TweetFollow Us on Twitter

Understanding Graf3D
Volume Number:3
Issue Number:3
Column Tag:Pascal Procedures

Understanding Graf3D

By Scott Berfield, Mindscape, Inc.

Almost everybody has heard of GRAF3D for the Mac, but aside from Boxes, Sinegrid, and BoxSphere, there is little evidence of its use. This is probably because the only documentation in general distribution is in the form of the source code for the above programs, and in the interface files for the various compilers. As it turns out, there is a pre-release tech note from Apple which does a good job of explaining a lot of how GRAF3D works, if you're a registered developer.

In this article, I will present a brief explanation of some basic concepts of 3D math, an overview of how the Mac's Graf3D routines deal with those concepts, the data types and routines that make up Graf3d, and finally, a sample program that tries to clarify the difference between two of what I consider Graf3D's more confusing concepts.

The program included with this article was developed in LightSpeed Pascal and then converted to Borland Turbo Pascal, so the article also presents a small comparison between the two language implementations.

3D Concepts

There are several basic concepts of 3D graphics with which you will need to be familiar if you are going to be able to use Graf3D to its fullest extent. Among these are the coordinate system conventions and the various transformations and their meaning.

The Coordinate System

Three dimensional graphics are generally dealt with using a right-handed cartesian coordinate system (see fig. 1)

The three axes are labeled X, Y, and Z. Thus, each point in three dimensional space can be represented by three values. When displaying such a three-dimensional space on a two-dimensional surface (a Mac's screen, for instance) some basic trigonometric calculations are used to map the points into their proper positions. The basics of this were discovered by artists during the renaissance.

Fig. 1 3-D Coordinate System


There are three transformations we will want to use to manipulate three-dimensional images. These are rotation, scaling, and transformation.

Rotation can be about any of the three axes. Rotation about the X axis is called Pitch. Rotation about the Y axis is called Yaw, and rotation about the Z axis is called Roll. (These terms come primarily from the aviation world.) Rotations are performed relative to the coordinate system's origin. Thus, if you wish to rotate an object around its own center, you need to move the object's center to the origin (mathematically, at least), rotate it, and then return to the prior coordinates.

Scaling is a very useful transformation. It serves to move a point toward or away from the origin. This can serve to change the apparent size of the object on screen.

Translation moves a three-dimensional point some distance in any direction.

Graf3D Concepts

The coordinate space of Graf3D is a natural extension of the Quickdraw system into a third dimension. Just as Quickdraw can address a plane ranging from -32767 to +32767 in both dimensions, Graf3D addresses a cube ranging from -32767 to +32767 along all three (X,Y, and Z) axes. (See fig. 2)

Note that the Y axis increases downward as opposed to the normal Mac coordinate system.

This leads to the basic data structure of Graf3D, the Point3D. The definition of a Point3D is:

 Type Point3D  = Record
 X :  Fixed;
 Y :  Fixed;
 Z :  Fixed;

The use of fixed-point numbers may be unfamiliar to many. A fixed-point number is a special way of handling numbers from -32767 to +32767 with up to five decimals of precision. The numbers are represented using longints. Thus the massive numbers of floating point calculations needed for 3D math can be sped up tremendously by using only integers.

If you need to translate from floating point to fixed numbers, you can either multiply the value by 65536, or you can use the routine FixRatio from the fixed-point math package to dived your value by one:


Fig. 2 GrafPort Orientation

The Transformation Matrix

In 3D graphics, it is common to combine all the math involved in rotating, scaling, and translating a point into one 4x4 matrix. The mathematical reasons behind this are beyond the scope of this article, but they are well documented in the books listed at the end of the article.

Graf3D defines a data type XfMatrix to handle these manipulations. This matrix can be post-multiplied by a Point3D to yield a new point which is the product of the three transformations. The XfMatrix is defined as:

Type XfMatrix = Array[0..3,0..3] of Fixed;

The array holds the results of all operations performed with a specific Graf3D coordinate system and can be applied to any and all points in the system.

