TweetFollow Us on Twitter

Polygons and Regions
Volume Number:3
Issue Number:5
Column Tag:ABC's of C

Polygons and Regions as Quickdraw Objects

By Bob Gordon, Contributing Editor, Minneapolis, MN

Stars! The reason we have stars this month is because Jane, the seven year old who hangs out around here, wanted them. We also have triangles, pentagons, hexagons, and a large H-like thing. The point of all this was to use QuickDraw functions to draw polygons and regions. These functions were integrated into the program two columns back so we now have one function that can draw rectangles, rounded rectangles, arcs, ovals, lines, polygons, and regions. The program is fairly straight forward, but it took a while to get it to work correctly. At this point, our program is a fairly complex, and complete implementation of some of the more advanced features of quickdraw. The major operations of quickdraw are supported including Frame, Paint, Erase and Invert. The only one missing is Fill. Implementing these functions for polygons and regions extends the program to the most general quickdraw constructions. The next level of complexity would be to implement pictures. Figure 1 shows some of the paint type drawings we can construct.

We have also improved on our Mac user interface design. We now support desk accessories. Since this opens up the possibility of having a second window obscure our drawing, we also have to implement update events to restore the drawing after a DA has covered part of our window. So we need an update event as well. Since our program draws directly to the screen, what we have is a kind of MacPaint approach, where even though our quickdraw objects are generalized polygons and regions, after they are drawn, our screen is simply a bit map. This lends itself to an obvious approach for update events: simply copy the window to an off-screen bit map and then use copybits to update the window. This is the approach we have used this month. Other improvements to the user interface might be to made our window growable and to add multi-window capability. Improvements to our "paint" program would be to make it into a "draw" program where each object on the screen retains it's "object-oriented" nature rather than becoming a bit map. This would also require a more complex update function to re-draw the screen from the object definitions, rather than from the saved bip map image. We will look at this approach next month as we generalize our quickdraw objects even further.

C Review

One of the most confusing things about C is the use of pointers and handles from a Pascal machine definition. Let us try to review how this is done. Suppose we have an event record declared as theEvent and we wish to pass this to a subroutine. This is normally done by passing the address of the event record structure by using the & function. Hence, we might do something like Foo(&theEvent). This would pass the address of theEvent to the routine Foo. Now what do we do in Foo? The answer is we prepare the variable with which we accept this address:

Foo(myEvent)
 Event Record  *myEvent;

What this means is that myEvent is a pointer to an event record and it is this address that is being passed to Foo; *myEvent is the actual event record, dereferenced from myEvent. Hence throughout Foo, we are using the pointer to our event record. This means it must be dereferenced first before being used to access fields of myEvent. There are two ways to do this in C:

point = (*myEvent).where;
point = myEvent->where;

The same approach extends to handles as the next example shows:

rect = (**teRecHandle).viewRect;
rect = (*teRecHandle)->viewRect;

Notice that if we try to use something like

point = myEvent.where; 

within Foo, the Lightspeed compiler will return a message saying that "where" is not a field of myEvent. This is because myEvent is a pointer to theEvent, not our event record structure itself.

This is futher complicated by situations where we must pass the data structure itself, and not a pointer to it. Normally this is not allowed in C. However, "Macinized" C compilers allow us to pass the actual data by calling Foo(theEvent) instead of calling Foo(&theEvent). This often leads to another problem in C. When calling routines that modify the variables passed to it as VAR variables, we must pass the address of the variable as in "&theEvent", rather than simply "theEvent". This often leads to compiler errors when we fail to insert the required & for a VAR parameter. In pascal, the programmer does not need a different syntax for VAR values so you don't have to pay much attention to which parameters are VAR's and which are not. When you have this error, you'll get a message that says something like wrong size for a pascal variable. This is a clue that the & is missing in the call. An example of this is the SetPort and GetPort trap calls which are defined as:

SetPort(gp)
 GrafPtr gp;

GetPort(gp)
 GrafPtr *gp;

Now when we call these routines, for SetPort we pass the window pointer for our window as in:

SetPort(myWindowPtr);

But when we call GetPort to save the current port in a temporary window pointer, we pass the address of our variable as in the following because it is a VAR parameter:

GetPort(&myTempPtr);

For some reason, very few C books, even the Macintosh ones, do not fully explain pointers and handles in C in relation to pointers and handles in Pascal, from which all the toolbox trap calls are defined. For more on this subject, and on memory management, see chapter six on memory management in our book, Using the Macintosh Toolbox with C by Sybex, which we are more or less following in this series.

Fig. 1 Polygons & Regions in this month's paint program

Polygons

My first idea for polygons was to develop a function that would collect points for a polygon on the fly. After selecting "Open Poly" from a menu, you would use the mouse to place points on the screen, lines would connect them, and after selecting "Close Poly," you could reproduce the new polygon at will with the all purpose drawing function, that is the central feature of our program. I got part of it written when I discovered that it would not work: I kept getting some bomb. I think this happened because after a polygon is opened it collects all line drawing information until the polygon is closed. This apparently includes such things as the lines involved in menus so doing almost anything created a multitude of lines. I did not investigate further, but decided to simply create some new shapes (the aforementioned pentagons, hexagons, and stars) that we could draw. This may imply that a pallette of drawing commands, maintained by the list manager would be more appropriate. This would be another possible design improvement in our program that could be pursued. (Gee, no wonder Mac programming never ends. The number of things you can add or improve on seems endless!)

Creating the new shapes was relatively straight forward. I simply picked an arbitrary rectangle to work in and computed where the end points should be on pencil and paper. Then it was a simple matter to use lineto() functions to connect the dots. You will notice that the star is drawn the way you learned as a child (Jane has a lot of influence around here). To draw a star that would be completely filled in (by the paint operation), we would have to have ten points and do lineto's to describe the edges. Another opportunity for you to modify our program!

It was after I had built the first "make polygon" routine that I ran into my second problem. I installed the various polygon drawing verbs into the all purpose draw function [see the dr.c code listing and the drDraw routine] and ran the program. As soon as I tried to do anything with a polygon I got a divide by zero error. I traced the problem to a call to MapPoly(). MapPoly() is a QuickDraw function that scales a polygon from one rectangle to another. In the process it changes the size and aspect ratio of the polygon. Just what we need to control the size and aspect of the polygon with the mouse. Unhappily it didn't work. It seems the source and destination rectangle need to differ slightly. Inseting the source rectangle solved the problem. Another approach you can try, and which I played around with, is writing yur own MapPoly() function. There is another QuickDraw function called MapPt() which does the same scaling operation on a point. It is a relatively simple task to build a function that maps all the points in a polygon. The only hitch was in knowing what a polygon looks like.

