TweetFollow Us on Twitter

Medicine
Volume Number:3
Issue Number:10
Column Tag:C Workshop

Using Regions in Medicine with C

By Stephen Dubin, V.M.D., Ph.D., Thomas W. Moore, Ph.D., and, Sheel Kishore, M.S., Drexel University

Fun with Regions: Part I, High Level Language Implementation

As one looks through a tattered and tear-stained copy of Inside Macintosh, there is little that would be considered colorful or dramatic language. The following statement, from the section on Quickdraw, stands out: “Quickdraw has the unique and amazing ability to gather an arbitrary set of spatially coherent points into a structure called a region, and perform complex yet rapid manipulations and calculations on such structures. This remarkable feature not only will make your standard programs simpler and faster, but will let you perform operations that would otherwise be nearly impossible; ...”

One of the authors read this at the very time that he wanted to do something nearly impossible. The job at hand was a medical instructional program, “Burnsheet”, in which the outline of a thermal injury is drawn on a standard silhouette of the body (fig 1.). Since many formulas for treating burn patients depend on knowing the area affected, it was desirable to calculate the area of the burn(s) as well. Thus the specific programming tasks were to be able to draw arbitrarily shaped regions on the screen and to find the area of these areas. This first article will show an approach to these tasks using high-level (C and Pascal) programming. The complete code for a C language program is at the end of the article; and the important routines, as implemented in Pascal, are interpolated into the text. In many cases programming elegance has been sacrificed for the sake of clarity; especially when an elegant approach could not be found. Part II will present an evolutionary approach to the assembly language optimization for speed in the computation of arbitrary areas on the Macintosh.

In addition to Inside Macintosh, some germinal information on region drawing is found in “Quickdraw Does Regions” (Derossi, C., MacTutor 1, February 1985 pp 9-17). He outlines the basic steps as follows: (a) Initialize a variable ( a regionhandle) with a call to NewRegn. (b) Call OpenRgn to start a new region. (c) Do whatever drawing you want. (d) Call CloseRgn to stop the region definition. In a more recent article (Gordon, B.: Polygons and Regions as Quickdraw Objects. MacTutor May 1987, pp 41-53 ), further insight is given into the way regions are encoded - especially the mysterious optional region drawing information which is present when a region is not rectangular.

The matter of finding the area of irregular regions is quite a common task in geography, chemistry (chromatograph spots, for example), and many aspects of biology. Methods for accomplishing the task range from analytic solutions where the boundaries are defined by well-behaved mathematical functions to such brutal kluges as weighing paper on which the region has been traced. An elegant general approach for finding the area of a large class of irregularly shaped regions divides the region into triangles and trapezoids (Stolk, R., and Ettershank, G.: Calculating the Area of an Irregular Shape. Byte, February 1987, pp 135-136.) This method requires, however, that the vertices of the perimeter be described explicitly as cartesian coordinates - not the Macintosh definition. It will not work for regions that are disjoint or have holes in them.

Region Drawing Routines: Although several published programs have shown how to create regions on the screen by passing explicit parameters to drawing commands; such as

FrameRect(myRect,10,20,30,40), etc., 

what I wanted was to draw an arbitrarily shaped region on the fly under mouse control - something like the lassoo in many Mac graphics programs. My answer to this need is the DoRegion procedure. It is well to initialize the global regionhandle TotalRgn early in the program. In the C program shown this is done just before the main event loop in order to avoid a bomb if the area computation is requested before the region is actually drawn.

