TweetFollow Us on Twitter

ATalk Mail
Volume Number:4
Issue Number:9
Column Tag:Forth Forum

Appletalk Mail

By Jörg Langowski, MacTutor Editorial Staff

“Appletalk mail for Mach2”

This month I’ll give you a brief re-introduction to Appletalk and Mach2 words for Appletalk handling. The example will be a set of two programs - a message sender and a message receiver which together form a very rudimentary mail utility.

We’ve already had some contributions on Appletalk: for additional reading see the articles by Bob Denny, V1#10 and V1#11; Alan Wootton, V1#10; Dave Kosiur, V3#4; and on the printer access protocol by Mike Schuster, V2#2 and Nicholas Pavkovic, V4#1. Also, for any serious Appletalk programming it is indispensable to have a copy of Inside Appletalk handy, and the Appletalk chapter of Vols. II and V of Inside Macintosh.

I thought it worthwhile to write a sample Appletalk application in Mach2 Forth, especially since the Appletalk example included in the Mach2 system does not give a hint how to use higher level protocols.

Appletalk protocol levels

Let’s - very briefly - review the way Appletalk sends data over the network.

We must view the Appletalk cable as a bus to which up to 32 devices can be attached. The bus is very simple, containing a twisted pair of wires, and information must therefore be passed along it serially. This serial transfer proceeds at a rate of 230.4K baud. The basic Appletalk message unit sent on the bus is a packet of data, which can be zero to 600 bytes long.

Evidently, only one device at a time can send something along the bus. If - let’s say - a program instructs my Mac to send out a packet of data and at the same time the Laserwriter sitting in another room tries to send as well, everybody else will receive only garbage. The Appletalk hardware has a way of detecting this situation, and will automatically re-send the packet after a random wait. This way it is ensured that the two devices probably won’t cross-talk again.


You don’t perceive this mechanism (in network language it is called the Appletalk Link Access Protocol or ALAP). If you ask the Appletalk driver to send out a packet of data, you can be sure that - using a transparent handshake mechanism between sender and receiver, and a CRC for error checking - it will be sent to the correct destination on the local net, or else you’ll get an error message.

Devices are identified on the Appletalk line by their node numbers, each device having a different number. The node number is assigned automatically when a device first uses the network; it looks around for other active nodes and chooses a node number that isn’t used yet. All this happens in a completely transparent way.

Packets sent out over the network are identified by their source and destination node numbers, which are contained in their header. Detection of the header is done by the hardware, so only packets addresses to one node will be noticed by that node, anything else on the bus will be ignored.


A destination node that receives a packet has to know what to do with it. Since one node might have several different usages for packets, another protocol layer ‘on top of’ the ALAP can distribute packets received in one node to different processes, called sockets. The protocol that ensures that a packet arrives at the right socket is called the Datagram Delivery Protocol (DDP).

DDP does the following: When a packet is received on a node, its data contains a socket number in the header. The Appletalk driver that handles DDP maintains a socket table which it searches for a match. If no match is found, the packet is simply ignored. If there is a match, control is passed to a listener routine which processes the rest of the data packet. This listener routine must conform to certain timing restrictions since the data keeps coming in at a rapid rate. Inside Mac Vol.II explains in detail how to write a listener routine.

DDP also handles the transfer of packets that are sent to other networks. As you probably know, several Appletalk networks may be interconnected by bridges to form a large internet. The internet might even include networks like Ethernet which use completely different data transfer mechanisms on the hardware and low-level software levels.

DDP can send a packet to an internet address. Such an address contains the network number, node ID and socket number of the destination. If the network number is the network that the node is on, the packet is simply sent to that node. If the node sits on another network, DDP sends the packet to a bridge on its own network (if there is one). The bridge then will know how to forward the packet. This ‘routing’ process and the way the bridges get to know about all the other networks on the internet is explained in great detail in Inside Appletalk. All we need to know here is that if you call DDP with an internet address that corresponds to an existing node and socket on some network, your data will (hopefully ) get there.


How does one find out whether a certain node exists on a large internet? Numbers are hard to remember, and they also can change since node IDs are always assigned dynamically, and socket numbers may be. Therefore there exists a mechanism - the name binding protocol (NBP) - to assign unique names to sockets at a node.

Any device on the network can be assigned a name. For instance, the Laserwriter called ‘Laser#1’ on the third floor could be called


where the first part of the name, up to the colon, is the actual device name, the second part, up to the ‘@’, its type, and the final part the zone where the device is located.

Each network has a zone name assigned. Several networks can have the same zone name, but one network can have only one zone name. Looking for all Laserwriters in a particular zone will give the network addresses of all Laserwriters on all networks included in that zone. Bridges know about zones and the networks they include; Again you don’t need to be concerned with the details how this is achieved. For the curious, this is well explained in Inside Appletalk’s sections on the Routing Table Maintenance Protocol (RTMP) and the Zone Information Protocol (ZIP).

