -1 or 0 | searches templates )
  ( a1=template, a2= pad, a3=field pointer, 0 if not found )
 move.l (A6)+,D2
 move.l (A6)+,D3
 moveq.l #0,D1
 moveq.l #0,D0
@start  movea.l D3,A1
        movea.l D2,A0
        move.b (A1)+,D1  ( link to next field )
        beq.s @end       ( if link=0, field not found )
        move.b (A1),D0
@loop   cmpm.b (A1)+,(A0)+
        dbne D0,@loop
        beq.s @found
        add.l D1,D3   ( increment field pointer )
        bra.s @start
@found  movea.l D3,A1
        move.b 1(A1),D1  ( get string count )
        addq.w #2,D1
        btst #0,D1  ( test for odd count )
        beq.s @even
        addq.w #1,D1
@even   add.l D1,D3
        moveq.l #-1,D1
        move.l D3,-(A6)
@end    move.l D1,-(A6)
        rts
end-code

code >sr  ( n -- | push value onto subroutine stack )
 move.l (A6)+,-(A7)
 rts
end-code mach

code sr>  ( -- n | pop value from subroutine stack )
 move.l (A7)+,-(A6)
 rts
end-code mach

code sr@  ( -- n | copy value from subroutine stack )
 move.l (A7),-(A6)
 rts
end-code mach

( Miscellaneous utility words used in STRUCTURE 2.5 )
: >even  ( a -- a’ | 
 word aligns address, i.e. rounds up to even)
 dup  1 and  + ;

: >odd  ( a -- a’ | odd aligns address, rounds up to odd )
 1 or ;

: needed  ( n -- | checks for at least n items on stack )
 depth 1- > abort” Missing needed stack item(s)! “ ;

( Brute-force machine code words )
: ncode,  
( n1...n -- | machine code defining word, stuffs n words )
 create   dup needed   dup 2* w,   
 0 do   w,   loop
 does>   ( -- | compiles machine code )
 dup   2+ swap   dup w@   +   
 do   i  w@  w,   -2 +loop ;  

hex
( define some machine code “stuff” words )
41ED 1 ncode,  lea_d(a5),a0      
4EBA 1 ncode, jsr_d(PC)
4EAD 1 ncode, jsr_d(A5)
( LEA and JSR also need a word of extension for displacement )
2D3C 1 ncode, move.l_#,-(A6)  
 ( plus a long extension for # )
2D08 1 ncode,  move.l_a0,-(a6)     
4E75 1 ncode,  rts,
( The following expect an address to be in A0 )
7000 1010 2D00 3 ncode, byte@
7000 3010 2D00 3 ncode, word@
2D10 1 ncode, long@
201E 1080 2 ncode, byte!
201E 3080 2 ncode, word!
209E 1 ncode, long!
\ disassemble the following to check how they work.
\ Exercise for the reader... - JL
5187 5587 2247 22d8 22d8 32d8 6 ncode, real@
2247 20d9 20d9 30d9 5087 5487 6 ncode, real!
201e e580 2d30 0000 4 ncode, array@
201e e580 219e 0000 4 ncode, array!
201e e380 4281 3230 0000 2d01 6 ncode, warray@
201e e380 221e 3181 0000 5 ncode, warray!
decimal

( Dictionary header, name, and struct link words )
: link>name   ( lfa -- ‘nf | ‘nf points to header length byte)
 4 + ;
 
: name.count   
 ( ‘nf -- ‘nf+1  n | dictionary header name count)
 count 31 and ;

: link>segment  
 ( lfa -- ‘sf | ‘sf is the dictionary segment field address)
 link>name name.count  +  >even ;
 
: link>parameter  
 ( lfa -- ‘pf | ‘pf is the parameter field pointer)
 link>segment 2+ ;

: link>struct  ( lfa -- struct.fields )
 link>segment 4 + ;
 
: jsr_d(PC),  ( lfa -- | compiles PC relative JSR)
 jsr_d(PC)
 link>body here -  w, ;
 
: jsr_d(A5),  
 ( lfa -- | compiles A5 relative JSR, i.e. jump table )
 jsr_d(A5)  
 link>parameter w@  w, ;
 
: struct.zero  ( -- lfa | returns lfa of struct.zero )
 “ struct.zero” find  drop ;

: nallot  ( n -- | allots n bytes in name space )
 np +! ; 
  