A Pascal implementation of the procedure is as follows:

{1}
var
 TotalRegion   :   RgnHandle;

procedure DoRegion;
var
    p1  :   Point;
    p2  :   Point;
    OldTick :  Longint;    
begin
  TotalRegion := NewRgn;
  OldTick := TickCount;
  Repeat
    GetMouse(p1);
    MoveTo(p1.h,p1.v);
    p2 := p1;  
  Until Button = True; 
  OpenRgn;
  ShowPen;
  PenMode(patXor); 
  Repeat
    GetMouse(p2);
    Repeat Until (OldTick <> TickCount);
    LineTo(p2.h,p2.v);
  Until Button <> True; 
  Repeat Until (OldTick <> TickCount);
  LineTo(p1.h,p1.v);
  PenNormal;
  HidePen;
  CloseRgn(TotalRegion);
  InvertRgn(TotalRegion);
end;

The mouse position is tracked until the button is pressed. While the button is down, a sequence of lines is drawn following the movement of the mouse. In order to make the drawing less jumpy, it is synchronized with the vertical retrace period by waiting until the “tickcount” changes before updating the drawing process (Knaster, S.: “How to Write Macintosh Software”, Hayden, Hasbrouck Heights, NJ, 1986, pp 334-336). The calls to ShowPen and HidePen are necessary to balance opposing calls made by OpenRgn and CloseRgn.

An analogous procedure for drawing a rectangle under mouse control is shown below:


{2}
var
 TotalRegion   :   RgnHandle;

procedure DoBox; 
var
    p1  :   Point;
    p2  :   Point;
    p3  :   Point;
    OldTick :  Longint;
    MyRect  :  Rect;      
begin
    TotalRegion := NewRgn;
    OldTick := TickCount;
    PenPat(gray);
    PenMode(patXor);
    Repeat
      GetMouse(p1);
      p2 := p1;  
    Until Button = True;
    OpenRgn;
    ShowPen;
    PenMode(patXor);
    Repeat
      Pt2Rect(p1,p2,MyRect);
      Repeat Until (OldTick <> TickCount);
      FrameRect(MyRect);
        Repeat
            GetMouse(p3);
        Until  EqualPt(p2,p3) <> True;
   
   Repeat Until (OldTick <> TickCount);
   FrameRect(MyRect);
   p2 := p3;
   Until Button <> True;
   Pennormal;
   HidePen;
   PenPat(black);
   FrameRect(MyRect);
   CloseRgn(TotalRegion);
   InvertRgn(TotalRegion);
end;

After the mouse button is pushed, a “preview” rectangle is drawn in gray as the mouse position is changed. When the button is released, the rectangle is “enforced” as the final choice. Although these procedures invert the pixels in the region finally chosen, various types of painting or filling could also be done and the last FrameRect in DoBox could be changed to FrameOval, etc.

Area Computation: The region record contains the coordinates of the smallest rectangle which will enclose the region, the rgnBBox. As a first approach to determining the region area, one might “take a poll” of every pixel within this box to see whether it is actually in the region. The toolbox function PtInRgn, when passed a point and a handle to a region, returns the Boolean value true if the point actually resides within the region. The number of true points enumerated in this way should be proportional to the area of the region with a degree of precision at least as good as the ability to draw on the screen with the mouse.

{3}
function CountPix(theRegion : RgnHandle): LongInt
var
 pt     : Point;
 rgn    :   Region;
 temp   :   LongInt; 
  
begin
 temp :=  0;
 rgn  :=  theRegion^^;
 for pt.h := rgn.rgnBBox.left to rgn.rgnBBox.right do 
 begin
 for pt.v := rgn.rgnBBox.top to rgn.rgnBBox.bottom do
 if PtInRgn( pt, TheRegion) then temp := temp + 1;  
 end;
 CountPix := temp;
end;