For the less curious it is sufficient to know that there exist Appletalk driver calls which will for instance, given a name like “Laser#1:LaserWriter@3rd_floor” return that printer’s network ID, node ID and socket number, or for “=:LaserWriter@*” return a list of addresses of all Laserwriters in one’s own zone (“=” for the device name or type acts as a wildcard; “*” indicates the zone of one’s own network).


OK. So now we can, given the name of some device on the network, find out its address. What do we do with it?

Usually we will send some data to that device, and maybe receive some other data in return. Using DDP, this could for instance be done in the following way:

- create a socket on the node and associate to it a listener routine that will store the data received on that socket;

- send a data packet to the other device, using its network address that has been looked up using NBP. DDP will add addressing information to the data so that the receiving end knows where to send its response to.

- when a response is received from the other device, the listener routine will store the data and notify the program that data has arrived.

Note, however, that on a big internet packets might get lost, maybe some bridge breaks down or a whole network is disconnected. This might not be known to the sender at send time. Therefore, the algorithm that I just described will not necessarily ensure that the data arrives at the remote device. We would need to implement some acknowledge mechanism which re-sends a packet a certain number of times if its reception is not confirmed by the remote device after some timeout period.

Fortunately we don’t have to implement such a mechanism, as it has been provided for us in the Appletalk Transaction Protocol (ATP) driver. The two partners in a data transmission - the requesting and the responding end - are called the client and the server and interact in the following way:

- A server opens a responding socket on the network using the routine ATPOpenSocket. ATP automatically assigns a listener routine to that socket that will dump the received data into a previously assigned buffer.

- The server will then call the routine ATPGetRequest. This routine will return (or, for asynchronous calls, the IOCompletion routine will be called) when a request data packet has been received.

- We assume that the client knows the network address of the server. Otherwise, the server would have to register its name on the network and the client could find the address through that name.

- The client calls ATPSendRequest with the network address of the server, and up to 578 bytes of request data in a buffer. This data will be transmitted to the server; ATP makes sure it gets there. ATPSendRequest waits for a response from the server, which can contain up to eight data packets; it will retransmit the request as long as not all data packets have been received. For the duration of the transmission and for receiving the response, ATPSendRequest opens a socket and automatically closes it when it returns. You, the programmer, normally don’t notice this.

- The server receives the request data packet and puts it away into a buffer; ATPGetRequest returns and the server calls ATPSndRsp which transmits the response, up to eight buffers of data of a maximum of 578 bytes each. The response also contains information how many buffers in total will be sent (1 to 8), and which one is being sent in each particular packet. The client end (ATPSendRequest) maintains a table to know which packets have been received. All this is handled automatically by ATP.

There are even higher-level protocols (Printer Access Protocol, Appletalk Session Protocol, Appletalk Filing Protocol) which use ATP to implement particular functions. They don’t concern us here, but are described in Inside Appletalk and the Appletalk chapter of IM Vol.5. We have all the necessary information to implement the example program, a very basic mail utility.

Appletalk mail example

Our example consists of two programs (stand-alone on the source code disk): the sender and the receiver. The receiver will be known on the network as <choosername>:mailbox@<zone> where <choosername> is the user name given in the Chooser dialog and <zone> the zone where the network is located.

The receiver task operates in the following way: First, it opens an ATP responding socket by calling ATPOpenSocket. Then, using its socket number, it makes itself known to the network with a registerName call to the NBP. Last, it calls ATPGetRequest asynchronously and puts itself to sleep (storing SLEEP in its STATUS address and calling PAUSE); the IOCompletion routine will wake it up again when the request has arrived. The request contains the mail message, which is displayed. Then, the receiver task sends a response, which consists of one buffer of data with no particular information in it. At the end, the task closes the socket and removes its name from the network. This cycle is repeated until a key is pressed.

The sender task will first search the network for any devices that match the name description “=:mailbox@*” (i.e., all open mailboxes in its own zone). It will display the list of mailboxes with their network addresses. Then it prompts for the address where the message should be sent, and for one line of message text. It calls ATPSendRequest with the mail message in the request data block. When it has received the response from the receiver (or has received no response, in which case it generates a timeout error), it starts the cycle again, searching for mailboxes.

I should apologize here for the very experimental implementation of this ‘message service’. There are absolutely NO errors trapped, and the example will work only if you start the receiver on one Mac, then start the sender on another Mac, and then start sending mail. It will also not (yet) run in background under Multifinder; and the interface is certainly far from the User Interface Guidelines. However, the example can give you a basis on which to start your own experimentation.

Mach2 Appletalk words

After these general remarks, let’s look at the Forth code. The constant definitions are taken from Inside Macintosh and from the Atalk.h header file in Bob Denny’s Appletalk example from V2#10. All Appletalk routines are accessed through calls to either of two drivers: .MPP, which implements ALAP, DDP, RTMP and NBP, and .ATP, which implements ATP. Their driver IDs are 9 for .MPP and 10 for .ATP.

