TweetFollow Us on Twitter

Volume Number:4
Issue Number:11
Column Tag:HyperChat™

XCMD Cookbook

By Donald Koscheka, Apple Computer, Inc.

on HyperChat

A Nice Chat

While doing the Sunday crossword puzzle recently, I was hit with a very interesting thought. One of the clues in this particular puzzle called for a synonym for “small talk”. The answer was “chat”. This struck me as odd because in many ways HyperTalk is very much the preferred object oriented programming language for the Macintosh. One of the earliest object oriented languages, as you know, is called “SmallTalk”. By calling this column “HyperChat”, Fred makes a rather obscure reference to HyperTalk’s philosophical roots. Chat implies a looseness of speech, a vernacular that is easy to master. That is exactly what HyperTalk is - an easy to grasp interface to the Macintosh Toolbox. What HyperTalk lacks in power, it certainly makes up for in ease of understanding!

At the opposite end of the spectrum is Assembly language programming. This much maligned language conjures all sorts of anxieties in the minds of otherwise fearless programmers. Yet most professional programmers will admit that an understanding of assembly language can improve one’s ability to write efficient code in a higher-level language as well as better understand those mysterious looking dumps that one gets when suddenly presented with a memory dump from TMON or MACSBUG.

Worse yet, those of us who choose to work in higher level languages provide a great disservice to the assembly language programmer by not showing them how to interface with our languages. HyperTalk documentation is certainly sparse in describing how an assembly language programmer can write an XCMD in assembly.

Assembly Interface

I started writing this month’s column hoping to be of service to the assembly language programming community. I wasn’t very far along when I realized that this column offers a second service, at no extra charge to the reader.

The process of showing you how to interface to HyperCard in assembly language also introduces the Pascal and C programmer to debugging in Macsbug or TMON (Forth programmers take heart: Jörg Langkowski’s article in the December, 1987 issue of Mactutor provides you with the information you’ll need to write XCMDs; even if you don’t program in Forth-like languages, you should read Jörg’s column; his insights into the Macintosh are often astonishing).

The most important reason to code in Assembly language is that it provides a rich opportunity to improve on the more generic code generated by Pascal and C compilers. Consider the following string comparison in Pascal:

Match : Boolean;
Str1  : Str255;
Str2  : Str255;

Str1 := ‘Hello World’;
Str2 := ‘GoodBye Cruel World’;

IF Length(Str1) <> Length( Str2 ) THEN 
 match := FALSE
 Match := True;  { assume they will match}
 k := 1;

 While (k <= Length( Str1)) AND (match) DO
 IF Str1[k] <> Str2[k] THEN 
 match := False
 k := k + 1;

Listing 1. String Comparisons in Pascal

String compares can be made more efficient than this in Pascal. I chose this example for its simplicity. In comparing strings, we must consider the end points, if the strings are not the same length, they are not equal. If you haven’t been programming in Assembly language, you may not see how this routine could be made more efficient. One measure of a program’s efficiency is a count of the number of bytes of instructions needed to execute the program. If you compile listing 1 and dump the object code, you would discover that the while loop requires 82 bytes of instructions to execute. Assembly language programmers know by instinct that 82 bytes is too much code to perform a single string compare.

An assembly language equivalent of the while loop in listing 1 can be shrunk by an order of magnitude as in listing 2. If you’re trying to speed up a particularly slow loop, a few bytes of well-written assembler might be just what the doctor ordered. But optimizing code is just one reason to familiarize yourself with assembly language. A more compelling reason for the high-level language is that an understanding of assembler will help you make sense of your TMON or MacsBug dumps.