The C and Pascal Countpix routines work nicely for relatively small regions. For those drawn in the Burnsheet program, processing time ranged from three to thirty ticks (6oths. of a second). It is possible, however, to draw really large and bizarre regions with many holes that can take ten minutes to compute. Although finding the area of such regions by conventional means “would otherwise be nearly impossible,” this is hardly a satisfactory performance; and clearly some form of optimization is indicated. An important step towards fashioning and debugging a faster routine for estimating the area of an arbitrary region is a method for visualizing the region information as it exists in RAM. Although this can be done using a debugger, it is more convenient to have this as part of our region program. The C version of the “data” function reflects that language’s general laissez faire attitude concerning mixing of pointer types in the blockmove step. Because of the ease with which the type of numerical representation (hex or decimal) can be specified within the printf routine, the C version first prints the hex version - as it would be seen with a debugger. After a mouse click, the decimal version is printed to the screen. Pascal seems to be more finicky about mixing different pointer types, so explicit type conversions are done. The Pascal version displays only the decimal representation of the data. In both versions only the first 400 words of data are shown since this fits conveniently on the screen. Displaying the hex numbers in Pascal and adding scrollers to display more data are - in the words of my old calculus book - left as an exercise for the reader.

{4}
{ This routine prints the first 400 words of a region record to the screen. 
It assumes that a regionhandle called totalRegion has been declared and 
allocated }

procedure Data;  
var
    rgn         :   Region;
    rgnpntr     :   Ptr;
    size        :   Integer;
    halfsize    :   Integer;
    thebuf      :   BUF;
    bfpntr      :   Ptr;
    myString    :   Str255;
    i           :   Integer;
    x           :   Integer;
    y           :   Integer;
 
 begin
    Wipe;
    TextSize(9);
    TextFont(Monaco);
    rgn  :=  totalRegion^^;
    rgnpntr := ptr(totalRegion^); 
    size := rgn.rgnSize;
    if size > 800 then size:= 800;
    bfpntr := ptr(@thebuf);
    BlockMove(rgnpntr,bfpntr,size);
    MoveTo(10,10);
    DrawString(‘Here are the first 400 words of the region data. (FLAG 
= 32767)’);
    x := 10;
    y := 20;
    for i  := 1  to  (size div 2) do 
        begin
        MoveTo(x,y);
        NumToString(theBuf[i],myString);
        if theBuf[i] < 32766 then 
            begin
            if theBuf[i] <10  then DrawString(‘ ‘);
            if theBuf[i] <100 then DrawString(‘ ‘);
            if theBuf[i] <1000 then DrawString(‘ ‘);
            if theBuf[i] <10000 then DrawString(‘ ‘);
            DrawString(MyString);
            end;
        if theBuf[i] > 32766 then DrawString(‘ FLAG’);
        x := x + 30;
        if (i mod 16) = 0 then
            begin
            x := 10;
            y := y+10;
            end; 
        end; 
end;

Figure 2 shows a “FatBits” view of a circle along with the function used to draw it and acquire a handle to the region it encloses. Figure 3 shows the data for this region as displayed by our data routine. Using this information you can trace the way the region is encoded as as outlined in Bob Gordon’s article (vide supra ). The first word (196) is the number of bytes of data in the record. The next four words are the coordinates of the region bounding box in “upper, left, bottom, right” form. The rest of the data consists of sequences as follows: Y,X1, X2, ...Xn, FLAG. The flag word is 32767 (7FFF hex). At the very end of the record, the flag word appears twice. In each sequence the first integer word is a Y coordinate and the others up to the flag are X coordinates. One may visualize the process of outlining the region by thinking of moving a “pen” to the Y coordinate and toggling it on and off with each succeeding X value. For the circle shown (starting with the fifth word of data), the first Y position is 175 and the first X coordinate is 179. Turn the pen on at this point and draw rightward to the second X coordinate (186). Turn off the pen. Similarly expanding the next sequence: move to ( Y = 176, X = 177); pendown; moveto (X = 179); penup; moveto(x = 186) - Y remains the same; pendown; moveto(x = 188); penup. Note that treating the data in this manner will draw all of the horizontal lines needed to frame the region.

This representation of data is particularly efficient for dealing with regions with “square corners” - the sort that occur when windows overlap, etc. Even for more complex objects, the amount of data to be stored is much less required by more intuitive methods such as simply listing all of the points in the region or the vertices of its boundaries.