According to Inside Macintosh, a polygon looks like:

struct Polygon
 {
 short  polySize;
 Rect   polyBBox;
 Point  polyPoints[];
 }

The array polyPoints is variable length. polySize specifies the total length of the polygon (in bytes) including the space needed to hold polySize and polyBBox (10 bytes). By stepping through the array and calling MapPt on all the points, we can re-create the MapPoly function. The problem with MapPoly() apparently has to do with the source rectangle. I was using the polyBBox as the source. By copying polyBBox to another rectangle and Inseting it to make it one point larger or smaller all around, eliminates the problem. Now, I don't know if there is a better way to do this, and I have not gone in with a debugger to see what is actually going on, so any thoughts in this area will be appreciated.

Regions

Regions are one of the more amazing capabilities built into QuickDraw. This program only introduces them. I am going to ignore all the things one can do with regions and simply focus on getting a region on the screen.

Bascially, I had the same problems with regions as I did with polygons. The function MapRgn() caused a divide by zero error (I only solved the polygon problem after I solved it for regions), and I decided I did not want to write a MapRgn(). A region looks like:

struct Region
 {
 short  rgnSize;
 Rect   rgnBBox;
 /* optional region definition data */
 }

Unlike a polygon, there is not a hint of what is inside a region.

The region included in the program is very simple-it is made of three rectangles. (It could have easily been a polygon. The reason it looks like an "H" is because I wanted to write "HELLO" in REALLY BIG LETTERS. Some other time.) A region (the optional region definition data) is a series of horizontal slices of the object. Each slice starts with the y-coordinate followed by a series of x-coordinates and terminates with a 32767. After the last slice is another 32767. The x-coordinates turn the pen on and off so that drawing starts at the first one continues to the second, is off to the third, and on to the fourth, etc. The region defined in the program looks like:

 0 0  1040
 5032767
 2510 4032767
 3510 4032767
 600  1040
 503276732767

A region can be quite large. Try replacing the FrameRect() calls in makeregion() with FrameRoundRect() or FrameOval() and see what happens. In any case, we never have to deal with the inside of the region structure because QuickDraw provides all sorts of routines for manipulating them.

As with the polygons, the capabilities to draw regions with all the drawing operations have been added to the general purpose drawing routine.

Some Comments on the Program

The functions that handle regions and polygons (e.g. fr_poly() and fr_regn()) do not operate on the originals. Instead they operate on a copy of the polygon (or region). This was to avoid possible problems of distortion because the mouse drawing routine starts with a two-by-two rectangle (I never tried it without the copy, however). Since only one polygon is active at a time, there is a single temporary polygon space. The size of this space is by a call to setpolytemp() in each of the four make-polygon functions. setpolytemp() receives the size of the new polygon as a parameter and creates a handle to a polygon if it was not already created. On subsequent calls setpolytemp() compares the received size with the size it already has and makes the polytemp size larger if necessary. This way the space needed to make a copy of the largest (in bytes) polygon is readily available. The region is different. There is a QuickDraw function, CopyRgn() that copies a region. It handles the memory allocation.

The region and polygons are created during drinit() which is called once at the beginning of the program.

Since there is only one set of polygon (and region) drawing verbs, there needed to be away to specify which polygon to use. A selection from the shape menu ends up calling drshape() where the polygon based shapes are all changed into polygons and the correct one to use is placed in the global polycurrent. The various polygon functions use polycurrent as the original polygon.

A Bug

When drawing the polygon shapes (star, pentagon, etc.) there was sometimes a dot left where the mouse button is first pressed. Obviously I was not erasing it correctly, and it took some time to figure it out. Finally, the problem was solved by carefully making both the starting and ending points even coordinates so the generalized draw function would not try to draw a single point polygon. I think the dot problem is solved for all the polygon structures but if not, study the initialization of the draw fuunction loop variables for a better answer.

Update Events

Figures 2 and 3 show that our program now supports desk accessories. We also must manage our menus to turn on and off the edit menu when a system window for a DA is active. This is done by calling a menu adjust type routine in our main loop. It can be tricky however to identify all the user possibilities for activating one window over another so that the menus correctly reflect the state of the machine. The check menu routine does this function by checking all the possible combinations of having our window be on the screen and be the front window. If it is not on the screen, or on the screen and not the front window (must be behind a DA window) then our menus must look different.

Fig. 2 DA covers our drawing!

When we select a new window, we also define an off-screen bit map using the characteristics of our window. Both the window and the bit map are defined relative to screenBits.bounds. This quickdraw global defines the current screen size and by making all drawing relative to it, means our program will work on a Macintosh II or large screen addition, which use a different screen size than the present Macintosh. In our init routine, we set up our window related rectanges relative to screenBits.bounds to achieve this video independence.

Study the new window routine to see how the bit map is allocated with NewPtr. When the window is closed, we release the pointer to the bit map as well so that the next New Window call can create another off-screen bit map. Here are the new global declarations for our bit map:

 BitMap offMap;
 Rect   copyRect;
 Rect   drawRect;
The new window code that creates the bit map is shown next:
 drawRect=(*theWindow).portRect;
 copyRect=drawRect;
 offMap.rowBytes = screenBits.rowBytes;
 mapBytes = offMap.rowBytes*(screen.bottom-screen.top);
 offMap.baseAddr=NewPtr(mapBytes);
 offMap.bounds=screen;

CopyBits(&offMap,&offMap,&copyRect,&copyRect,srcXor,Nil);

The number of bytes in a row also changes on the Macintosh II so again, we define the rowbytes field of our bit map by using the current screen device defined by quickdraw in screenBits.rowbytes. Since the screen resolution also changes, we determine the number of pixel lines from screenBits.bounds, which we have copied into the screen rectangle. The number of bytes to allocate for the bit map is then the bytes per row times the number of rows in the display, which we store as mapBytes.

Fig. 3 SelectWindow generates Update Event CopyBits restores our drawing.