 ; A0, A1 point to the 2 strings
 Move.b (A0)+, D1; get the length of string 1
 Move.b (A1)+, D2; get the length of string 2
 Cmp.b  D1,D2  ; are they the same length?
 Beq  CompareChars ; yes, go ahead and compare them
 Move #0, D0; set the result to false
 Bra  Done; and exit

CompareChars     ; compare Str1<->Str2
 Cmp.b  (A0)+,(A1)+; do the characters match?      
 Beq  Done; yes, see if we’re at end of string
 Dbra D1, CompareChars
 Move #1, D0; they match, set the result true

DONE  sne D0       ; Result is true if strings match,          
 false otherwise

Listing 2. String Compare in Assembler

Entering XCMDs

The real trick to writing an XCMD in assembly language is understanding that HyperCard expects to see an XCMD that was generated by the Pascal compiler. This implies that parameters are pushed on the stack from left to right and that subroutines are responsible for removing the pushed parameters from the stack. XCMDs receive only one parameter so the push order isn’t important. What is important is remembering to remove that parameter from the stack before returning to HyperCard. Listing 3 is the assembly language interface for XCMDs. The fields in the paramBlock record are identical to the Paramblock record in Pascal or C.

On entry to a subroutine in assembly language, the last item on the stack is the return address of the calling routine. Normally, when we are done with the subroutine, an rts (return from subroutine) instruction will pop this return address off the stack and into the Program Counter resuming execution at the instruction pointed to by that location. This won’t do for Pascal routines since convention dictates that we also remove the parameters from the stack. One way to do this would be to pop the return address into a temporary register, say D0, remove the parameters from the stack by adding the size of the parameters to the stack pointer and then pushing the contents of D0 onto the stack and executing an RTS. A more efficient method exists: Pop the return address into an address register, say A0. Unbias the stack parameters by adding 4 to the stack (the size in bytes of the parameter block pointer). Finally, since register A0 contains the return address, execute the Jmp Indirect instruction on A0: Jmp (A0).

Globals in XCMDs

If your XCMD requires local variables, you’re going to need a place to store them. Assembly language XCMDs bear the same restriction placed on high-level languages: you don’t have access to the globals. A simple solution would be to allocate a handle large enough to store all your globals and keep that handle available in an address register. This works fine if the data is very static but not very well otherwise since you could easily run out of registers while manipulating even a small number of handles. Pascal and C use a more efficient approach, one that you’ve already seen if you’ve done any debugging in TMON or Macsbug.

On entry to the subroutine, we know that the stack pointer, register A7, already points to the next available space on the stack (the bottom of the stack). Why don’t we allocate our data on the stack by pointing an address register, say A6, to the bottom of the stack, subtracting the number of bytes that we need for our locals from A7 effectively growing the stack by the amount we need (the stack grows downward). Now A6 points to our local variables and A7 continues its role as stack pointer below our local stack frame (figure 1 ).

The process of creating a stack frame can be performed with one assembly language instruction: link. Used judiciously, the link instruction buys us a whole lot more: it saves the old value of the address register and gives a reference point to the parameters passed by the caller.

By executing link A6,#LocalSize, before doing anything else, we set up up a stack frame at the stack bottom. If stacksize were set to zero, we wouldn’t actually allocate any stack space for globals, but the instruction would still provide a payback. Because nothing else was put on the stack between the call to this routine and our link instruction, A6 also doubles as a pointer to our parameters! First, 0(A6) contains the previous value of A6 (can you think of anything this might be useful for?), next 4(A6) is the return address, and 8(A6) is the paramblock pointer passed to us by HyperCard. By putting 8(A6) into A3, we save the pointer to our parameters in an address register.

The offsets defined in the parameter block equates now become offsets off A3 for each field. The first field in the record is paramCount(A3) the count of the number of parameters in the params array. Accessing the handles in the params array poses another question. The first handle in the array is at params(A3). Getting to the other handles in the params array requires a straightforward application of arithmetic. By definition, handles occupy 4 bytes in the Mac. Any array element, i, is at offset (i-1)*4 byte in the array. We subtract 1 from the element number because array indices count from 0 not from 1. If we put the array index into D0, subtract 1 and multiply by 4 we have the offset from the beginning of the array. All we need to do is add this number to params[A3] and we have the handle. The 68000 has just an instruction: indexed addressing with offset. Here is how this instruction can be used to get the third parameter in the list:

Moveq     #3, D0   ; Access the third parameter in the list 
Sub.w     #1, D0   ; arrays count from 0, not 1
Asl.w     #2, D0   ; shift left by 2 is same as multiply by 4! 
Move.l    params(A3,D0.w), A0 ; A0 now holds the third handle 