Figure 4. shows a screendump of a really horrible region along with the times needed to estimate its area using the high level code presented here and with various levels of optimization. Using the high level routine, it required about seven and a half minutes to compute its area. By way of comparison, the small regions shown in the “Burnsheet” illustration (Figure 1.) took less than a second using the same code. For complex regions such as this, the assembly language optimization improves the speed of computation by a very welcome factor of more than 1000.

Stephen Dubin, V.M.D., Ph.D., Thomas W. Moore, Ph.D., and Sheel Kishore, M.S. may be reached at the Biomedical Engineering and Science Institute, Drexel University, 32nd. & Chestnut Sts, Philadelphia PA 19104. Phone: (215)-895-2219. CIS: 76074,55 ; Genie: S.DUBINp; Delphi: ESROG.

{5}
/* *****Region.c **************
written by Stephen Dubin and Sheel Kishore  copyrignt 1987 for MacTutor
Latest revision 8/9/87
Prepared with Megamax C System V3.0d. Users of other C systems should 
check for such things as size and manner of passing variables particularly 
point variables. Also check include files. */

#include  <qd.h>  
#include  <win.h>
#include  <dialog.h>
#include  <menu.h>
#include  <event.h>
#include  <qdvars.h>
#include<stdio.h>

#define lastmenu 1 /* number of menus*/
#define optionmenu 1
#define NULL 0L 
/* globals used by shell */

menuhandle mymenus[lastmenu+1];
rect screenrect, prect;
boolean doneflag, temp;
eventrecord myevent;
int code, refnum;
windowrecord wrecord;
windowptr mywindow, whichwindow;
int themenu, theitem;

/* globals used by region */
rgnhandle totalrgn;
extern long tickcount();
long  numpix,numtix; 

area()
{
long firstick,lastick;
char  firststring[255], secondstring[255], printstring[255];
 numpix = 0;
 firstick = tickcount();
 countpix(totalrgn);
 numtix = tickcount() - firstick;
 moveto(10,20); drawstring(“Using all C code”);
 strcpy(firststring,””);strcpy(printstring,””);
 numtostring(numpix,firststring);
 strcat(printstring,”Number of Pixels = “);
 strcat(printstring, firststring);strcpy(firststring,””);      
 moveto(10,30); drawstring(printstring); strcpy(printstring,””);
 numtostring(numtix,firststring);
 strcat(printstring,”Number of Ticks = “);
 strcat(printstring, firststring); strcpy(firststring,””);
 moveto(10,40); drawstring(printstring); strcpy(printstring,””);
 
}

countpix(theregion)
rgnhandle theregion;
{
point pt;
region rgn;
 rgn = **theregion;
 for(pt.a.h=rgn.rgnbbox.a.left; pt.a.h <= rgn.rgnbbox.a.right; pt.a.h++)
 for(pt.a.v=rgn.rgnbbox.a.top; pt.a.v <= rgn.rgnbbox.a.bottom; pt.a.v++)
 if (ptinrgn(&pt, theregion))
 numpix++;
}

data()
{
region  rgn;
intsize,i;
intmyarray[400];
                                                               wipe();
 rgn = **totalrgn;
 size = rgn.rgnsize;
 size = ( (size > 800) ? 800: size); 
 blockmove(*totalrgn, &myarray, (long)size);
 moveto(10,10);
 printf(“Here is the first 400 words of region data in hexadecimal notation:\n”);
 for(i=0; i<(size/2); ++i) {
 printf(“ %04x”,myarray[i]);
 if(!((i+1)%16)) printf(“\n”);
 }
 printf(“ Press the mouse button to continue.”);   
 fflush(stdout);
 while (!button());
 wipe();
 moveto(10,10);
 printf(“Here is the first 400 words of region data in decimal notation:\n”);
 for(i=0; i<(size/2); ++i) {
 if(myarray[i]>32766) printf(“ FLAG”);
 else printf(“ %04d”,myarray[i]);
 if(!((i+1)%16)) printf(“\n”);
 }
 fflush(stdout);
}