Once the bit map is created, we must then determine the most opportune moment to save the window contents and restore it from the bit map. The CopyBits function is used for this purpose. In our update event routine, we use CopyBits to blast the off-screen bit map back on screen in the portRect of our window. We do this whenever the update event is generated for our window. In particular, we do it when the new window function generates an update event to create our window. This led to the chicken and the egg problem of which comes first: the window or the saved bit map! The solution was to erase the bit map when it is first created so that the first update event for our window won't fill our window with a random display of memory in graphics form! Erasing our bit map is done by just doing a CopyBits on itself.

doupdate(updateWindow)
 WindowPtrupdateWindow;
{
GrafPtr temp;

GetPort(&temp);
SetPort(updateWindow);
BeginUpdate(updateWindow);
if ((theWindow) and (theWindow=updateWindow ))
CopyBits(&offMap,&(*updateWindow).portBits,
 &copyRect,&drawRect,srcCopy,Nil);
EndUpdate(updateWindow);
SetPort(temp);
}

Once our update event was working, the next problem was to fine the opportune time to call our SaveWindow routine which does a CopyBits in the opposite direction, saving the portRect of our window to our bit map. This proved to be the hardest part of all! The various interactions of the DA windows with our windows and the order in which activate and deactivate events are generated, and the manner in which the window manager draws and re-draws windows, all combined to make this a frustrating little problem. Since our program handles two events, a key down and a mouse down, this seem to be the obvious place to save the window. The key down event worked fine. When a key was pressed, the window was saved, then the key was processed. The mousedown was another story! I was continually having problems with the save window capturing the wrong set of pixels! The problem was finally solved by being more careful about when a mousedown event in the content region of our window should call SelectWindow, which generates activate and udpate events for the window.

Here is the save window routine, and the content event which calls it:

SaveWindow()
{
CopyBits(&(*theWindow).portBits,&offMap,&drawRect,
 &copyRect,srcCopy,Nil);  
}

case inContent:
 if (whichWindow equals theWindow)
 {
 if (whichWindow notequal FrontWindow())
 SelectWindow(whichWindow);
 else
 if (CursorInUse() equals 2)
 {
 drdraw(whichWindow);
 SaveWindow(); 
 }
 }
break;

A Note from a Reader

Kirk Kerekes of Tulsa OK provides some additional information on the surround functions used for the general purpose drawing routine. As I mentioned when we started building these drawing routines, LightSpeed C does not allow us to take the address of Toolbox functions. Mr. Kerekes points out that in Lightspeed C, the stack based traps are handled with an automatic in-line exception; there is no "glue" function. Since there is no function, there is no address. We can use address passing with ToolBox traps, however by using GetTrapAddress() to retrieve the address of the trap and pass them using the CallPascal() function. This is described on page 9-7 of the LightSpeed manual. The following little program (courtesy of Mr. Kerekes) illustrates the technique.

/* callpascal
 *
 * demonstrates use of CallPascal() 
 * address passing in LightSpeed C
 *
 * By Kirk Kerekes
 * (with some additional comments by Bob Gordon)
 * 
 */
 
 #include "QuickDraw.h"
 #include "OSUtil.h"
 #include "Window.h"
 
 #defineNil 0L
 
 pascal voidCallPascal();
 
 main()
 {
 Rect   testrect;
 Rect   wrect;
 WindowPtrthewindow;
 
 InitGraf(&thePort);
 InitWindows();
 InitFonts();
 InitMenus();
 InitDialogs(GetTrapAddress(0xA9F4)); 
 /* A9F4 = ExitTo Shell */
 
 SetRect(&wrect, 10, 10, 500, 300);
 thewindow = NewWindow (Nil, &wrect, "\pGetTrapAddress", 
  TRUE, 2, -1L, FALSE, Nil);
 SetPort(thewindow);
 /* make a rectangle */
 SetRect(&testrect, 20, 20, 100, 200); 
 /* fill it with gray, the usual way */
 FillRect(&testrect, gray);  
 /* now make it smaller */
 InsetRect(&testrect, 10, 10); 
 /* fill it with black with the Trap Address 
    technique.  The addresses are listed in a
    table in Inside Macintosh.  Note that by
    looking at the code you would have very 
    little idea what this does. */
 CallPascal(&testrect, black, GetTrapAddress(0xA8A5));
 
 while (!Button())
 ;
 
 DisposeWindow(thewindow);
 
 }

He points out that this technique does result in more obscure code.

Final Comments

I received a couple goodies in the mail over the last two months. The first was the new version of LightSpeed C. More on this next time, I hope. The other was the Best of MacTutor. I especially recomend the C Workshop series by Bob Denny. Anyone who has come this far in ABC's of C should benefit from reading his columns. The Pascal Procedures column by Chris Derossi is also highly relevant to what is going on here. See his Introduction to QuickDraw (p. 228) and QuickDraw does Regions! on page 231.

The other comment before presenting the program deals with where we go from here. We have been more or less following Using the Macintosh ToolBox with C. They will begin working on a text editor in a few chapters. Since the one thing I have heard from people is that they don't wish to see another text editor, I had wondered about what sort of project would be fun, useful, and illustratrative. Unless there are objections (or a better idea), I think we'll continue doing drawing. We may end up with some sort of mini MacDraw.

Next time we'll return to quickdraw and try to draw polygons, regions, and pictures in a more general way so they retain their object oriented nature like MacDraw.


/* Quickdraw Example
 *
 * Compiled with LightspeedC
 *
 * Important note for Mac C users:
 * Every place you see event->where,
 * replace it with &event->where
 */
 
 #include "abc.h"
 #include "Quickdraw.h"
 #include "EventMgr.h"
 #include "WindowMgr.h"
 #include "MenuMgr.h"
 #include "FontMgr.h"

 /* defines for menu ID's */
 
 #defineMdesk    100
 #defineMfile    101
 #defineMedit    102
 #defineMshape   106
 #defineMop 107
 
 /* File */
 #defineiNew1
 #defineiClose   2
 #defineiQuit    3
 
 /* Edit */
 #defineiUndo    1
 #defineiCut3
 #defineiCopy    4
 #defineiPaste   5
 #defineiClear   6
 
 /* Global variables */
 
 MenuHandle menuDesk;/* menu handles */
 MenuHandle menuFile;
 MenuHandle menuEdit;
 MenuHandle menuShape;
 MenuHandle menuOp;
 
 WindowPtrtheWindow;
 WindowRecord    windowRec;
 Rect   dragbound;
 Rect   screen;
 Rect   boundsRect; 
 
 BitMap offMap;
 Rect   copyRect;
 Rect   drawRect;
 
main()
{
 initsys(); /* system initialization */
 initapp(); /* application initialization */
 eventloop();
}

crash()
{
 ExitToShell(); /* we are dead folks */
}

/* system initialization */
initsys() 
{
InitGraf(&thePort);/* these two lines done */
InitFonts();/* automatically by Mac C */
InitWindows();
InitMenus();
TEInit();
InitDialogs(&crash);
InitCursor();
FlushEvents(everyEvent,0);
 
theWindow = Nil; /*indicates no window */
screen=screenBits.bounds;
SetRect(&dragbound,screen.left+4,screen.top+24,
 screen.right-4,screen.bottom-4);
SetRect(&boundsRect,screen.left+30,screen.top+50,
 screen.right-30,screen.bottom-50);
}