At the beginning of a program that uses Appletalk you should check whether port B is configured for Appletalk use; if the low four bits of system global SPConfig ($1FB) contain 1, this is the case. (See IM II-305). OpenATalk checks the ports and opens .MPP and .ATP if necessary.

All Appletalk driver calls are passed through a parameter block, ATPblock. I am always using the same global block, thus we can make at most one asynchronous call at a time. For this simple example this is sufficient. The words I wrote to call the different Appletalk functions that we need here all set up the parameter block first, then issue the driver _Control call through call.atp or call.mpp. I have deliberately not used assembler to set up the parameter block, but you might recode the glue in assembler to save code space.

For further details on the Appletalk calls you should refer to IM Vol II. For the ATPGetRequest function, we implement an asynchronous call to the .ATP driver. The word call.atp.async implements this function. In fact, all I/O calls that take more than a few milliseconds should be handled this way, especially in a multitasking environment like Mach2. However, for ATPGetRequest it is more essential than for the other functions, since that call never times out and thus would hang forever if the request is not satisfied.

For an asynchronous I/O call in Mach2, we define a ‘semaphore’ variable that will hold the status address of the task issuing the call. This variable is called ATPout (I couldn’t think of a better name). (get.request.async) does a ATPout get first (ATPOut must be zero for the task to continue, then the task will put its status address into that variable), then the parameter block is set up and the asynchronous call made. After the call, the task puts the value SLEEP into its status address and calls PAUSE. This will put the task to sleep until the status value is changed back to WAKE again. The completion routine does exactly this. Thus execution of the task calling (get.request.async) will continue after the PAUSE when the completion routine is called. If the completion routine is never called (i.e. the task hangs), we can always stop the Mach2 system completely by typing BYE in the main window.

Some remarks on name registration: First, if you ever were curious where a program gets the Chooser user name from, it is contained in ‘STR ‘ resource -16096 (local resource ID=0 of DRVR ID=9). get.choosername gets this name for you.

The calls to and are made synchronously, and they take several seconds. If that seems too long to you, you can replace those by asynchronous calls as well, but make sure to use different parameter blocks for each call to avoid big trouble. The name of a network device is contained in a special data structure called a names table entry or NTE, whose format is given in IM II-321 (Fig. 13). The word make.entity is used to construct the ‘entity name’ field of the NTE. When searching for network names with, the list of names returned is in the format of several such entities. The words next.field and print.entities (further down in the listing) are used to traverse this list and print the names with their addresses in a readable format. Since the four-byte network address in that table may start at an odd byte, I also had to define >@<, which does a long word fetch at an odd address (I discovered this when I checked the example on a Mac+ and got an address error! There’s a disadvantage using the MacII, you don’t discover such things!).

Finally, while the data from an ATP request is simply put into a buffer, the data for the response must be contained in up to 8 separate buffers. What is actually passed to the (send.response) routine is the address of a buffer descriptor structure (BDS) containing 1 to 8 entries of 12 bytes each. The addresses of the different buffers and the length of the data are contained here (see IM II-288). The words setup.bds and release.bds are provided to get and release heap space for the ATP buffers.

Well, I’ll let you look at the code for the rest of the implementation and finish with some news from my side of the Atlantic that might be interesting to Mac people on both sides.

International shareware payment

- a Solidarsoft initiative -

A great problem for European users with using shareware products written in the US has always been the transfer of money across the Atlantic. Mailing checks is possible in principle, but usually the only ones that get a profit out of that are the banks with the high fees they charge for cashing foreign checks. Buying international money orders also can get expensive, and sending cash might or might not work. The second problem arises when shareware programs are used within a company or organization that needs a receipt for tax or other purposes.

It seems to be so difficult to pay shareware from overseas that the author of McSink has kindly offered his program to overseas users because his bank charges him more for cashing the check than his profit would be after taking away the cost of shipping an update disk overseas!

Solidarsoft, the French non-profit organization that was founded to help improve software developer/publisher/user relationships and that I already told you about, has now come up with a scheme that greatly facilitates international shareware payment. You send a check to Solidarsoft with a letter giving the name and version of the shareware product and the author’s address, or the shareware registration form, and they will handle the rest: make sure that the author gets the correct $$$ amount (by some economic way of money transfer), and that you will be correctly registered with the author. Using this service will be only slightly more expensive for a French shareware user than going to the bank, getting the paperwork done, and paying the author directly. Currently, to cover banking fees and other costs, Solidarsoft is applying the following formula:

You count the US$ at 6.50 French francs (FF). On top of that, you add 43 FF handling charge for international payments and 5 FF for payments within France. If a check does not cover the shareware fees plus handling, e.g. in the case of changing exchange rates (the dollar is going up as of this writing), it will simply be returned with an explanatory note. So to pay a $25 shareware product, you send the registration form together with a check on 205.50 FF to:


66 boulevard Exelmans, F-75016 Paris, France.

Let’s hope this example catches on elsewhere. Till next month, happy threading.