Since stack frames are oriented from the highest memory location they occupy to the lowest, local variables are always referred to by negative offsets. In Pascal, the following declaration

myInt   : INTEGER;
myLong  : LongINt;
myRect  : Rect;

would have the following counterpart in assembly language:

myInt        EQU -4        ; locals start at offset -4 in the frame
myLong  EQU myInt-2; Integers are 2 bytes
myRect      EQU myLong-4  ; longs are 4 bytes
LocalSize EQU myRect-8  ; rectangles are 8 bytes.
LocalSize is equal to 14 bytes.  The stack frame is set up to read:
LINK    A6,#LocalSize; create the local variable pool.
Move.w  (A0),D0

If you’re having a bit of difficulty with this material, try writing a simple XCMD in Pascal or C and disassembling it in TMON or Macsbug. You can do this by invoking the Debugger call as the first statement in you XCMD.

Exiting the XCMD

Leaving the XCMD requires a little house cleaning. First, we restore the registers that were saved onto the stack. Next, we execute an unlink (UNLK) instruction to undo the last Link instruction. At this point, the stack looks just like it did when we entered the XCMD. More importantly (A7) is the return address of the calling routine. Popping this value into A0 allows us to save the return address in a safe place so that we can remove the parameters from the stack. We know how much space the parameters take. The stack contains only one parameter, XCmdBlkPtr, whose length is four bytes. Adding 4 to A7 shrinks the stack to the right size. Now all that’s left is to Jmp to the location pointed to in A0 and we’re done!


If you’re already programming in assembly language, this article is enough to get you started with XCMDs, especially if you’re not familiar with Pascal calling conventions. If you’re a Pascal or C programmer, the above discussion should help you to debug your code by explaining some of the assembly code you may have been looking at in TMON or Macsbug. In any case, understanding how compilers take your statements and convert them into machine executable code is a great way to learn more about the inner-workings of your programs and those seemingly mysterious bugs that just are not obvious in your Pascal or C source code. Hopefully, I’ve been able to fill some gaps in your debugging skills with this information. If the information in this article was useful, please let me know, I’ll be happy to offer more information on assembly language and debugging techniques.

;* File: SimpleXCMD.a*
;* *
;* A simple XCMD written in *
;* Assembly language to show*
;* how XCMDs are written in *
;* assembler...  *
;* -------------------------- *
;* By:  Donald Koscheka   *
;* Date:16 July, 1988*

;* Build Sequence
;* asm -w SimpleXCMD.a
;* link  -rt XCMD=1200 -sn Main=SimpleXCMD
;* SimpleXCMD.a.o
;* -o “YourStackName”

;***  ParamBlock structure***
paramCountEQU    0   
params  EQU paramCount+2
returnValue EQU  params+( 16 * 4 )     
passFlagEQU returnValue + 4 
entryPointEQU    passFlag + 2   
request EQU entryPoint + 4  
result  EQU request + 2
inArgs  EQU result + 2
outArgs EQU inArgs + ( 8 * 4 )
pBlkSizeEQU outArgs + (4 * 4 )

;*** ------------------ ***
;*** (WILL GO ON STACK)   ***
;*** Note that the stack frame***
;*** counts backwards from 0***
;*** so that the value of ***
;*** LocalSiz will always be  ***
;*** negative    ***

;*** ------------------ ***

;* In:
;* 0(A7) == Return Address
;* 4(A7) == ParamBlockPtr
;* Link A6 to create a stackframe
;* that points to these vars.