/*
 * application initialization
 */
initapp()
{
 setupmenu();
 drinit();
}

setupmenu()
{
menuDesk = NewMenu(Mdesk,CtoPstr("\24"));
AddResMenu (menuDesk, 'DRVR');
InsertMenu (menuDesk, 0);
 
menuFile = NewMenu(Mfile, CtoPstr("File"));
AppendMenu (menuFile,CtoPstr("New/N;Close;Quit/Q"));
InsertMenu (menuFile, 0);
 
menuEdit = NewMenu(Medit, CtoPstr("Edit"));
AppendMenu (menuEdit,CtoPstr("Undo/Z;(-;Cut/X;Copy/C;    Paste/V;Clear"));
InsertMenu (menuEdit, 0);
 
menuShape = NewMenu(Mshape, CtoPstr("Shape"));
AppendMenu (menuShape,CtoPstr("Line;Rectangle;Oval;
 Round Rectangle;Arc"));
AppendMenu(menuShape,CtoPstr("Triangle;Pentagon;
 Hexagon;Pentagram"));
AppendMenu (menuShape,CtoPstr("Region"));
InsertMenu (menuShape, 0);
 
menuOp = NewMenu(Mop, CtoPstr("Operation"));
AppendMenu (menuOp,CtoPstr("Frame;Paint;Erase;Invert"));
InsertMenu (menuOp, 0);   
DrawMenuBar();
}
 
/* Event Loop 
 * Loop forever until Quit
 */
eventloop()
{
EventRecord theEvent;
char    c;
 
while(True)
{
SystemTask();
CheckMenus();
if (GetNextEvent(everyEvent,&theEvent))
 switch(theEvent.what)    
 { /* only check key and */
 case keyDown:   /* mouse down events */
 if ((theWindow) and (theWindow equals FrontWindow()) )
 SaveWindow(); 
 c = theEvent.message & charCodeMask;
 if (theEvent.modifiers & cmdKey)
 domenu(MenuKey(c));
 else if (theWindow)
 SysBeep(5);
 break;
 case mouseDown: 
 domousedown(&theEvent);
 break;
 case updateEvt:
 doupdate((WindowPtr)theEvent.message);
 break;
 case activateEvt:
 doactivate(&theEvent);
 break;
 default:
 break;
 }
 
}
}

/* CheckMenus
 * Update menu bar if window active
 */
CheckMenus()
{
if ((theWindow) and (theWindow equals FrontWindow()))
 { 
 EnableItem(menuFile,iClose); 
 DisableItem(menuFile,iNew);
 DisableItem(menuEdit,0);
 EnableItem(menuShape,0);
 EnableItem(menuOp,0);
 CursorAdjust(theWindow);
 }
else    
 {
 if ((theWindow) and (theWindow notequal FrontWindow()))
 { 
 DisableItem(menuFile,iNew);
 DisableItem(menuFile,iClose);
 EnableItem(menuEdit,0);
 DisableItem(menuShape,0);
 DisableItem(menuOp,0);
 }
 else
 {
 if ((theWindow equals Nil) and (FrontWindow() equals          
 Nil))
 {
 EnableItem(menuFile,iNew);
 DisableItem(menuFile,iClose);
 DisableItem(menuEdit,0);
 DisableItem(menuShape,0);
 DisableItem(menuOp,0);
 }
 else
 {
 EnableItem(menuFile,iNew);
 DisableItem(menuFile,iClose);
 EnableItem(menuEdit,0);
 DisableItem(menuShape,0);
 DisableItem(menuOp,0);
 
 }
 }
 }
}

/* off screen bitmap */
SaveWindow()
{
CopyBits(&(*theWindow).portBits,&offMap,&drawRect,
 &copyRect,srcCopy,Nil);  
}
 
/* domousedown
 * handle mouse down events
 */
domousedown(er)
 EventRecord*er;
{
short   windowcode;
WindowPtr whichWindow;
short   ingo;
 
windowcode = FindWindow(er->where, &whichWindow);              
 
switch (windowcode)
 {
 case inDesk:
 if (theWindow notequal 0)
 {
 HiliteWindow(theWindow, False);
 }
 break;
 case inMenuBar:
 if ((theWindow) and (theWindow equals FrontWindow()))
 SaveWindow(); 
 domenu(MenuSelect(er->where));
 break;
 case inSysWindow:
 SystemClick(er,whichWindow);
 break;
 case inContent:
 if (whichWindow equals theWindow)
 {
 if (whichWindow notequal FrontWindow())
 SelectWindow(whichWindow);
 else
 if (CursorInUse() equals 2)
 {
 drdraw(whichWindow);
 SaveWindow(); 
 }
 }
 break;
 case inDrag:
 DragWindow(whichWindow,er->where, &dragbound);
 break;
 case inGoAway:
 ingo = TrackGoAway(whichWindow,er->where);
 if (ingo)
 {
 CloseWindow(whichWindow);
 theWindow = Nil;
 }
 break;
 default:
 break;
 }
}

doupdate(updateWindow)
 WindowPtrupdateWindow;
{
GrafPtr temp;

GetPort(&temp);
SetPort(updateWindow);
BeginUpdate(updateWindow);
if ((theWindow) and (theWindow=updateWindow ))
CopyBits(&offMap,&(*updateWindow).portBits,
 &copyRect,&drawRect,srcCopy,Nil);
EndUpdate(updateWindow);
SetPort(temp);
}

doactivate(er)
 EventRecord*er;
{
WindowPtr eventwindow;

eventwindow=(WindowPtr)(er->message);
if (er->modifiers & activeFlag)
 {
 }
else  /* deactivate */
 {
 }
}
 
/* domenu
 * handles menu activity
 * simply a dispatcher for each
 * menu.
 */
domenu(mc)
 long   mc; /* menu result */
{
 short  menuId;
 short  menuitem;
 char   daName[64];
 GrafPtrtemp;
 short  accItem;
 
 menuId = HiWord(mc);
 menuitem = LoWord(mc);
 
 switch (menuId)
 {
 case Mdesk : {
 GetItem(menuDesk,menuitem,daName);
 GetPort(temp);
 accItem=OpenDeskAcc(daName);
 SetPort(temp);
 break;
 }
 case Mfile : dofile(menuitem);
 break;
 case Medit :{
 if (not SystemEdit(menuitem-1))
 break;
 }
 case Mshape: doshape(menuitem);
  break;
 case Mop: dooper(menuitem);
  break;
 default:
 break;
 }
 HiliteMenu(0);
}

doshape(item)
 short  item;
{
static shortlastitem = 0;
 