Listing 1: Appletalk handling from Mach2
\ Appletalk general definitions
\ 30.05.88 JL

only forth also assembler

vocabulary network
also network definitions


27 constant ioPermission
18 constant ioFileName
18 constant userData
24 constant ioRefNum
26 constant csCode
28 constant socket
30 constant addrBlock

4constant atpLoadedBit
1constant useATalk
-97constant portInUse
-98constant portNotCf

9constant mppUnitNum 
10 constant atpUnitNum  
mppUnitNum 1+ negate 
 constant mppRefNum
atpUnitNum 1+ negate
 constant atpRefNum

\ LAP defs
1constant LAPshortDDP
2constant LAPLongDDP
-94constant lapProtErr
-95constant lapExcessCollns

243constant lapWrite
244constant lapDetachPH
245constant lapAttachPH

-1 constant lapOverrunErr
-2 constant lapCRCErr
-3 constant lapUnderrunErr
-4 constant lapLengthErr

\ DDP defs
5constant ddpHdSzShort
13 constant ddpHdSzLong

1constant ddpRTMP
2constant ddpNBP
3constant ddpATP

$7Fconstant ddpMaxWKS
586constant ddpMaxData
$3ff  constant ddpLengthMask
128constant ddpWKS

-91constant ddpSktErr
-92constant ddpLenErr
-93constant ddpNoBridgeErr

\ CsCode values for DDP Control calls- MPP
246constant ddpWrite
247constant ddpCloseSkt
248constant ddpOpenSkt

\ RTMP definitions
1constant rtmpSkt

\ NBP definitions
$10constant nbpBrRq
$20constant nbpLkUp
$30constant nbpLkUpReply
2constant nbpSkt
15 constant nbpTupleMax
ascii = constant nbpEquals
ascii * constant nbpStar

0constant ntLink
4constant ntTuple
7constant ntSocket
9constant ntEntity

-1024 constant nbpBuffOvr
-1025 constant nbpNoConfirm
-1026 constant nbpConfDiff
-1027 constant nbpDuplicate
-1028 constant nbpNotFound
-1029 constant nbpNISErr

249constant nbpLoad
250constant nbpConfirm
251constant nbpLookup
252constant nbpRemove
253constant nbpRegister
254constant nbpKill
255constant nbpUnload
256constant setSelfSend

\ ATP definitions
$40constant atpReqCode      
$80constant atpRspCode
$C0constant atpRelCode
$20constant atpXO
$10constant atpEOM
$08constant atpSTS
$02constant atpTidValid
$01constant atpSendChk
$3Fconstant atpFlagMask
$F8constant atpControlMask

8constant atpMaxNum
578constant atpMaxData

249constant atpRelRspCB
250constant atpCloseSkt
251constant atpAddResponse
252constant atpSendResponse
253constant atpGetRequest
254constant atpOpenSkt
255constant atpSendRequest
256constant atpRelTCB

-1096 constant atpReqFailed
-1097 constant atpTooManyReqs
-1098 constant atpTooManySkts
-1099 constant atpBadATPSkt
-1100 constant atpBadBuffNum
-1101 constant atpNoRelErr
-1102 constant atpCBNotFound
-1103 constant atpNoSendResp
-1104 constant atpNoDataArea
-1105 constant atpReqAborted

$1FA  constant pRamByte
$1FB  constant SPConfig
$291  constant portBUse
$2D8  constant ABusVars
$2DC  constant ABusDCE

0 constant bdsBuffSz
2 constant bdsBuffAddr
6 constant bdsDataSz
8 constant bdsUserData 

.trap   _control,async  $a404

header ATPbuffer 2000 allot
header myBDS 8 12 * allot
header reqBuf 600 allot
header myNTE 100 allot
header ATPblock 50 allot

header MPPName
 DC.B 4
 DC.B ‘.MPP’

header ATPName
 DC.B 4
 DC.B ‘.ATP’

: open.atp
 PortBUse c@ $10 and
 IF 0 \ Appletalk already open!
 [‘] ATPName [‘] ATPBlock ioFileName + !
 0 [‘] ATPBlock ioPermission + c!
 [‘] ATPBlock call Open  

: open.mpp
 [‘] MPPName [‘] ATPBlock ioFileName + !
 0 [‘] ATPBlock ioPermission + c!
 [‘] ATPBlock call Open  

: OpenATalk { | PBUse -- f }
 PortBUse c@ -> PBUse

 PBUse 0<
 IF SPConfig c@ $F AND 2 = 
 IF portNotCf
 open.mpp ?dup 0=
 IF open.atp THEN
 PBUse $F and 1 = 
 IF open.atp 
 ELSE portInUse

: close.atp
 ATPRefNum [‘] ATPBlock ioRefNum + w!
 [‘] ATPBlock call Close

: call.mpp
 mppRefNum  [‘] ATPBlock ioRefNum + w!
 [‘] ATPBlock call control
: call.atp
 atpRefNum  [‘] ATPBlock ioRefNum + w!
 [‘] ATPBlock call control