: name,   ( -- parses and compiles text into name space.)
 32 word  np @  over c@ 1+  dup >odd nallot  cmove ;
 
: nc,  ( n -- | compiles byte into name space )
 np @ c!   1 nallot ;
 
: nw,  ( n -- | compiles word into name space )
 np @ w!   2 nallot ;
 
: n,  ( n -- | compiles long into name space )
 np @ !   4 nallot ;
 
( TEMPLATE, STRUCTURE and field words )
: struct.error  ( -- )
  cr pad count type 
  .”  ?  Error, unknown field or incomplete structure path! “
  abort ;
  
global 
: template  ( -- here 0 | begins TEMPLATE definition )   
  create here 0   2 allot 
  does>  ( -- template.size ) 
    dup w@ swap 4 - body>link   current.template ! ;
 
: tend  
 ( here n -- | (T)emplate(END) ends template definition  )
  swap w!   0 nw, ;
  
global 
: afield  ( size op.type --  )
  create  w,  >even w,
  does>  ( here Toffset -- here new.Toffset )
         ( Toffset means (T)emplate(OFFSET) )  
    2dup 2+   w@  + >sr  
    w@  np @ >sr  1 nallot  name,  
    0 nc, ( field type=0 )   nc, ( op.type )   
    nw, ( Toffset )   np @ sr@ - sr> c! ( field link )
    sr> ;
  
( The following op.types are reserved and defined below )
( 06 byte, 12 word, 18 long, 24 string, 
 30 real, 36 struct, 42 array, 48 warray )

( size.in.bytes op.type  AFIELD  named.afield.type )
1  06 afield  :byte   
2  12 afield  :word
4  18 afield  :long
10 30 afield  :real

: :string  ( here Toffset size -- here Toffset+size+1  )
 3 needed  1+   over +   >even swap   
 np @ >sr  1 nallot  name,   
 0 nc, ( field type=0 )   24 nc, ( op.type=24) 
   nw, ( Toffset )   np @ sr@ - sr> c! ( field link ) ;     

: :array  ( here Toffset size -- here Toffset+size+1  )
 3 needed  4* over +   swap   np @ >sr  1 nallot  name,   
 0 nc, ( field type=0 )   42 nc, ( op.type=42) 
  nw, ( Toffset )   np @ sr@ - sr> c! ( field link ) ;     

: :warray  ( here Toffset size -- here Toffset+size+1  )
 3 needed  2* over +   swap   np @ >sr  1 nallot  name,   
 0 nc, ( field type=0 )   48 nc, ( op.type=48) 
  nw, ( Toffset )   np @ sr@ - sr> c! ( field link ) ;     

: :struct  ( here Toffset size -- here Toffset+size  )
 3 needed  over +   >even swap   
 np @ >sr  1 nallot  name,  
 06 nc, ( field type=06 )  36 nc, ( op.type=36 )
 nw, ( Toffset )
 current.template @  struct.zero - n, ( template link )  
  np @ sr@ - sr> c! ( field link ) ;  

: >pad  ( a -- | moves string to pad )
  pad over c@ 1+  cmove ;

: make.var.link  { | name.pointer var.pointer vlink --  }
 np @ -> name.pointer  var.link @ -> var.pointer   
 name.pointer var.link ! 
 name.pointer var.pointer -    -> vlink
 name.pointer dup 1 and + -> name.pointer
 vlink name.pointer !
 name.pointer 4 + np ! ;

( Decision table for field type decode )
: do.afield ( ^field.type --  true )
 1+ dup c@ op.type !   1+ w@ A5offset +!   -1 ;

: do.bfield  ( ^field.type -- new.template false )
 dup 1+ dup c@ op.type !   1+ w@ A5offset +!
 4 + @   struct.zero +   link>struct   0 ; 