CheckItem (menuShape,lastitem,False);
 CheckItem (menuShape,item,True);
 lastitem = item;
 drshape(item);
}

dooper(item)
 short  item;
{
static shortlastitem = 0;
 
CheckItem (menuOp, lastitem,False);
CheckItem (menuOp, item, True);
droper(lastitem = item);  
}
 
/* dofile
 * handles file menu
 */
dofile(item)
 short  item;
{
char    *title1; /* first title for window */
long    mapBytes;
switch (item)
 {
 case iNew :/* open the window */
 title1 = "ABC Window";
 theWindow = NewWindow(&windowRec, &boundsRect,
 CtoPstr(title1),True,noGrowDocProc,
 (WindowPtr) -1, True, 0);
 PtoCstr(title1);
 
 drawRect=(*theWindow).portRect;
 copyRect=drawRect;
 offMap.rowBytes = screenBits.rowBytes;
 mapBytes = offMap.rowBytes*(screen.bottom-screen.top);
 offMap.baseAddr=NewPtr(mapBytes);
 offMap.bounds=screen;
 CopyBits(&offMap,&offMap,&copyRect,
 &copyRect,srcXor,Nil);   
 break;
 
 case iClose :   /* close the window */
 CloseWindow(theWindow);
 DisposPtr(offMap.baseAddr);
 theWindow = Nil;
 break;
 
 case iQuit :    /* Quit */
 ExitToShell();
 break;
 
 default:
 break; 
 }
}


/* 
 * dr.c
 *
 * drawing routines
 */
 
 #include "abc.h"
 #include "quickdraw.h"
 #include "windowMgr.h"
 
struct shapes
 {
 short  kind;
 Rect size;
 short  oper;
 };
 
struct shapes   shapa[20];
short   shapdx;
PolyHandletriangle;
PolyHandlepentagon;
PolyHandlehexagon;
PolyHandlepentagram;
RgnHandle theregion;
RgnHandle tempregion;

PolyHandlepolytemp = 0;
PolyHandlepolycurrent;
short   phpts;


/*
 * Quickdraw surround functions.
 * These functions provide a consistent 
 * interface (at some loss of generality) to
 * all the quickdraw drawing functions.
 */
 
 /* FRAMING */

fr_poly(startpt,endpt)
 Point  startpt, endpt;
{
 Rect   drt;
 Rect   srt;
 
Pt2Rect(startpt,endpt,&drt);
BlockMove(&(*polycurrent)->polyBBox, &srt,sizeof(Rect));
BlockMove(*polycurrent,*polytemp,(*polycurrent)->polySize);
InsetRect(&srt, -1, -1);
MapPoly(polytemp,&srt, &drt);
FramePoly(polytemp);
}
 
fr_regn(startpt, endpt)
 Point  startpt, endpt;
{
 Rect   r, r1;
 
CopyRgn(theregion,tempregion);
BlockMove(&(*tempregion)->rgnBBox, &r1,sizeof(Rect));
InsetRect(&r1,-1,-1);
Pt2Rect(startpt, endpt,&r);
MapRgn(tempregion, &r1, &r);
FrameRgn(tempregion);
}

fr_line(startpt,endpt)
 Point  startpt,endpt;
{
MoveTo(startpt.h,startpt.v);
LineTo(endpt.h,endpt.v);
}

fr_rect(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
FrameRect(&rt);
}

fr_oval(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
FrameOval(&rt);
}

fr_rort(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
FrameRoundRect(&rt,20,20);
}


fr_arc(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 Rect trt;
 short  sa;
 short  aa;
 
Pt2Rect(startpt,endpt,&rt);
cp_arc(&rt,&trt,&sa,&aa);
FrameArc (&trt,sa,aa);
}

/* ERASING */

er_line(startpt,endpt)
 Point  startpt,endpt;
{
 GrafPtrgp;
 Patterntpat;
 
GetPort(&gp);
BlockMove(gp->pnPat,&tpat,8);
PenPat(gp->bkPat);
MoveTo(startpt.h,startpt.v);
LineTo(endpt.h,endpt.v);
PenPat(&tpat);
}

er_poly(startpt,endpt)
 Point  startpt, endpt;
{
 Rect   drt;
 Rect   srt;
 
Pt2Rect(startpt,endpt,&drt);
BlockMove(*polycurrent,*polytemp,(*polycurrent)->polySize);
BlockMove(&(*polycurrent)->polyBBox,&srt,sizeof(Rect));
InsetRect(&srt, -1, -1);
MapPoly(polytemp,&srt,&drt);
ErasePoly(polytemp);
}

er_regn(startpt, endpt)
 Point  startpt, endpt;
{
 Rect   r, r1;
 
CopyRgn(theregion,tempregion);
BlockMove(&(*tempregion)->rgnBBox, &r1,sizeof(Rect));
InsetRect(&r1,-1,-1);
Pt2Rect(startpt, endpt,&r);
MapRgn(tempregion, &r1, &r);
EraseRgn(tempregion);
}

er_rect(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
EraseRect(&rt);
}

er_oval(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
EraseOval(&rt);
}

er_rort(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
EraseRoundRect(&rt,20,20);
}

er_arc(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 Rect trt;
 short  sa;
 short  aa;
 
Pt2Rect(startpt,endpt,&rt);
cp_arc(&rt,&trt,&sa,&aa);
EraseArc (&trt,sa,aa);
}

/* PAINTING */

pt_line(startpt,endpt)
 Point  startpt,endpt;
{
 GrafPtrgp;
 Patterntpat;
 
MoveTo(startpt.h,startpt.v);
LineTo(endpt.h,endpt.v);
}

pt_poly(startpt,endpt)
 Point  startpt, endpt;
{
 Rect   drt;
 Rect   srt;
 
Pt2Rect(startpt,endpt,&drt);
 BlockMove(*polycurrent,*polytemp,(*polycurrent)->polySize);
BlockMove(&(*polycurrent)->polyBBox,&srt,sizeof(Rect));
InsetRect(&srt, -1, -1);
MapPoly(polytemp,&srt,&drt);
PaintPoly(polytemp);
}

pt_regn(startpt, endpt)
 Point  startpt, endpt;
{
 Rect   r, r1;
 