: call.atp.async ( p_complete -- flag )
 atpRefNum  [‘] ATPBlock ioRefNum + w!
 ( p_complete)   [‘] ATPBlock ioCompletion + !
 LEA    ATPBlock,A0
 EXG    D4,A7
 EXT.L  D0
 MOVE.L D0,-(A6)
 EXG    D4,A7
: open.socket  ( addrBlock socket# -- socket# flag )
 ( socket# )   [‘] ATPBlock socket + c!
 ( addrBlock ) [‘] ATPBlock addrBlock + !
 atpOpenSkt [‘] ATPBlock csCode + w!
 [‘] ATPBlock socket + c@

: close.socket ( socket# -- flag )
 ( socket# )   [‘] ATPBlock socket + c!
 atpCloseSkt   [‘] ATPBlock csCode + w!

: (send.request)  ( userData atpFlags addrBlock
 reqLength reqPointer 
 bdsPointer numOfBuffs
 timeOutVal retryCount -- 
 reqTID BitMap atpFlags numOfResps flag )
 ( retryCount )  [‘] ATPBlock 47 + c!
 ( timeOutVal )  [‘] ATPBlock 45 + c!
 ( numOfBuffs )  [‘] ATPBlock 44 + c!
 ( bdsPointer )  [‘] ATPBlock 40 + !
 ( reqPointer )  [‘] ATPBlock 36 + !
 ( reqLength ) [‘] ATPBlock 34 + w!
 ( addrBlock )   [‘] ATPBlock 30 + !
 ( atpFlags )  [‘] ATPBlock 29 + c!
 ( userData )  [‘] ATPBlock 18 + !
 atpSendRequest  [‘] ATPBlock csCode + w!
 [‘] ATPBlock 16 + w@
 [‘] ATPBlock 28 + c@
 [‘] ATPBlock 29 + c@
 [‘] ATPBlock 46 + c@
 4 roll ( result code )

: (get.request)    ( atpSocket reqLength reqPointer --
 userData atpFlags addrBlock reqLength
 bitMap transID flag )
 ( reqPointer )  [‘] ATPBlock 36 + !
 ( reqLength ) [‘] ATPBlock 34 + w!
 ( atpSocket ) [‘] ATPBlock 28 + c!
 [‘] ATPBlock 18 + @
 [‘] ATPBlock 29 + c@
 [‘] ATPBlock 30 + @
 [‘] ATPBlock 34 + w@
 [‘] ATPBlock 44 + c@
 [‘] ATPBlock 46 + c@
 6 roll ( result code )

variable ATPout ( semaphore )

code get.request.compl
 move.w #wake,(a0)
: (get.request.async)( atpSocket reqLength reqPointer --
 userData atpFlags addrBlock reqLength
 bitMap transID flag )
 ATPout get
 ( reqPointer )  [‘] ATPBlock 36 + !
 ( reqLength ) [‘] ATPBlock 34 + w!
 ( atpSocket ) [‘] ATPBlock 28 + c!
 [‘] get.request.compl call.atp.async
 sleep status w! pause 
 \ wake up when getRequest is completed
 [‘] ATPBlock 18 + @
 [‘] ATPBlock 29 + c@
 [‘] ATPBlock 30 + @
 [‘] ATPBlock 34 + w@
 [‘] ATPBlock 44 + c@
 [‘] ATPBlock 46 + c@
 6 roll ( result code )
 ATPout release

: setup.bds ( #buffers )
 0 DO
 600 call NewPtr abort” Could not get buffer memory”
 i 12 * [‘] myBDS + 2+ !

: release.bds ( #buffers )
 0 DO
 i 12 * [‘] myBDS + 2+ @ 
 call DisposPtr abort” DisposPtr failed!”
: (send.response) ( atpSocket atpFlags addrBlock
 bdsPointer numOfBuffs bdsSize transID --
 reqTID userData flag )
 ( transID )[‘] ATPBlock 46 + w!
 ( bdsSize )[‘] ATPBlock 45 + c!
 ( numOfBuffs )  [‘] ATPBlock 44 + c!
 ( bdsPointer )  [‘] ATPBlock 40 + !
 ( addrBlock )   [‘] ATPBlock 30 + !
 ( atpFlags )  [‘] ATPBlock 29 + c!
 ( atpSocket ) [‘] ATPBlock 28 + c!
 atpSendResponse [‘] ATPBlock csCode + w!
 [‘] ATPBlock 16 + w@
 [‘] ATPBlock 18 + @
 rot ( result code )

: (add.response) 
 ( userData atpSocket atpFlags addrBlock
 reqLength reqPointer rspNum transID --
 flag )
 ( transID )[‘] ATPBlock 46 + w!
 ( rspNum ) [‘] ATPBlock 44 + c!
 ( reqPointer )  [‘] ATPBlock 36 + !
 ( reqLength ) [‘] ATPBlock 34 + w!
 ( addrBlock )   [‘] ATPBlock 30 + !
 ( atpFlags )  [‘] ATPBlock 29 + c!
 ( atpSocket ) [‘] ATPBlock 28 + c!
 ( userData )  [‘] ATPBlock 18 + !
 atpAddResponse  [‘] ATPBlock csCode + w!
 call.atp ( result code )

: load.nbp
 nbpLoad [‘] ATPBlock csCode + w!