doregion()/* draws freehand region */
{
point   p1,p2;
long  oldtick;
 wipe();
 totalrgn = newrgn();
 while(!button()){
 getmouse(&p1);
 moveto(p1.a.h,p1.a.v);
 p2=p1;
 }
 openrgn();
 showpen();
 penmode(patxor);
 while(button()){
 getmouse(&p2);
 while(oldtick == tickcount());  
 lineto(p2.a.h,p2.a.v);
 }
 while(oldtick == tickcount());  /* to avoid flickering */
 lineto(p1.a.h,p1.a.v);
 pensize(1,1);
 pennormal();
 hidepen();
 closergn(totalrgn);
 invertrgn(totalrgn);
}

dobox() /* draws rectangular region  */
{
point p1,p2,p3;
boolean equalpt();
long  oldtick;
rect  myrect;
 wipe();
 oldtick = tickcount();
 totalrgn = newrgn();
 penpat(gray);
 penmode(patxor);
 while(!button()){
 getmouse(&p1);
 p2=p1;
 }
 openrgn();
 showpen();
 penmode(patxor);
 while(button()){
 pt2rect(&p1,&p2,&myrect);
 while(oldtick == tickcount());/* to avoid flickering */
 framerect(&myrect);
 while (equalpt(&p2,&p3)&& button()) getmouse(&p3);
 while(oldtick == tickcount());
 framerect(&myrect);
 p2=p3;
 } 
 pensize(1,1);
 pennormal();
 hidepen();
 penpat(black);
 penmode(patcopy);
 framerect(&myrect);
 closergn(totalrgn);
 invertrgn(totalrgn);
 pennormal();
}

wipe()
{
rect  r;
 setrect(&r,0,0,510,300);
 eraserect(&r);
 pennormal();
}

setupmenus()
{
int i;
    initmenus();
    mymenus[1] = newmenu(optionmenu,”Options”);
    appendmenu(mymenus[1], “Draw Freehand;Draw Box;Compute Area;Region 
Data;Quit”);
    for (i=1; i<=lastmenu; i++) insertmenu(mymenus[i], 0);
    drawmenubar();
}

docommand(themenu, theitem)
int themenu, theitem;
{
int i;
    switch (themenu) {
 case optionmenu:
 switch(theitem){
 case 1: doregion(); break;
 case 2: dobox(); break;
 case 3: area(); break;
 case 4: data(); break;
 case 5: doneflag = 1; break;
 }
 break;
     }
    hilitemenu(0);
}

main()
{
rect windowrect;
    initgraf(&theport);
    initfonts();
    flushevents(everyevent, 0);
    initwindows();
    setupmenus();
    initdialogs(NULL);
    initcursor();
    setrect(&screenrect, 2, 40, 510, 338);
    doneflag = 0;
    mywindow =newwindow(&wrecord,&screenrect,“Region Fun”,1,0,
  (long)-1, 0, (long)0);
    setport(mywindow);
    blockmove(&theport->portrect, &prect, (long)sizeof prect);
    insetrect(&prect, 4, 0);
    textfont(4);
    textsize(9);
    textmode(2);
    totalrgn = newrgn(); /* avoid bomb if compute is first */
    do {
      systemtask();
 temp = getnextevent(everyevent, &myevent);
 switch (myevent.what) {
      case mousedown:
     code = findwindow(&myevent.where, &whichwindow);
     switch (code) {
     case inmenubar:
    docommand(menuselect(&myevent.where)); break;
     case insyswindow:
    systemclick(&myevent, whichwindow); break;
     case incontent:
    if (whichwindow != frontwindow())
     selectwindow(whichwindow);
    else  globaltolocal(&myevent.where);
    break;
         }
 break;
      case updateevt:
     setport(mywindow);
     beginupdate(mywindow);
     wipe();
     endupdate(mywindow);
     break;
     }
    } while (doneflag == 0);
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