 ;*** Set Up Stack Frame
 LINK   A6,#LOCALSIZ ; Size of the local frame
 MOVEM.LD5-D7/A3/A4,-(SP) ; save some registers
 ;*** Get Pointer to paramblock
 MOVE.L 8(A6), A3; Point to parameters
 CLR.L  returnValue(A3) ; set to “empty”
 TST.W  paramCount(A3)  ; Any Parameters?
 BEQ    DONE; no, just return
   ;*** Insert your code here.  If your XCMD doesn’t take any 
 ;*** parameters eliminate the atest on paramcount ...
DONE    ;*** Prepare for Return to HyperCard
 MOVEM.L(SP)+,D5-D7/A3/A4 ; restore registers
 UNLK   A6; wipe out stack frame
 MOVE.L (A7)+, A0; get the return address
 ADD.L  #4, A7   ; unbias the stack
 JMP    (A0); return to HyperCard

Listing 3. SimpleXCMD in Assembly Language

end HyperChat

Community Search:
MacTech Search:

Software Updates via MacUpdate

OmniPlan 3.0 - Robust project management...
With OmniPlan, you can create logical, manageable project plans with Gantt charts, schedules, summaries, milestones, and critical paths. Break down the tasks needed to make your project a success,... Read more
Yummy FTP 1.11 - FTP/SFTP/FTPS client fo...
Yummy FTP is an FTP + SFTP + FTPS file transfer client which focuses on speed, reliability and productivity. Whether you need to transfer a few files or a few thousand, schedule automatic backups, or... Read more
Tweetbot 2.1 - Popular Twitter client. (...
Tweetbot is a full-featured OS X Twitter client with a lot of personality. Whether it's the meticulously-crafted interface, sounds and animation, or features like multiple timelines and column views... Read more
MacPilot 8.0 - Enable over 1,200 hidden...
MacPilot gives you the power of UNIX and the simplicity of Macintosh, which means a phenomenal amount of untapped power in your hands! Use MacPilot to unlock over 1,200 features, and access them all... Read more
Typinator 6.7 - Speedy and reliable text...
Typinator turbo-charges your typing productivity. Type a little. Typinator does the rest. We've all faced projects that require repetitive typing tasks. With Typinator, you can store commonly used... Read more
Adobe Lightroom 6.2 - Import, develop, a...
Adobe Lightroom is available as part of Adobe Creative Cloud for as little as $9.99/month bundled with Photoshop CC as part of the photography package. Lightroom 6 is also available for purchase as a... Read more
ForeverSave 2.1.4 - Universal auto-save...
ForeverSave auto-saves all documents you're working on while simultaneously doing backup versioning in the background. Lost data can be quickly restored at any time. Losing data, caused by... Read more
VueScan 9.5.27 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
AirPort Utility 6.3.6 - Set up and manag...
Note: Most recent release available only within OS X 10.11 El Capitan update. Use AirPort Utility to set up and manage your Wi-Fi network and AirPort base stations, including AirPort Express, AirPort... Read more
Quicksilver 1.3.1 - Application launcher...
Quicksilver is a light, fast and free Mac application that gives you the power to control your Mac with keystrokes alone. Quicksilver allows you to find what you need quickly and easily, then act... Read more

Super Sharp (Games)
Super Sharp 1.1 Device: iOS Universal Category: Games Price: $1.99, Version: 1.1 (iTunes) Description: Your finger has never been so sharp! Cut with skill to complete the 120 ingenious physics levels of Super Sharp and become a cut... | Read more »
Assembly - Graphic design for everyone...
Assembly - Graphic design for everyone 1.0 Device: iOS Universal Category: Photography Price: $2.99, Version: 1.0 (iTunes) Description: Assembly is the easiest most powerful design tool on the App Store. Create anything you can... | Read more »
YAMGUN (Games)
YAMGUN 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: The invasion has begun! Protect the walls of the citadel against waves of enemies! But watch out, you will soon run out of ammo...... | Read more »
Royal Bounty HD (Games)
Royal Bounty HD 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: New World Computing Approved "Hi Guys! looks good so far! keep up the good work. I worked on HoMM 3 and 4 creating all of the... | Read more »
Swords & Crossbones: An Epic Pirate...
Swords & Crossbones: An Epic Pirate Story 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: | Read more »
Camel Up (Games)
Camel Up 1.0.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.0 (iTunes) Description: | Read more »
The Martian: Bring Him Home (Games)
The Martian: Bring Him Home 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Based on the best selling novel and critically acclaimed film, THE MARTIAN tells the story of Astronaut Mark... | Read more »
This Week at 148Apps: September 21-30, 2...
Leap Into Fall With 148Apps How do you know what apps are worth your time and money? Just look to the review team at 148Apps. We sort through the chaos and find the apps you're looking for. The ones we love become Editor’s Choice, standing out above... | Read more »
Tweetbot 4 for Twitter (Social Networki...
Tweetbot 4 for Twitter 4.0 Device: iOS Universal Category: Social Networking Price: $4.99, Version: 4.0 (iTunes) Description: *** 50% off for a limited time. *** | Read more »
Mori (Games)
Mori 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Stop, rewind and unwind with Mori. Time is always running, take a moment to take control. Mori is an action puzzle game about infinitely... | Read more »