: make.entity { object typ zone entity | obL typL -- }
 object entity   over c@ 1+ dup -> obL cmove
 typ    entity obL + over c@ 1+ dup -> typL  cmove
 zone   entity obL + typL +  over c@ 1+            cmove

: ( ( interval retry buffer size max entity -- 
  matches flag )
 nbpLookup  [‘] ATPBlock csCode + w!
 ( entity ) [‘] ATPBlock 30 + !
 ( max )[‘] ATPBlock 40 + w!
 ( size ) [‘] ATPBlock 38 + w!
 ( buffer ) [‘] ATPBlock 34 + !
 ( retry )[‘] ATPBlock 29 + c!
 ( interval) [‘] ATPBlock 28 + c!
 [‘] ATPBlock 42 + w@ \ matches found
 swap \ result code

: ( object typ zone | -- matches flag )
 [‘] myNTE ntEntity + make.entity
 2 10 [‘] ATPbuffer 600 20 [‘] myNTE ntEntity +    

: ( ( interval retry ntQEl verify --  flag )
 nbpRegister   [‘] ATPBlock csCode + w!
 ( verify ) [‘] ATPBlock 34 + c!
 ( ntQEl )  [‘] ATPBlock 30 + !
 ( retry )[‘] ATPBlock 29 + c!
 ( interval)   [‘] ATPBlock 28 + c!
 call.mpp \ result code

: ( socket# object typ zone ) { ntQEl | -- flag }
 ntQEl ntEntity + make.Entity
 ntQEl ntSocket + c! ( store socket number )
 2 10 ntQEl 1 ( always verify ) (

: ( ntQEl | flag )
 nbpRemove  [‘] ATPBlock csCode + w!
 ( ntQEl ) ntEntity +[‘] ATPBlock 30 + !
 call.mpp \ result code

: set.self.send ( self_send_flag | old_flag -- )
 setSelfSend [‘] ATPBlock csCode + w!
 ( flag ) [‘] ATPBlock 28 + c!
 call.mpp drop \ result code
 [‘] ATPBlock 29 + c@

4ascii STR  constant “str
4ascii MAIL constant “mail

: get.choosername
 “str -16096 call getresource
 ?dup IF @ ELSE 1 abort” No Chooser name found!” THEN

\ =========== Forth definitions follow ============

also forth definitions

variable mailbox.socket
header mailNTE 110 allot
: open.mailbox
 0 0 open.socket abort” could not get free ATP socket”
 dup mailbox.socket !
 get.choosername “ mailbox” “ *” [‘] mailNTE abort” registerName failed”

: close.mailbox
 [‘] mailNTE drop
 mailbox.socket @ close.socket drop

: sendOK
 cr .” ---- Sending OK response.....”
 1 setup.bds
 “ This mail was received OK.” count dup [‘] myBDS w!
 [‘] myBDS 2+ @ swap cmove
 [‘] myBDS[‘] ATPBlock 40 + !
 1 [‘] ATPBlock 44 + c!
 1 [‘] ATPBlock 45 + c!
 atpSendResponse [‘] ATPBlock csCode + w!
 1 release.bds

: get.mail { | trID addr.block -- reqTID userData flag }
 mailbox.socket @ 500 [‘] reqBuf (get.request)
 abort” ATPGetRequest error!”
 5 call sysbeep
 -> trID drop ( don’t need bitmap )
 cr .” ***** Mail received *****”
 cr [‘] reqBuf swap type
 cr .” ***** End of mail   *****”
 dup -> addr.block
 cr .” sender: $” hex . .” , flags: $” . .” , User Data: $” . 
 cr decimal

: get.mail.async { | trID addr.block -- reqTID userData flag }
 mailbox.socket @ 500 [‘] reqBuf (get.request.async)
 abort” ATPGetRequest error!”
 5 call sysbeep
 -> trID drop ( don’t need bitmap )
 cr .” ***** Mail received *****”
 cr [‘] reqBuf swap type
 cr .” ***** End of mail   *****”
 dup -> addr.block
 cr .” sender: $” hex . .” , flags: $” . .” , User Data: $” . 
 cr decimal

: >@< ( odd address fetch, unnecessary on MacII )
 dup 2 mod
 IF dup c@ swap 1+ @ -8 scale $FFFFFF and swap 24 scale +
: next.field dup c@ + 1+ ;

: print.entities ( #entities entityTable )
 cr swap hex
 0 DO .” $” dup >@< u. .”  - “
  5 + dup count type .” :” 
  next.field dup count type .” @” 
  next.field dup count type cr
 LOOP drop