: rts rts, ; immediate
 
( DO.FIELD table entries decode field data )
( afield’s are simple :BYTE, :WORD, 
 :LONG, :STRING types )
( bfield’s are :STRUCT fields )

create do.field  ( field_type  table_offset/type )
]do.afield rts  (   afield         0            )
 do.bfield rts  (   bfield         6            )
[                ( end of current table          )

global
: make.struct  (  template.link A5offset  -- )   
( This is the word which must resolve a structure reference. )
  A5offset !  ( A5 displacement for the struct )
  36 op.type !  ( set default op.type to struct )
  struct.zero +  link>struct  ( template.address -- )
  begin    
    32 word   >pad
    pad get.field        
    if  ( field found )
      dup  c@ do.field +  execute
    else ( field not found )
      pad find 1 = 
      if 
        link>body   execute  -1
      else 
        struct.error
      then 
    then  
  until ;

hex
: structure  
( n -- | creates structure alloting n bytes in variable space )
  1 needed create   immediate make.var.link   
  -4 allot lea_d(a5),a0  vp @ w,  ( variable-like beginning )
  move.l_#,-(A6)  current.template @ struct.zero - ,    
  move.l_#,-(A6)   vp @ ,  
  “ make.struct” find drop dup link>segment  w@ 0=
  if  jsr_d(PC),  else  jsr_d(A5), then
  rts,   
  vallot ; 
decimal

( STRUCTURE operators )
: compileA5  ( -- | compiles A5 reference )
  lea_d(a5),a0  a5offset @ w, ;

: pushA5  ( -- | executes A5 var reference )
  a5offset @ a5@ + ;

: do.bit  ( -- )  ( I’m lazy, define your own.  W. Askey )
  cr .” BIT operations are yet undefined!” abort ;
 
: do.struct  ( -- )  ( Fetch/store doesn’t make sense here. )   
  cr .” STRUCTURE fetch/store operations are undefined! “ abort ;
  
: do.string  ( -- )  ( If you wish, define your own. )
  cr .” STRING fetch/store operations are undefined! “ abort ;
  
: do.byte@  ( f -- )
  if compileA5  byte@ else  pushA5 c@ then ;
 
: do.word@  ( f -- )
  if compileA5  word@ else pushA5 w@ then ;
  
: do.long@  ( f -- )
  if compileA5 long@ else pushA5 @ then ;
 
: do.array@  ( idx f -- )
  if compileA5 array@ else 4* pushA5 + @ then ;

: do.warray@  ( idx f -- )
  if compileA5 warray@ else 2* pushA5 + w@ then ;

: do.real@  ( f -- )
  if compileA5 real@ else pushA5 f@ then ;

 ( Decision table for fetch )
 create op.table@   ( op.types are offsets into this table ) 
 ]  do.bit rts      ( op.type = 0  )
    do.byte@ rts    (  “  “   = 6  )
    do.word@ rts    (  “  “   = 12 )
    do.long@ rts    (  “   “  = 18  etc, etc. )
    do.string rts
    do.real@ rts
    do.struct rts
 do.array@ rts
 do.warray@ rts
[

: do.byte!  ( f -- )
  if compileA5  byte! else pushA5 c! then ;
 
: do.word!  ( f -- )
  if compileA5  word! else pushA5 w! then ;
  
: do.long!  ( f -- )
  if compileA5 long! else pushA5 ! then ;

: do.array!  ( idx f -- )
  if compileA5 array! else 4* pushA5 + ! then ;

: do.warray!  ( idx f -- )
  if compileA5 warray! else 2* pushA5 + w! then ;

: do.real!  ( f -- )
  if compileA5 real! else pushA5 f! then ;

create op.table!  ( decision table for store )
]do.bit rts
 do.byte! rts
 do.word! rts
 do.long! rts
 do.string rts
 do.real! rts
 do.struct rts
 do.array! rts
 do.warray! rts
[
  
: s^  ( -- a | returns pointer to structure field )
( ALL field types are allowed. i.e. strings, struct, etc. )
 state @ 
 if  compileA5 move.l_a0,-(a6) else pushA5 then 
; immediate

: s@  ( -- data | Fetch field contents, data type smart)
  state @
  op.type @ op.table@ + execute ; immediate

: s!  ( data -- | Store into field, data type smart)
  state @
  op.type @ op.table! + execute ; immediate
 
: stype  ( -- op.type | returns the op.type of a field )
 op.type @  state @ 
  if [compile] literal then 
; immediate
( Examples of structure usage.  Data Storage is limited to the approximately 
32K global area referenced off of register A5 -- just as for regular 
MACH2 variables. Structure references have a REQUIRED syntax, it is best 
NOT to use any non-STRUCTURE Forth words when between field names in 
a structure calling sequence.  That is, please end each structure reference 
prior to any DUP’s, SWAP’s, etc. The structure pointer operator -- S^ 
-- may be used at any place in the structure calling sequence.  S^ will 
return the address of the field or structure itself.  Structures MUST 
be terminated with a defined structure operator!  The defined operators 
in this upload are S^, S@, S!, and STYPE.  WARNING, if you forget to 
terminate a structure, no structure reference will be compiled and an 
error message MAY NOT be given.  Remember also that field names ARE CASE 
SENSITIVE and LOCAL to the structure template.  Last comment, structures 
MAY be nested to any level. ) 

fp

template Point
 :word x
 :word y
tend

template Rect
  :word top
  :word left
  :word bottom
  :word right
tend  ( TEND ends template definition )
  