The Port3D

Just as Quickdraw defines a grafport, Graf3D defines the Port3D. A Port3D is a complete graphics environment. You can have many separate Port3D's open at one time, each with its own coordinate system, pen location, transformation matrix, and screen mapping. (See fig. 3 on the next page.)

A Port3D is defined as a dynamic data structure as follows:

 Type Port3DPtr = ^Port3D
 Port3D = Record
 xLeft, xRight:  Fixed;
 yTop, yBottom:  Fixed;
 pen, penPrime:  Point3D;
 eye:   Point3D;
 hSize, vSize:   Fixed;
 hCenter, vCenter: Fixed;
 xCotan, yCotan: Fixed;
 ident: Boolean;
 xForm: XfMatrix;

All operations on Port3D's refer to the port through Port3DPtr's.

According to Apple, although all the fields of a Port3D can be accessed normally, you shouldn't store any new values into them directly. Graf3D has routines for altering all the fields which will produce no harmful side effects.

The fields of the Port3D are as follows:


This is the corresponding grafport which is used for drawing when using the Port3D. The default is the current port.


The viewrect field defines a subset of the grafport's portRect for use by the Port3D. All drawing will happen in this rectangle. The bounds of this rectangle are initially set to GrPort^.portBits.bounds.

XLeft, XRight, YTop, YBottom

These fields define the coordinate system, in fixed-point numbers, of the current Port3D. I call the volume of space defined by these numbers (using the LookAt procedure) the “Image Space.” These numbers do not have to match the the viewport values, and in fact will be scaled to fit the viewrect.


The pen location in 3D space.


PenPrime is the location of the pen in 3D space after multiplying by the transformation matrix.


This is the location of the viewer's eye in threespace. It is where you would be standing if you were a part of the coordinate system.

HSize, VSize

HSize is 1/2 the width of the viewrect. VSize is -1/2 the height of the viewrect. Both values are stored as fixed-point numbers.

HCenter, VCenter

The centers, in fixed-point, of the X and Y axes of the viewrect.

XCotan, YCotan

Viewing cotangents used to transform 3D coordinates into 2D screen coordinates.


A flag which indicates whether the matrix is currently at identity (its original state).


The transformation matrix from the current Port3D.

The Pen

The pen and penPrime fields of a Port3D deal with the 3D graphics pen. Each port has only one graphics pen, which is used for calculating screen coordinates. The 3D pen has only one characteristic: location. The Port3D pen and the grafPort pen are two different items, one with a 3D location, and one with a screen location. The grafPort pen does all the drawing for the 3D pen. The grafPort pen will not be changed by any Port3D operations.

Graf3D Routines

Initialization and Control

Procedure InitGraf3D(globalPtr : Ptr);

This is Graf3D's functional equivalent to quickdraw's InitGraf. It initializes the current Port3Dptr to globalptr. In Pascal, you should always pass @thePort3D. You will normally want to call this procedure immediately upon initializing quickdraw.



Procedure OpenPort3D(port:Port3DPtr);

Initializes all fields of a port3D to the defaults and sets that port as the current one.

Procedure SetPort3D(Port: Port3DPtr);

Makes port the current Port3D and calls SetPort for that Port3D's associated grafPort.

Procedure GetPort3D(Port: Port3DPtr);

Returns a pointer to the current Port3D. GetPort3D and SetPort3D can be used to change between multiple Port3D's.

Controlling the Pen

Procedure MoveTo2D(x,y:fixed);

Moves the pen to the coordinates x,y while remaining in the same z plane.

Procedure MoveTo3D(x,y,z:fixed);

Moves the pen to the coordinates x,y,z.

Procedure Move2D(dx,dy:fixed);

Moves the pen to x+dx, y+dy while remaining in the same z plane.

Procedure Move3D(dx,dy,dz:fixed);

Moves the pen to x+dx, y+dy, z+dz.

Procedure LineTo2D(x,y:fixed);

Draws a line to the coordinates x,y while remaining in the same z plane.

Procedure LineTo3D(x,y,z:fixed);

Draws a line to the coordinates x,y,z.

Procedure Line2D((dx,dy:fixed);

Draws a line to x+dx, y+dy while remaining in the same z plane.