CopyRgn(theregion,tempregion);
BlockMove(&(*tempregion)->rgnBBox, &r1,sizeof(Rect));
InsetRect(&r1,-1,-1);
Pt2Rect(startpt, endpt,&r);
MapRgn(tempregion, &r1, &r);
PaintRgn(tempregion);
}

pt_rect(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
PaintRect(&rt);
}

pt_oval(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
PaintOval(&rt);
}

pt_rort(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
PaintRoundRect(&rt,20,20);
}


pt_arc(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 Rect trt;
 short  sa;
 short  aa;
 
Pt2Rect(startpt,endpt,&rt);
cp_arc(&rt,&trt,&sa,&aa);
PaintArc (&trt,sa,aa);
}

/* INVERTING */

in_line(startpt,endpt)
 Point  startpt,endpt;
{
 GrafPtrgp;
 short  tpnMode;
 
GetPort(&gp);
tpnMode = gp->pnMode;
PenMode(patXor);
MoveTo(startpt.h,startpt.v);
LineTo(endpt.h,endpt.v);
PenMode(tpnMode);
}

in_rect(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
InvertRect(&rt);
}

in_poly(startpt,endpt)
 Point  startpt, endpt;
{
 Rect   drt;
 Rect   srt;
 
Pt2Rect(startpt,endpt,&drt);
 BlockMove(*polycurrent,*polytemp,(*polycurrent)->polySize);
srt=(*polytemp)->polyBBox;
InsetRect(&srt,1,1);
MapPoly(polytemp,&srt,&drt);
InvertPoly(polytemp);
}

in_regn(startpt, endpt)
 Point  startpt, endpt;
{
 Rect   r, r1;
 
CopyRgn(theregion,tempregion);
BlockMove(&(*tempregion)->rgnBBox, &r1,sizeof(Rect));
InsetRect(&r1,-1,-1);
Pt2Rect(startpt, endpt,&r);
MapRgn(tempregion, &r1, &r);
InvertRgn(tempregion);
}

in_oval(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
InvertOval(&rt);
}

in_rort(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 
Pt2Rect(startpt,endpt,&rt);
InvertRoundRect(&rt,20,20);
}

in_arc(startpt,endpt)
 Point  startpt,endpt;
{
 Rect rt;
 Rect trt;
 short  sa;
 short  aa;
 
Pt2Rect(startpt,endpt,&rt);
cp_arc(&rt,&trt,&sa,&aa);
InvertArc (&trt,sa,aa);
}


/* ARC COMPUTATION
 * The arc is fixed at 90 degrees. This
 * function (used in all the arc functions
 * above) computes the correct rectangle, 
 * start angle, and arc angle given the
 * input rectangle (and 90 degrees).
 *
 * This makes drawing the arcs consistent
 * with drawing the other shapes.
 */
cp_arc(irt,ort,startangle,arcangle)
 Rect *irt;
 Rect *ort;
 short  *startangle;
 short  *arcangle;
{
 short  dh;
 short  dv;
 static Point  anchor;
 
 dh = irt->right - irt->left;
 dv = irt->bottom - irt->top;
 if (not (dh | dv))
 {
 anchor.v = irt->top;
 anchor.h = irt->left;
 }
 *ort = *irt;
 
 if (irt->left equals anchor.h)
 if (irt->top < anchor.v)
 {
 ort->left -= dh;
 ort->top -= dv;
 *startangle = 180;
 *arcangle = -90;
 }
 else
 {
 ort->left -= dh;
 ort->bottom += dv;
 *startangle = 0;
 *arcangle = 90;
 }
 else
 if (irt->top < anchor.v)
 {
 ort->top -= dv;
 ort->right += dh;
 *startangle = 180;
 *arcangle = 90;
 }
 else
 {
 ort->right += dh;
 ort->bottom += dv;
 *startangle = 0;
 *arcangle = - 90;
 }
}

 
typedef short  (*drfunc)();

drfunc  a[][7] = 
  {fr_line,fr_rect,fr_oval,fr_rort,fr_arc, fr_poly,fr_regn,
pt_line,pt_rect,pt_oval,pt_rort,pt_arc, pt_poly,pt_regn,
er_line,er_rect,er_oval,er_rort,er_arc, er_poly,er_regn,
in_line,in_rect,in_oval,in_rort,in_arc, in_poly,in_regn};

/* INITIALIZE DRAWING
 * Init all kinds in shape array (not used
 * yet and make polygons
 */
 
drinit()
{
 short  i;
 
 for (i = 0; i < 20; shapa[i++].kind = 0);
 
 shapdx = 0;
 maketriangle();
 makepentagon();
 makehexagon();
 makepentagram();
 makeregion();
}

/* SET SHAPE
 * This sets the shape code to use
 *  and sets it in the current shape
 *  entry (only one is used so far).
 * In the case of polygons, it translates
 *  the shape code to the polygon code and
 *  sets the polygon to use in the
 *  global, polycurrent.
 */
drshape(code)
 short  code;
{
 switch (code)
 {
 case 6: 
 polycurrent = triangle;
 break;
 case 7:
 polycurrent = pentagon;
 code = 6;
 break;
 case 8:
 polycurrent = hexagon;
 code = 6;
 break;
 case 9:
 polycurrent = pentagram;
 code = 6;
 break;
 case 10:
 code = 7;
 break;
 }
 shapa[shapdx].kind = code;
}

/* SET OPERATION
 * Sets operation in shape array
 *  (only one used).  Also sets
 *  cursor to use.
 */
droper(code)
 short  code;
{
 shapa[shapdx].oper = code;
 CursorToUse(2);
}

drdraw(w)
 WindowRecord  *w;
{
 Point  startpt;
 Point  thispt;
 Point  endpt;
 Point  lastpt;
 Rect   thisrt;
 Rect   lastrt;
 GrafPtrport;
 drfunc frame;
 drfunc draw;
 short  angle;
 short  dv,dh;
 Point  sp;
 Point  tp;
 Point  lp;
 short  shapx;
 short  operx;
 short  x;
 short  y;
 
 SetPort((GrafPtr)w);
 PenMode(patXor);
 PenPat(gray);
 shapx = shapa[shapdx].kind - 1;
 operx = shapa[shapdx].oper - 1;
 if ((shapx < 0) or (operx < 0)) 
 return;
 frame = a[0][shapx];/* get address of frame func */
 draw  = a[operx][shapx]; /* get addr shape/oper func */
 