VueScan 9.5.75 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
Opera 44.0.2510.1449 - High-performance...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
Opera 44.0.2510.1449 - High-performance...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
Skim 1.4.29 - PDF reader and note-taker...
Skim is a PDF reader and note-taker for OS X. It is designed to help you read and annotate scientific papers in PDF, but is also great for viewing any PDF file. Skim includes many features and has a... Read more
FontExplorer X Pro 6.0.2 - Font manageme...
FontExplorer X Pro is optimized for professional use; it's the solution that gives you the power you need to manage all your fonts. Now you can more easily manage, activate and organize your... Read more
1Password 6.7.1 - Powerful password mana...
1Password is a password manager that uniquely brings you both security and convenience. It is the only program that provides anti-phishing protection and goes beyond password management by adding Web... Read more
Vivaldi 1.9.818.44 - An advanced browser...
Vivaldi is a browser for our friends. In 1994, two programmers started working on a web browser. Our idea was to make a really fast browser, capable of running on limited hardware, keeping in mind... Read more
Vivaldi 1.9.818.44 - An advanced browser...
Vivaldi is a browser for our friends. In 1994, two programmers started working on a web browser. Our idea was to make a really fast browser, capable of running on limited hardware, keeping in mind... Read more
Skim 1.4.29 - PDF reader and note-taker...
Skim is a PDF reader and note-taker for OS X. It is designed to help you read and annotate scientific papers in PDF, but is also great for viewing any PDF file. Skim includes many features and has a... Read more
1Password 6.7.1 - Powerful password mana...
1Password is a password manager that uniquely brings you both security and convenience. It is the only program that provides anti-phishing protection and goes beyond password management by adding Web... Read more

Latest Forum Discussions

See All

Fire Emblem Heroes event announces new m...
As reported yesterday, Nintendo was gearing up a live press event for their popular mobile game,Fire Emblem Heroes. While the stream revealed a lot of new things, the event was entirely in Japanese. Luckily we have a rundown of what was announced... | Read more »
Best games we played this week
Another week, another slate of new mobile games. Although there weren't as many big name releases as last week, there were plenty of unique video game titles that came out that's sure to keep you interested over the weekend. Everything from classic... | Read more »
Olli by Tinrocket (Photography)
Olli by Tinrocket 1.0 Device: iOS iPhone Category: Photography Price: $2.99, Version: 1.0 (iTunes) Description: Get drawn in with Olli by TinrocketOlli instantly turns your everyday moments into hand-drawn art and animations. • Watch... | Read more »
Penarium (Games)
Penarium 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: | Read more »
Fire Emblem Heroes is way more profitabl...
Profits for Nintendo's mobile game Fire Emblem Heroes are apparently impressive enough to beat out other Nintendo titles likeSuper Mario Run, despite having 10 times fewer downloads. [Read more] | Read more »
Classic series Robot Unicorn Attack 3 no...
The classic Adult Swim browser game, Robot Unicorn Attack, branched off into a series of popular mobile games. Now, the latest entry into the series, Robot Unicorn Attack 3, is available for iOS and Android mobile devices. [Read more] | Read more »
Sudoku Sweeper (Games)
Sudoku Sweeper 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: A minimalist mashup of Minesweeper and Sudoku. Logic puzzle perfection. Every row, column and zone contains a bomb and one of... | Read more »
Under Leaves (Games)
Under Leaves 1.0.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.0 (iTunes) Description: Journey into the forest, the jungle or the depths of the deep blue sea. Find chestnuts for the pigs, a caterpillar for the... | Read more »
Ninja Pizza Girl (Games)
Ninja Pizza Girl 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: In the not-so-distant future, rampart traffic congestion has resulted in only one way to deliver pizzas across town in thirty... | Read more »
SCRAP (Games)
SCRAP 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: That day, for no apparent reason, SCRAP decided to wake up and run. He had to, because his activation was a mistake the "Factory" could... | Read more »