Procedure Line3D(dx,dy,dz:fixed);

Draws a line to x+dx, y+dy, z+dz.


Function Clip3D(src1,src2:Point3D; VAR dst1,dst2:Point):boolean;

Determines if a line segment is within the viewing pyramid. If no part of the line from src1 to src2 falls within the viewing pyramid, then Clip3D returns false. Upon return, dst1 and dst2 will contain src1 and src2 as screen coordinates. Note that the transformation matrix has no effect on points passed to this function. If you want to use Clip3D on transformed points, transform them prior to calling Clip3D.

Procedure SetPt2D(VAR pt2D:Point2D; x,y:Fixed);

Assigns two fixed-point numbers to a Point2D.

Procedure SetPt3D(VAR pt3D:Point3D;x,y,z:Fixed);

Assigns three fixed-point numbers to a Point3D.

Controlling the “Camera”

Procedure ViewPort(r:rect);

This routine specifies where to put the image in the grafPort. Viewport takes a quickdraw rectangle as its argument.

Procedure LookAt(left,top,right,bottom:fixed);

This routine defines the portion of Graf3D space to map into the rectangle set with ViewPort. You can call LookAt at any time, but it must always be followed by a call to ViewAngle. LookAt sets the xLeft, yTop, xRight, and Ybottom fields of the Port3D. It also sets the eye position and the hSize and vSize fields as well as hCenter and vCenter.

Procedure ViewAngle(angle:fixed);

This routine controls the amount of perspective by setting the horizontal angle subtended by the viewing pyramid. It is the same function provided by changing to a wide-angle lens on a camera. Some common settings are 0° (no perspective at all), 10° (a telephoto lens), 25° (human eye), and 80° (a wide-angle lens). This routine sets the xCotan and yCotan fields.

Fig 3.


Procedure Identity;

Resets the transformation matrix to an identity matrix. The ident field of the Port3D is set to true.

Procedure Scale(xFactor,yFactor,zFactor:fixed);

Scale modifies the matrix to shrink or expand by xFactor, yFactor, and zFactor. For example


will make everything three times as big when you draw.

Procedure Translate(dx,dy,dz:Fixed);

Modifies the matrix to displace all points by dx,dy,dz.

Procedure Pitch(xangle:fixed);

Modifies the matrix to rotate xAngle degrees about the x axis. A positive angle rotates clockwise when looking at the origin from positive x.

Procedure Yaw(yangle:fixed);

Modifies the matrix to rotate yAngle degrees about the y axis. A positive angle rotates clockwise when looking at the origin from positive y.

Procedure Roll(zangle:fixed);

Modifies the matrix to rotate zAngle degrees about the z axis. A positive angle rotates clockwise when looking at the origin from positive z.

Procedure Skew(zangle:fixed);

Skew modifies the matrix to skew zAngle degrees about the z axis. It only changes the x coordinates. This is the same effect used by quickdraw to italicize letters. In fact, you can obtain an approximation of a quickdraw italic with a zAngle of 15°. A positive angle rotates clockwise when looking at the origin from positive z.

Procedure Transform(src:Point3D; VAR dst:Point3D);

Transform applies the transform matrix to src and puts the result into dst. If the matrix is identity then dst will be the same as src. There is a bug in early versions of Graf3D which causes problems if you call transform with the same Point3D as src and dst. If you run into trouble, simply use a second Point3D as the destination and it should work fine.

Fig 4.

The Program

The example program is intended to show the basics of working with Graf3D (see fig. 4). It sets up two windows, one of which contains a Port3D. A grid and a tetrahedron are drawn in the window. By manipulating the three scroll bars, you can rotate the images about any of the three axes. The Rotate What? menu allows you to change between rotating the tetrahedron or rotating all of the three dimensional space. When you are rotating the object, the transformation matrix is applied to each point making up the tetrahedron. The matrix is then reset to identity and the screen is redrawn. When you are rotating space, the matrix is changed (using pitch, yaw, and roll) and the screen is redrawn without resetting the matrix. In the first instance, the points making up the tetrahedron are actually changed. In the second case, no coordinates are changed. This is a subtle distinction that eludes many people at first.