 GetMouse(&startpt);
 x=startpt.h;
 y=startpt.v;
 if (x%2 notequal 0)
 x=x+1;
 if (y%2 notequal 0)
 y=y+1;
 startpt.h=x;
 startpt.v=y;
 lastpt=startpt;
 
 do{
 GetMouse(&endpt);
 
 x=endpt.h;
 y=endpt.v;
 if (x%2 notequal 0)
 x=x+1;
 if (y%2 notequal 0)
 y=y+1;
 endpt.h=x;
 endpt.v=y;
 
 thispt = endpt;
 LocalToGlobal(&endpt);
 if (PtInRgn(endpt,w->contRgn) and 
 not EqualPt(thispt,lastpt))
 {
 if (not EqualPt(startpt,lastpt))
 (*frame)(startpt,lastpt);
 (*frame)(startpt,thispt);
 lastpt = thispt;
 }
 }
 while (StillDown());
 
 (*frame)(startpt,thispt);
 PenMode(patCopy);
 PenPat(black);
 (*draw)(startpt,thispt); 
}

/*
 * Make New Shapes 
 *  These routines define polygons that
 *  are available from the menu.  Each 
 *  simply defines a polygon (assigning
 *  it to the global variable of the
 *  appropriate name).
 * NO ERROR CHECKING IS DONE ON THE
 * MEMORY OPERATIONS.
 */

maketriangle()
{
 short  err;
 
 triangle = OpenPoly();
 MoveTo(20,20);
 Line(20,0);
 Line(-10,-20);
 Line(-10,20);
 ClosePoly();
 setpolytemp((*triangle)->polySize);
}

makepentagon()
{
 pentagon = OpenPoly();
 MoveTo(50,0);
 Line(48,35);
 Line(-19,65);
 Line(-58,0);
 Line(-19,-65);
 Line(48,-35);
 ClosePoly();
 setpolytemp((*pentagon)->polySize);
}

makehexagon()
{
 hexagon = OpenPoly();
 MoveTo (21,0);
 Line(58,0);
 Line(28,50);
 Line(-28,50);
 Line(-58,0);
 Line(-28,-50);
 Line(28,-50);
 ClosePoly();
 setpolytemp((*hexagon)->polySize);
}

makepentagram()
{
 pentagram = OpenPoly();
 MoveTo(50,0);
 Line(30,90);
 Line(-78,-55);
 Line(96,0);
 Line(-78,55);
 Line(30,-90);
 ClosePoly();
 setpolytemp((*pentagram)->polySize);
}

/* The original of the polygon is not 
 *  changed when it is scaled and 
 *  displayed.  Instead a copy is used.
 *  Since the program has no idea how
 *  big a space to reserve for the copy, 
 *  setpolytemp() adjusts the size 
 *  reserved for the global handle
 *  polytemp.
 * NO ERROR CHECKING IS DONE ON THE 
 * MEMORY OPERATIONS.
 */
setpolytemp(size)
 short  size;
{
 if (polytemp equals 0) 
 polytemp = (PolyHandle)NewHandle(size);
 else if (size > GetHandleSize(polytemp))
 SetHandleSize(polytemp,size);
} 
 
makeregion()
{
 Point  sp,ep;
 Rect   r;
 
 sp.h = 10;
 sp.v = 10;
 ep.h = 60;
 ep.v = 60;
 theregion = NewRgn();
 OpenRgn();
 SetRect(&r,0,0,10,60);
 FrameRect(&r);
 SetRect(&r,40,0,50,60);
 FrameRect(&r);
 SetRect(&r,10,25,40,35);
 FrameRect(&r);
 CloseRgn(theregion);
 tempregion = NewRgn();
}


#include"abc.h"
#include"Quickdraw.h"
#include"windowMgr.h"

short   currentcursor;

CursorAdjust(w)
 WindowRecord  *w;
{
 Point  pt;
 CursHandle curs;
 
GetMouse(&pt);
LocalToGlobal(&pt);
if ((PtInRgn(pt,w->contRgn)) 
    and (currentcursor
            notequal 0))
   {

  curs = (Cursor **)GetCursor
          (currentcursor);
  SetCursor(*curs); 
 }
else
 {
 SetCursor(&arrow);
 }
}

CursorInUse()
{
 return(currentcursor);
}

CursorToUse(c)
 short  c;
{
 currentcursor = c;
}


/* abc.h 
 *
 * Local definitions to 
 *
 */
 
#define True1
#define False    0
#define Nil 0
#define and &&
#define or||
#define not !
#define equals   ==
#define notequal !=

/* unsigned char,longs, shorts
 * (unsigned longs may not be 
 *  available with all compilers
 */
#define uchar    unsigned char
#define ushort   unsigned short
#define ulong    unsigned long

/* General purpose routines */

extern  char*CtoPstr(); 
extern  char*PtoCstr(); 
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

TextSoap 8.4.1 - Automate tedious text d...
TextSoap can automatically remove unwanted characters, fix up messed up carriage returns, and do pretty much anything else that we can think of to text. Save time and effort. Be more productive. Stop... Read more
TextSoap 8.4.1 - Automate tedious text d...
TextSoap can automatically remove unwanted characters, fix up messed up carriage returns, and do pretty much anything else that we can think of to text. Save time and effort. Be more productive. Stop... Read more
Backblaze 4.3.0.44 - Online backup servi...
Backblaze is an online backup service designed from the ground-up for the Mac. With unlimited storage available for $5 per month, as well as a free 15-day trial, peace of mind is within reach with... Read more
Numi 3.15 - Menu-bar calculator supports...
Numi is a calculator that magically combines calculations with text, and allows you to freely share your computations. Numi combines text editor and calculator Support plain English. For example, '5... Read more
EtreCheck 3.3.3 - For troubleshooting yo...
EtreCheck is an app that displays the important details of your system configuration and allow you to copy that information to the Clipboard. It is meant to be used with Apple Support Communities to... Read more
BusyContacts 1.1.8 - Fast, efficient con...
BusyContacts is a contact manager for OS X that makes creating, finding, and managing contacts faster and more efficient. It brings to contact management the same power, flexibility, and sharing... Read more
TunnelBear 3.0.14 - Subscription-based p...
TunnelBear is a subscription-based virtual private network (VPN) service and companion app, enabling you to browse the internet privately and securely. Features Browse privately - Secure your data... Read more
Apple Final Cut Pro X 10.3.4 - Professio...
Apple Final Cut Pro X is a professional video editing solution.Completely redesigned from the ground up, Final Cut Pro adds extraordinary speed, quality, and flexibility to every part of the post-... Read more
Hopper Disassembler 4.2.1- - Binary disa...
Hopper Disassembler is a binary disassembler, decompiler, and debugger for 32-bit and 64-bit executables. It will let you disassemble any binary you want, and provide you all the information about... Read more
Slack 2.6.2 - Collaborative communicatio...
Slack is a collaborative communication app that simplifies real-time messaging, archiving, and search for modern working teams. Version 2.6.2: Fixed Inexplicably, context menus and spell-check... Read more