\ example for FP parameters 
template parameter
30 :string name
 :real value
30 :string unit
tend

template measurement
 :long date \ in internal Mac format
80 :string title
255 :string descriptor
parameter :struct wavelength
parameter :struct temperature
parameter :struct angle
256:array time
256:array counts
tend

measurement structure curve1

: testarray
 100 0 do i 4* i curve1 time s! loop
 100 0 do i curve1 time s@ . cr loop;

: .date ( DateTime DateForm ) { | [ 40 lallot ] mydate -- }
 8 shift ^ mydate call IUDateString ^ mydate count type;

: read.int
 begin
 pad 1+ 80 expect span @ pad c! pad number? not while
 drop cr .” Illegal number [integer], reenter - “
 repeat;

: read.float
 begin
 pad 1+ 80 expect span @ pad c! pad fnumber? not while
 fdrop cr .” Illegal number [float], reenter - “
 repeat;

: setup.curve1 { | dattim -- }
 ^ dattim call readdatetime drop @
 cr .” Today is “ 1 .date
 cr .” Setting up parameters for curve 1.”
 dattim curve1 date s!
 “ lambda” dup c@ 1+ curve1 wavelength name s^ swap cmove 
 “      T” dup c@ 1+ curve1 temperature name s^ swap cmove 
 “  delta” dup c@ 1+ curve1 angle name s^ swap cmove 
 “ [nm]” dup c@ 1+ curve1 wavelength unit s^ swap cmove 
 “  [K]” dup c@ 1+ curve1 temperature unit s^ swap cmove 
 “  [°]” dup c@ 1+ curve1 angle unit s^ swap cmove 
 cr .” Title (one line) - “ cr pad 80 expect
 span @ curve1 title s^ c!
 pad curve1 title s^ 1+ span @ cmove 
 cr .” Description (one line) - “ cr pad 80 expect
 span @ curve1 descriptor s^ c!
 pad curve1 descriptor s^ 1+ span @ cmove
 cr .” lambda [nm] - “ read.float curve1 wavelength value s!
 cr .”      T  [K] - “ read.float curve1 temperature value s!
 cr .”  delta  [°] - “ read.float curve1 angle value s!
\ example setup of ‘measurement data’
 20 0 do
 i i curve1 time s!
 i 100 * i curve1 counts s!
 loop

 cr .” End setup -- “ cr;
 
: dump.curve1 { | [ 80 lallot ] mydate -- }
 cr .” Data taken on “ curve1 date s@ 1 .date
 cr curve1 title s^ count type
 cr curve1 descriptor s^ count type
 cr curve1 wavelength name s^ count type .” = “
 curve1 wavelength value s@ f.
 curve1 wavelength unit s^ count type
 cr curve1 temperature name s^ count type .” = “
 curve1 temperature value s@ f.
 curve1 temperature unit s^ count type
 cr curve1 angle name s^ count type .” = “
 curve1 angle value s@ f.
 curve1 angle unit s^ count type
 cr .” data follows:”
 20 0 do cr
 i curve1 time s@ . space
 i curve1 counts s@ .
 loop
 cr
;
Listing 2: Structure definitions from ECFB
\ downloaded from GEnie  J. L. Nov 1988
\ Originally from East Coast Forth Board, 
\ author A. Nonymous
( This is a set of machforth routines for building records. They allow 
you to build a named record with items of various sizes. Executing the 
record name leaves the record size on the stack, executing an item name 
leaves the offset of the item into the record on the stack. It creates 
a template for the record but not the actual record. Create the record 
with “ create <name> <record name> allot” or “variable <name> <record 
name> 4 - vallot” depending if you want the entry in the dictionary or 
variable space )
 