Price Scanner via

Save up to $350 with Apple refurbished iMacs
Apple has Certified Refurbished iMacs available for up to $350 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 27″ 3.5GHz 5K iMac – $1949 $350 off MSRP - 27... Read more
Mac Pros on sale for up to $300 off MSRP
B&H Photo has Mac Pros on sale for up to $300 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2818.99, $181 off MSRP - 3.5GHz 6-core Mac Pro: $3699... Read more
5K iMacs on sale for up to $150 off MSRP, fre...
B&H Photo has the 27″ 3.3GHz 5K iMac on sale for $1899.99 including free shipping plus NY tax only. Their price is $100 off MSRP. They have the 27″ 3.5GHz 5K iMac on sale for $2149, $150 off MSRP... Read more
Twelve South Redesigns BookArc For Today’s Sm...
Twelve South has announced a redesigned version of their very first product, BookArc for MacBook. Tailored specifically for the newest generation of MacBooks, BookArc holds the new, smaller Apple... Read more
Phone 6s Tips & Tricks – Tips Book For iP...
Poole, United Kingdom based Tap Guides Ltd. has announced the release and immediate availability of iPhone 6s Tips & Tricks, an in-depth eBook available in the iBookstore that’s priced just $2.99... Read more
13-inch 2.5GHz MacBook Pro on sale for $994,...
Best Buy has the 13″ 2.5GHz MacBook Pro available for $994.99 on their online store. Choose free shipping or free instant local store pickup (if available). Their price is $105 off MSRP. Price valid... Read more
Is The iPad Pro Really A Serious Laptop Repla...
Probably not, at least for productive professionals and other power users. Steve Jobs declared that we’d entered the “post-PC Era” with the advent of the original iPad in 2010, a phrase we don’t hear... Read more
Wednesday Deal: 13-inch Retina MacBook Pros f...
Adorama has 13″ Retina MacBook Pros on sale for up to $130 off MSRP. Shipping is free, and Adorama charges sales tax for NY & NJ residents only: - 13″ 2.7GHz/128GB Retina MacBook Pro: $1199.99 $... Read more
uBar 3.0 for Mac OS X – Custom Dock Replaceme...
Brawer Software has announced the release of uBar 3.0, an important update to their popular app and window manager for Mac OS X. uBar allows users to position it whichever side of the screen they... Read more
13-inch 2.5GHz MacBook Pro (refurbished) avai...
Apple has Certified Refurbished 13″ 2.5GHz MacBook Pros available for $829, or $270 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.5GHz MacBook Pros... Read more

Jobs Board

*Apple* Retail - Multiple Customer Support P...
Job Description:Customer SupportSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the Read more
Software Engineer, *Apple* Watch - Apple (U...
…the team that is revolutionizing the watch! As a software engineer on the Apple Watch team, you will be responsible for building world-class applications and frameworks Read more
*Apple* Online Store UAT Lead - Apple (Unite...
**Job Summary** The Apple Online Store is a fast paced and ever evolving business environment. The User Acceptance Testing (UAT) lead in this organization is able to Read more
Hardware Systems Integration Engineer - *App...
**Job Summary** We are seeking an enthusiastic electrical engineer for the Apple Watch team. This is a design engineering position that entails working with Read more
Touch Validation Design (EE) - *Apple* Watc...
**Job Summary** Help launch next-generation Touch Technologies in Apple products. The Touch Technology team develops cutting-edge Touch solutions and technologies that Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.