: find.boxes
 “ =” “ mailbox” “ *”
 abort” LookupName failed”
 cr ?dup IF dup . .” mailbox(es) found on the network:” cr
 [‘] ATPBuffer print.entities
 ELSE .” No mailboxes found on the network.” cr
: send.mail { receiver msg | -- }
 cr .” Sending message to $” 
 receiver hex . decimal .” ...” cr
 1 setup.bds
 “mail %00100000 receiver
 msg count swap [‘] myBDS 1 2 5 
 ?dup IF .” SendRequest error #” . cr
 ELSE .” Mail delivered” cr 
 . . . . cr
 1 release.bds


also mac

“ Sender” Sender TITLE
40 20 170 400 Sender BOUNDS
Document Visible CloseBox GrowBox Sender ITEMS

400 1000 TERMINAL sendTask

“ Mailbox” Receiver TITLE
190 20 320 400 Receiver BOUNDS
Document Visible CloseBox GrowBox Receiver ITEMS

400 1000 TERMINAL rcvTask

 cr .” Searching open mailboxes...” cr
 cr .” To address (zero to quit): $” 
 pad dup 1+ 10 expect number? 

 ?dup IF
 cr .” Message: “ 
 pad 1+ 80 expect 
 span pad c!
 pad send.mail
 ELSE bye 

 cr .” Registering new Mailbox...”
 cr .” Waiting for mail...” cr
 get.mail.async drop
 ?terminal until

: setup.main
 0 ATPout !
 open.mpp drop
 open.atp drop
 1 set.self.send drop

: setup.sender
 Sender ADD
 Sender sendTask BUILD
 Sender call selectwindow

: setup.rcv
 Receiver ADD
 Receiver rcvTask BUILD
 Receiver call selectwindow

Community Search:
MacTech Search:

Software Updates via MacUpdate

Yep 3.8.0 - $23.99
Yep is a document organization and management tool. Like iTunes for music or iPhoto for photos, Yep lets you search and view your documents in a comfortable interface, while offering the ability to... Read more
Data Rescue 4.3.1 - Powerful hard drive...
Use Data Rescue to recover: crashed, corrupted or non-mounting hard drive deleted, damaged, or lost files reformatted or erased hard drive One powerful new feature found in Data Rescue 4 is... Read more
PDFpen 8.2.1 - $74.95
PDFpen allows users to easily edit PDF's. Add text, images and signatures. Fill out PDF forms. Merge or split PDF documents. Reorder and delete pages. Even correct text and edit graphics! Features... Read more
TextMate 2.0-beta.12.25 - Code/markup ed...
TextMate is a versatile plain text editor with a unique and innovative feature set which caused it to win an Apple Design Award for Best Mac OS X Developer Tool in August 2006. A rapidly growing... Read more
TunnelBear 3.0.4 - Subscription-based pr...
TunnelBear is a subscription-based virtual private network (VPN) service and companion app, enabling you to browse the internet privately and securely. Features Browse privately - Secure your data... Read more
QuickBooks R9 - Financial ma...
QuickBooks helps you manage your business easily and efficiently. Organize your finances all in one place, track money going in and out of your business, and spot areas where you can save. Built for... Read more
1Password 6.3.5 - Powerful password mana...
1Password is a password manager that uniquely brings you both security and convenience. It is the only program that provides anti-phishing protection and goes beyond password management by adding Web... Read more
PDFpenPro 8.2.1 - $124.95
PDFpenPro allows users to edit PDF's easily. Add text, images and signatures. Fill out PDF forms. Merge or split PDF documents. Reorder and delete pages. Create fillable forms and tables of content... Read more
1Password 6.3.5 - Powerful password mana...
1Password is a password manager that uniquely brings you both security and convenience. It is the only program that provides anti-phishing protection and goes beyond password management by adding Web... Read more
QuickBooks R9 - Financial ma...
QuickBooks helps you manage your business easily and efficiently. Organize your finances all in one place, track money going in and out of your business, and spot areas where you can save. Built for... Read more