VOCABULARY RECORDS ( NEW VOCABULARY )
ALSO RECORDS
DEFINITIONS
 
Global
: Align ( n1 -- [n1] or [n1 + 1] makes n word aligned )
        dup 2 mod + ; ( USED TO WORD ALIGN 2 & 4 BYTE ITEMS )
 
Global
: RECORD ( -- a 0)
         HERE 4 +  CREATE  0 dup W,  DOES>  W@ ;
         ( USED TO OPEN A RECORD )
 
Global
: BYTE: ( a n -- a n1+1)
        CREATE DUP W, 1+ DOES> W@ + ;
 
Global
: BYTES: ( a n1 n2 -- a n1+n2 | AN ARRAY OF n2 bytes ) 
        CREATE OVER Align W, swap Align + DOES> W@ + ;
 
Global
: SHORT: ( a n1  -- a n1+2 | 2 byte integer item )
        CREATE Align DUP W, 2+ DOES> W@ + ;

Global
: WORD: ( a n1  -- a n1+2 | 2 byte integer item )
        CREATE Align DUP W, 2+ DOES> W@ + ;
 
Global
: BOOLEAN: ( a n1  -- a n1+2 | 2 byte boolean item )
        CREATE Align DUP W, 2+ DOES> W@ + ;
Global
: SHORTS: ( a n1 n2 -- a n1+n2*2 | an array of n2 shorts )
   CREATE OVER Align  W,  2* Swap Align  + DOES> W@ + ;
 
Global
: LONG:  ( a n1  -- a n1+4 | a 4 byte integer )
        CREATE Align DUP W, 4 + DOES> W@ + ;
Global
: POINTER:  ( a n1  -- a n1+4 | a 4 byte integer )
        CREATE Align DUP W, 4 + DOES> W@ + ;
Global
: LONGS: 
 ( a n1 n2 -- a n1+n2*4 | an array of n2 4 byte integers )
  CREATE OVER Align  W, 4 * swap Align + DOES> W@ + ;
Global
: HANDLE: ( a n1  -- a n1+4 | a handle, 4 byte, item )
        CREATE Align DUP W, 4 + DOES> W@ + ;
Global
: HANDLES: ( a n1 n2 -- a n1+n2*4| array of n2 handles )
  CREATE OVER Align  W, 4 * swap Align  + DOES> W@ + ;
 
Global
: ADDR: ( a n1  -- a n1+4 | 4 byte address item, ie pointer )
        CREATE Align DUP W, 4 + DOES> W@ + ;
Global
: ADDRS: ( a n1 n2 -- a n1+n2*4 | array of n2 addresses )
  CREATE OVER Align  W, 4 * swap Align + DOES> W@ + ;
Global
: RECT: ( a n1 n2 -- a n1+8 | a rect item )
  CREATE Align DUP W, 8 + DOES> W@ + ;
Global
: RECTS: ( a n1 n2 -- a n1+n2*8 | an array of n2 rects )
  CREATE  OVER Align  W, 8 * swap Align + DOES> W@ + ;
Global
: STRING: ( a n1 n2 -- a n1+n2+1 | a string item n2+1 long ) 
  CREATE OVER W, + 1+ DOES> W@ + ;
Global
: RECORD: ( a n1 n2 -- a n1+n2 | a record item of size n2) 
  CREATE OVER Align  W, swap Align + DOES> W@ + ;
Global
: END.RECORD 
 { Mainaddr size --|sets size of struct at a to n }
                Mainaddr W@ Size <
                IF Size MainAddr W! THen ;
          ( CLOSES RECORD, STORES RECORD SIZE IN RECORD NAME)
Global
: SUB.REC ( -- )
        CReate  0 W, 2DUP Here 2- Rot Rot DOES> W@ ;
        ( USE TO CREATE VARIANT RECORD ON THE END OF A RECORD)
Global
: END.SUB { SubAddrs MainAddrs Size -- }
        Size SubAddrs W!
        MainAddrs W@ Size <
        IF Size Align MainAddrs W! THen ;
        ( USE TO CLOSE VARIANT RECORD ) 
 
ONLY MAC
ALSO FORTH
DEFINITIONS
ALSO RECORDS
 
Global
RECORD Rectangle
        Global  SHORT: Top
        Global  Short: Left
        Global  Short: Bottom
        Global  SHORT: RIght
ENd.RECORD
 
Global
: rect Variable Rectangle 4 - VALLOT ;
( CREATES A RECTANGLE RECORD IN THE VARIABLE SPACE )