Price Scanner via MacPrices.net

13-inch 2.7GHz Retina MacBook Pro, Apple refu...
Apple has Certified Refurbished 13″ 2.7GHz/128GB Retina MacBook Pros available for $200 off MSRP. An Apple one-year warranty is included with each model, and shipping is free: - 13″ 2.7GHz/128GB... Read more
13-inch Gray 2.9GHz/512GB Touch Bar MacBook P...
Amazon has the 13″ Space Gray 2.9GHz/512GB Touch Bar MacBook Pro (model MNQF2LL/A) in stock today and on sale for $150 off MSRP. Shipping is free: - 13″ 2.9GHz/512GB Touch Bar MacBook Pro Space Gray... Read more
15-inch 2.7GHz Space Gray Touch Bar MacBook P...
B&H Photo has the 15″ 2.7GHz Space Gray Touch Bar MacBook Pro in stock today and on sale for $2599…$200 off MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: - 15″ 2.7GHz... Read more
13-inch 2.9GHz/256GB Space Gray Touch Bar Mac...
B&H Photo has the 13″ 2.9GHz/256GB Space Gray Touch Bar MacBook Pro in stock today and on sale for $150 off MSRP including free shipping plus NY & NJ sales tax only: - 13″ 2.9GHz/256GB Touch... Read more
21-inch iMacs on sale for up to $151 off MSRP
B&H Photo has 21″ iMacs on sale for up to $151 off MSRP, each including free shipping plus NY sales tax only: - 21″ 3.1GHz iMac 4K: $1348 $151 off MSRP - 21″ 2.8GHz iMac: $1199.99 $100 off MSRP... Read more
Weekend deal: Up to $420 off new MacBook Pros...
Apple has Certified Refurbished 2016 15″ and 13″ MacBook Pros available for $230 to $420 off original MSRP. An Apple one-year warranty is included with each model, and shipping is free: - 15″ 2.6GHz... Read more
Price drop: 15-inch 2.2GHz Retina MacBook Pro...
Amazon has dropped their price on 15″ 2.2GHz Retina MacBook Pros (MJLQ2LL/A) to $1709.99 including free shipping. Their price is $290 off MSRP for this model. Note that stock may sell out quickly at... Read more
2.8GHz Mac mini on sale for $899, save $100
B&H Photo has the 2.8GHz Mac mini (model number MGEQ2LL/A) on sale for $899 including free shipping plus NY & NJ sales tax only. Their price is $100 off MSRP. Read more
Check Apple prices on any device with the iTr...
MacPrices is proud to offer readers a free iOS app (iPhones, iPads, & iPod touch) and Android app (Google Play and Amazon App Store) called iTracx, which allows you to glance at today’s lowest... Read more
New System Clock for macOS by B-Eng Now Avail...
Fehraltorf, Switzerland based B-Eng has announced the release and immediate availability of System Clock, the company’s new system monitor and information app developed exclusively for macOS. System... Read more

Jobs Board

Product Manager, *Apple* Platforms - Viacom...
…Product Manager to drive the execution of its iOS and AppleTV experiences. The Apple Platform Product Manager will be a leader in our Agile/Scrum environment and Read more
*Apple* Mobile Master - Best Buy (United Sta...
**493714BR** **Job Title:** Apple Mobile Master **Location Number:** 001024-Weatherford-Store **Job Description:** **What does a Best Buy Apple Mobile Master Read more
*Apple* OS X Server Administrator (Active Se...
** Apple OS X Server Administrator \(Active Secret Clearance\)** **Description** Come be a part of a top notch team, apply today\!\! Tuva TUVA provides turnkey Read more
*Apple* Mac Computer Technician - GeekHampto...
…complex computer issues over the phone and in person? GeekHampton, Long Island's Apple Premium Service Provider, is looking for you! Come work with our crew Read more
Best Buy *Apple* Computing Master - Best Bu...
**501846BR** **Job Title:** Best Buy Apple Computing Master **Location Number:** 001126-South Bay Center-Store **Job Description:** **What does a Best Buy Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.