Latest Forum Discussions

See All

Best Fiends Forever Guide: How to collec...
The fiendship in Seriously's hit Best Fiends has been upgraded this time around in Best Fiends Forever. It’s a fast-paced clicker with lots of color and style--kind of reminiscent of a ‘90s animal mascot game like Crash Bandicoot. The game... | Read more »
5 apps for the budding mixologist
Creating your own cocktails is something of an art form, requiring a knack for unique tastes and devising interesting combinations. It's easy to get started right in your own kitchen, though, even if you're a complete beginner. Try using one of... | Read more »
5 mobile strategy games to try when you...
Strategy enthusiasts everywhere are celebrating the release of Civilization VI this week, and so far everyone seems pretty satisfied with the first full release in the series since 2010. The series has always been about ultra-addictive gameplay... | Read more »
Popclaire talk to us about why The Virus...
Humanity has succumbed to a virus that’s spread throughout the world. Now the dead have risen with a hunger for human flesh, and all that remain are a few survivors. One of those survivors has just called you for help. That’s the plot in POPCLAIRE’... | Read more »
Oceans & Empires preview build sets...
Hugely ambitious sea battler Oceans & Empires is available to play in preview form now on Google Play - but download it quickly, as it’s setting sail away in just a few days. [Read more] | Read more »
Rusty Lake: Roots (Games)
Rusty Lake: Roots 1.1.4 Device: iOS Universal Category: Games Price: $2.99, Version: 1.1.4 (iTunes) Description: James Vanderboom's life drastically changes when he plants a special seed in the garden of the house he has inherited.... | Read more »
Flippy Bottle Extreme! and 3 other physi...
Flippy Bottle Extreme! takes on the bottle flipping craze with a bunch of increasingly tricky physics platforming puzzles. It's difficult and highly frustrating, but also addictive. When you begin to master the game, the sense of achievement is... | Read more »
Plants vs. Zombies Heroes guide: How to...
Plants vs. Zombies Heroes surprised us all, presenting a deep deck building experience. It's a great CCG that stands up well to the competition. There are a lot of CCGs vying for players' attention at the moment, but PvZ Heroes is definitely one... | Read more »
Arcane Online takes Online RPG’s to anot...
If you think that you need a desktop to enjoy high quality MMO gaming then Arcane Online hopes to prove you emphatically wrong. An epic fantasy Online RPG set in the land of Eldine, Arcane Online offers an abundance of features and content that... | Read more »
It’s time to step up and start your spoo...
So you’ve just downloaded Seekers Notes: Hidden Mystery, and you obviously want to hit the ground running. Well you’re in luck because you just so happen to be reading our very useful guide to playing. First released in July last year, the game has... | Read more »

Price Scanner via

PixelStyle Inexpensive Photo Editor For Mac W...
PixelStyle is an all-in-one Mac Photo Editor with a huge range of high-end filters including lighting, blurs, distortions, tilt-shift, shadows, glows and so forth. PixelStyle Photo Editor for Mac... Read more
13-inch MacBook Airs on sale for $100-$140 of...
B&H has 13″ MacBook Airs on sale for $100-$140 off MSRP for a limited time. Shipping is free, and B&H charges NY sales tax only: - 13″ 1.6GHz/128GB MacBook Air (sku MMGF2LL/A): $899 $100 off... Read more
2.8GHz Mac mini available for $988, includes...
Adorama has the 2.8GHz Mac mini available for $988, $11 off MSRP, including a free copy of Apple’s 3-Year AppleCare Protection Plan. Shipping is free, and Adorama charges sales tax in NY & NJ... Read more
21-inch 3.1GHz 4K on sale for $1379, $120 off...
Adorama has the 21″ 3.1GHz 4K iMac on sale $1379.99. Shipping is free, and Adorama charges NY & NJ sales tax only. Their price is $120 off MSRP. To purchase an iMac at this price, you must first... Read more
Check Apple prices on any device with the iTr...
MacPrices is proud to offer readers a free iOS app (iPhones, iPads, & iPod touch) and Android app (Google Play and Amazon App Store) called iTracx, which allows you to glance at today’s lowest... Read more
Apple, Samsung, Lead J.D. Power Smartphone Sa...
Customer satisfaction is much higher among smartphone owners currently subscribing to full-service wireless carriers, compared with those purchasing service through a non-contract carrier, according... Read more
Select 9-inch Apple WiFi iPad Pros on sale fo...
B&H Photo has select 9.7″ Apple WiFi iPad Pros on sale for up to $50 off MSRP, each including free shipping. B&H charges sales tax in NY only: - 9″ Space Gray 256GB WiFi iPad Pro: $799 $0 off... Read more
Apple refurbished 13-inch Retina MacBook Pros...
Apple has Certified Refurbished 13″ Retina MacBook Pros available for up to $270 off the cost of new models. An Apple one-year warranty is included with each model, and shipping is free: - 13″ 2.7GHz... Read more
Apple refurbished 15-inch Retina MacBook Pros...
Apple has Certified Refurbished 2015 15″ Retina MacBook Pros available for up to $380 off the cost of new models. An Apple one-year warranty is included with each model, and shipping is free: - 15″ 2... Read more
Apple refurbished 11-inch MacBook Airs availa...
Apple has Certified Refurbished 11″ MacBook Airs (the latest models), available for up to $170 off the cost of new models. An Apple one-year warranty is included with each MacBook, and shipping is... Read more

Jobs Board

Security Data Analyst - *Apple* Information...
…data sources need to be collected to allow Information Security to better protect Apple employees and customers from a wide range of threats.Act as the subject Read more
*Apple* Retail - Multiple Positions (Multi-L...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions- New Yor...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions- Yonkers...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Senior Manager, Security Engineering - *Appl...
Changing the world is all in a day's work at Apple . If you love innovation, here's your chance to make a career of it. You'll work hard. But the job comes with more Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.