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

TunnelBear 3.5.1 - Subscription-based pr...
TunnelBear is a subscription-based virtual private network (VPN) service and companion app, enabling you to browse the internet privately and securely. Features Browse privately - Secure your data... Read more
Typinator 7.4 - Speedy and reliable text...
Typinator turbo-charges your typing productivity. Type a little. Typinator does the rest. We've all faced projects that require repetitive typing tasks. With Typinator, you can store commonly used... Read more
Monosnap 3.4.9 - Versatile screenshot ut...
Monosnap lets you capture screenshots, share files, and record video and .gifs! Features Capture Capture full screen, just part of the screen, or a selected window Make your crop area pixel... Read more
Fantastical 2.4.5 - Create calendar even...
Fantastical 2 is the Mac calendar you'll actually enjoy using. Creating an event with Fantastical is quick, easy, and fun: Open Fantastical with a single click or keystroke Type in your event... Read more
TunnelBear 3.5.1 - Subscription-based pr...
TunnelBear is a subscription-based virtual private network (VPN) service and companion app, enabling you to browse the internet privately and securely. Features Browse privately - Secure your data... Read more
Typinator 7.4 - Speedy and reliable text...
Typinator turbo-charges your typing productivity. Type a little. Typinator does the rest. We've all faced projects that require repetitive typing tasks. With Typinator, you can store commonly used... Read more
Fantastical 2.4.5 - Create calendar even...
Fantastical 2 is the Mac calendar you'll actually enjoy using. Creating an event with Fantastical is quick, easy, and fun: Open Fantastical with a single click or keystroke Type in your event... Read more
Monosnap 3.4.9 - Versatile screenshot ut...
Monosnap lets you capture screenshots, share files, and record video and .gifs! Features Capture Capture full screen, just part of the screen, or a selected window Make your crop area pixel... Read more
Skim 1.4.32 - PDF reader and note-taker...
Skim is a PDF reader and note-taker for OS X. It is designed to help you read and annotate scientific papers in PDF, but is also great for viewing any PDF file. Skim includes many features and has a... Read more
ForkLift 3.1.1 - Powerful file manager:...
ForkLift is a powerful file manager and ferociously fast FTP client clothed in a clean and versatile UI that offers the combination of absolute simplicity and raw power expected from a well-executed... Read more

Latest Forum Discussions

See All

What mobile gaming can learn from the Ni...
While Nintendo might not have had things all its own way since it began developing for mobile, one thing it has got right is the release of the Switch. After the disappointment of the WiiU, which I still can't really explain, the Switch felt a... | Read more »
Programmer of Sonic The Hedgehog launche...
Japanese programmer Yuji Naka is best known for leading the team that created the original Sonic The Hedgehog. He’s moved on from the speedy blue hero since then, launching his own company based in Tokyo – Prope Games. Legend of Coin is the... | Read more »
Why doesn't mobile gaming have its...
The Overwatch League is a pretty big deal. It's an attempt to really push eSports into the mainstream, by turning them into, well, regular sports. But slightly less sweaty. It's a lavish affair with teams from all around the world, and more... | Read more »
Give Webzen’s new billiard game PoolTime...
Best known for producing hugely popular MMO titles, South Korean publisher Webzen is now taking aim at a different genre altogether. PoolTime is a realistic eight ball pool simulator, allowing you to compete in real-time matches against players... | Read more »
Let Them Come Guide - How to survive aga...
Let Them Come is all about making it as far as possible against overwhelming odds. Check out some of these tips to help you last a little longer in your unwinnable fight: [Read more] | Read more »
All the best games on sale for iPhone an...
Happy last day of the week. I hope you've been having a good one. I have. I saw ten doggos today. So because I'm in a good mood, I thought I'd round up all of the best games that are currently on sale on the App Store. [Read more] | Read more »
The very best games that came out for iP...
We're getting to the end of the first real, full, proper week of 2018. And in that time we've seen some pretty awesome games landing on the App Store. Of course, we've seen some absolute duffers as well. The sort of games that you look at and... | Read more »
Rusty Lake Paradise (Games)
Rusty Lake Paradise 1.4 Device: iOS Universal Category: Games Price: $2.99, Version: 1.4 (iTunes) Description: Jakob, the oldest son of the Eilander family, is returning to Paradise island after his mother passed away. Since her... | Read more »
Antihero Guide - Sneaky tricks to get ah...
Games of Antihero start out small and streamlined, but they quickly turn into long strategic conquests as you fight for control of the Victorian-era streets. If you find yourself struggling in the skullduggery department, here are a few things you... | Read more »
Here's why Niantic pulling Pokemon...
If there's one thing that Pokemon GO did well, it was bringing people together. I still remember seeing groups of people around the marina near where I live in the weeks after the game came out, all of them trying to grab some water Pokemon. There... | Read more »