Latest Forum Discussions

See All

The best new games we played this week
We were quite busy this week. A bunch of big mobile games launched over the past few days, alongside a few teeny surprises. There're lots of quality games to load your phone with. We've gone and picked out five of our favorites for the week. [... | Read more »
Magikarp Jump beginner's guide
Magikarp Jump is a mystifying little game. Part Tamagotchi, part idle clicker, there's not a whole lot of video game there, per se, but for some reason we can't help coming back to it again and again. Your goal is to train up a little Magikarp to... | Read more »
Goat Simulator PAYDAY (Games)
Goat Simulator PAYDAY 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: ** IMPORTANT - SUPPORTED DEVICES **iPhone 4S, iPad 2, iPod Touch 5 or better Goat Simulator: Payday is the most... | Read more »
GRID Autosport delayed until autumn
Sorry mobile racing fans -- GRID Autosport has been delayed a few months. The game is now expected to launch this fall on iOS. Feral Interactive announced that they wanted more time to work on the game's UI and overall performance before launching... | Read more »
Zombie Gunship Survival Beginner's...
The much anticipated Zombie Gunship Survival is here. In this latest entry in the Zombie Gunship franchise, you're tasked with supporting ground troops and protecting your base from the zombie horde. There's a lot of rich base building fun, and... | Read more »
Mordheim: Warband Skirmish (Games)
Mordheim: Warband Skirmish 1.2.2 Device: iOS Universal Category: Games Price: $3.99, Version: 1.2.2 (iTunes) Description: Explore the ruins of the City of Mordheim, clash with other scavenging warbands and collect Wyrdstone -... | Read more »
Mordheim: Warband Skirmish brings tablet...
Legendary Games has just launched Mordheim: Warband Skirmish, a new turn-based action game for iOS and Android. | Read more »
Magikarp Jump splashes onto Android worl...
If you're tired ofPokémon GObut still want something to satisfy your mobilePokémon fix,Magikarp Jumpmay just do the trick. It's out now on Android devices the world over. While it looks like a simple arcade jumper, there's quite a bit more to it... | Read more »
Purrfectly charming open-world RPG Cat Q...
Cat Quest, an expansive open-world RPG from former Koei-Tecmo developers, got a new gameplay trailer today. The video showcases the combat and exploration features of this feline-themed RPG. Cat puns abound as you travel across a large map in a... | Read more »
Jaipur: A Card Game of Duels (Games)
Jaipur: A Card Game of Duels 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: ** WARNING: iPad 2, iPad Mini 1 & iPhone 4S are NOT compatible. ** *** Special Launch Price for a limited... | Read more »

Price Scanner via MacPrices.net

Memorial Day savings: 13-inch Touch Bar MacBo...
B&H Photo has the 2016 Apple 13″ Touch Bar MacBook Pros in stock today and on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: - 13″ 2.9GHz/512GB... Read more
Apple refurbished 13-inch MacBook Airs availa...
Apple has Certified Refurbished 2016 13″ MacBook Airs available starting at $849. An Apple one-year warranty is included with each MacBook, and shipping is free: - 13″ 1.6GHz/8GB/128GB MacBook Air: $... Read more
Apple restocks refurbished 11-inch MacBook Ai...
Apple has Certified Refurbished 11″ MacBook Airs (the latest models recently discontinued by Apple), available for up to $170 off original MSRP. An Apple one-year warranty is included with each... Read more
12-inch 1.2GHz Retina MacBooks on sale for up...
B&H has 12″ 1.2GHz Retina MacBooks on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY & NJ sales tax only: - 12″ 1.2GHz Space Gray Retina MacBook: $1449.99 $150 off... Read more
15-inch 2.7GHz Silver Touch Bar MacBook Pro o...
MacMall has the 15-inch 2.7GHz Silver Touch Bar MacBook Pro (MLW82LL/A) on sale for $2569 as part of their Memorial Day sale. Shipping is free. Their price is $230 off MSRP. Read more
Free Tread Wisely Mobile App Endorsed By Fath...
Just in time for the summer driving season, Cooper Tire & Rubber Company has announced the launch of a new Tread Wisely mobile app. Designed to promote tire and vehicle safety among teens and... Read more
Commercial Notebooks And Detachable Tablets W...
Worldwide shipments of personal computing devices (PCDs), comprised of traditional PCs (a combination of desktop, notebook, and workstations) and tablets (slates and detachables), are forecast to... Read more
Best value this Memorial Day weekend: Touch B...
Apple has Certified Refurbished 2016 15″ and 13″ MacBook Pros available for $230 to $420 off original MSRP. An Apple one-year warranty is included with each model, and shipping is free: - 15″ 2.6GHz... Read more
13-inch MacBook Airs on sale for up to $130 o...
Overstock.com has 13″ MacBook Airs on sale for up to $130 off MSRP including free shipping: - 13″ 1.6GHz/128GB MacBook Air (sku MMGF2LL/A): $869.99 $130 off MSRP - 13″ 1.6GHz/256GB MacBook Air (sku... Read more
2.8GHz Mac mini available for $973 with free...
Adorama has the 2.8GHz Mac mini available for $973, $16 off MSRP, including a free copy of Apple’s 3-Year AppleCare Protection Plan. Shipping is free, and Adorama charges sales tax in NY & NJ... Read more

Jobs Board

*Apple* Media Products - Commerce Engineerin...
Apple Media Products - Commerce Engineering Manager Job Number: 57037480 Santa Clara Valley, California, United States Posted: Apr. 18, 2017 Weekly Hours: 40.00 Job Read more
Best Buy *Apple* Computing Master - Best Bu...
**509643BR** **Job Title:** Best Buy Apple Computing Master **Location Number:** 001482- Apple Valley-Store **Job Description:** **What does a Best Buy Apple Read more
*Apple* Media Products - Commerce Engineerin...
Apple Media Products - Commerce Engineering Manager Job Number: 57037480 Santa Clara Valley, California, United States Posted: Apr. 18, 2017 Weekly Hours: 40.00 Job Read more
*Apple* Mac and Mobility Engineer - Infogrou...
Title: Apple Mac and Mobility Engineer Location: Portland, OR Area Type: 12 month contract Job: 17412 Here's a chance to take your skills to the limit, learn new Read more
*Apple* Retail - Multiple Positions, White P...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.