Price Scanner via MacPrices.net

Apple now offering Certified Refurbished 2017...
Apple has Certified Refurbished 9.7″ WiFi iPads available for $50-$80 off the cost of new models. An Apple one-year warranty is included with each iPad, and shipping is free: – 9″ 32GB WiFi iPad: $... Read more
10″ iPad Pros on sale for $50-$75 off MSRP, n...
B&H Photo has 10″ and #Apple #iPad Pros on sale for up to $75 off MSRP. Shipping is free, and B&H charges sales tax in NY & NJ only. Note that some sale prices are restricted to certain... Read more
Apple refurbished Mac minis available startin...
Apple has restocked Certified Refurbished Mac minis starting at $419. Apple’s one-year warranty is included with each mini, and shipping is free: – 1.4GHz Mac mini: $419 $80 off MSRP – 2.6GHz Mac... Read more
Amazon offers Silver 13″ Apple MacBook Pros f...
Amazon has new Silver 2017 13″ #Apple #MacBook Pros on sale today for up to $150 off MSRP, each including free shipping: – 13″ 2.3GHz/128GB Silver MacBook Pro (MPXR2LL/A): $1199.99 $100 off MSRP – 13... Read more
Sale: 12″ 1.3GHz MacBooks on sale for $1499,...
B&H Photo has Space Gray and Rose Gold 12″ 1.3GHz #Apple MacBooks on sale for $100 off MSRP. Shipping is free, and B&H charges sales tax for NY & NJ residents only: – 12″ 1.3GHz Space... Read more
Apple offers Certified Refurbished 2017 iMacs...
Apple has a full line of Certified Refurbished iMacs available for up to $350 off original MSRP. Apple’s one-year warranty is standard, and shipping is free. The following models are available: – 27... Read more
13″ MacBook Airs on sale for $120-$100 off MS...
B&H Photo has 2017 13″ 128GB MacBook Airs on sale for $120 off MSRP. Shipping is free, and B&H charges sales tax for NY & NJ residents only: – 13″ 1.8GHz/128GB MacBook Air (MQD32LL/A): $... Read more
15″ Touch Bar MacBook Pros on sale for up to...
Adorama has Space Gray 15″ MacBook Pros on sale for $200 off MSRP. Shipping is free, and Adorama charges sales tax in NJ and NY only: – 15″ 2.8GHz MacBook Pro Space Gray (MPTR2LL/A): $2199, $200 off... Read more
21″ 3.4GHz 4K iMac on sale for $1399, $100 of...
Adorama has the 21″ 3.4GHz 4K #Apple #iMac on sale today for $1399. Their price is $100 off MSRP. Shipping is free, and Adorama charges sales tax in NJ and NY only: – 21″ 3.4GHz 4K iMac (MNE02LL/A... Read more
B&H offering 13″ Apple MacBook Pros for u...
B&H Photo has 13″ MacBook Pros on sale for up to $75-$120 off MSRP. Shipping is free, and B&H charges sales tax for NY & NJ residents only: – 13-inch 2.3GHz/128GB Space Gray MacBook Pro (... Read more

Jobs Board

Commerce Engineer, *Apple* Media Products -...
# Commerce Engineer, Apple Media Products Job Number: 113161479 Santa Clara Valley, California, United States Posted: 01-Nov-2017 Weekly Hours: 40.00 **Job Summary** Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Site Reliability Engineer, *Apple* Pay - Ap...
# Site Reliability Engineer, Apple Pay Job Number: 113356036 Santa Clara Valley, California, United States Posted: 12-Jan-2018 Weekly Hours: 40.00 **Job Summary** Read more
UI Tools and Automation Engineer, *Apple* M...
# UI Tools and Automation Engineer, Apple Media Products Job Number: 86351939 Santa Clara Valley, California, United States Posted: 11-Jan-2018 Weekly Hours: 40.00 Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.