Graf3D Demo was originally written in Lightspeed Pascal, which is the version printed here. Since then, I have received a copy of Borland's Turbo Pascal and I decided to translate the prograam into it as a way of comparing the two language implementations; both are provided on the source code disk for this issue. The translation process required about ten minutes, and the level of compatibility between the two is quite good.

Turbo Pascal

To enter and compile the program under Turbo Pascal, you simply need to enter the program as listed, enter and compile the resource file (using RMaker), and compile to disk. Turbo makes it very easy to prodce an application and allows you to link the resource file, set the bundle bit, and set the type and creator of your program with compiler directives. The compilation process is amazingly fast. Running on a Mac+ with a 20 megabyte DataFrame SCSI hard disk, it takes approximately six seconds to compile and link. It takes about two seconds less to compile to memory, whihc allows you to run the program from the Turbo environment. The application size ends up at a little over 18K.

Lightspeed Pascal

To enter and run the program, you will need to use a text editor to enter the resource text, and then run it through RMaker. Enter the program in the Lightspeed editor. Only fixmath and Graf3d need be declared as all the other standard include files are provided by default. Setup the project as shown in fig. 5.

Be sure to set ThreeD.Rsrc as the resource file under the Run Options. Build and save the project as an application. One missing piece in Lightspeed is that the creator of a new application is not set correctly for you. In this case you will need to use Fedit or SetFile or some other utility to set the creator to SB3D. The compile time for Lightspeed is also quit fast. The first compile, from a compressed project (admittedly, not a standard way to work, other than the very first time you compile something), took approximately 55 seconds. The speed of Lightspeed shows up when a minor change is made. Changing one line and recompiling took only 14 seconds. The final application size was 11.5K.

Fig. 5 LSP Link List

TML Pascal

I don't have TML Pascal, so I did no comparison, but since 3DDemo does little that is non-standard, it should run as is under TML. You should place the following at the beginning of the program:

{$T APPL !@#$  } 
{$B+    }
{$L ThreeD.Rsrc  }

Uses MacIntf, FixMath, Graf3D;


Both Turbo Pascal and Lightspeed Pascal offer powerful integrated programming environments for Macintosh development. Both offer fast compilation (although Turbo is faster), separate compilation of units, excellent documentation and low price. I would be hard pressed to recommend one over the other. I suspect that more experienced users will be more comfortable with Turbo with its speedy editor and direct .REL file compatibility, but the interactive debugging and syntax-checking editor with automatic formatting will appeal to beginners and dabblers (like me). You would not go wrong to purchase either of these products, and at the price, it would almost be worth buying Turbo just for the manual.

{Graf3D Demo}
{by Scott Berfield }
{for MacTutor magazine  }



 Graf3D, FixMath;
{MemTypes, QuickDraw, OSIntf, ToolIntf, PackIntf, fixmath, graf3d}

 object = 1;{flag indicating which we are rotating}
 world = 2;
 hellfreezesover = false;{A boolean for eventloop}
 VIEWwindowID = 32000;  {ID of our drawing window}
 INPUTWINDOWID = 32001; {ID of our control window}
 APPLEM = 0;{Menu indices}
 FILEM = 1;
 EDITM = 2;
 appleID = 128;  {Menu resource IDs}
 fileID = 129;
 editID = 130;
 SWITCHID = 131;
 lastmenu = 3;   {How many menus}
 aboutID = 128;  {About alert resource ID}
 UndoItem = 1;   {Menu item codes}
 cutitem = 3;
 copyitem = 4;
 pasteitem = 5;
 clearitem = 6;
 XScrollID = 128;{Scroll bar resource IDs}
 YScrollID = 129;
 ZScrollID = 130;
 XMIN = -200; {Limits object space (set with LOOKAT)}
 YMIN = -200;
 ZMIN = -200;
 XMAX = 200;
 YMAX = 200;
 ZMAX = 200;

 fromupdate :  boolean;
 whichcontrol : controlhandle;
 xscroll, yscroll, zscroll : controlhandle;
 myMenus : ARRAY[0..lastmenu] OF menuhandle;
 INPUTWINDOW :   windowptr;{pointers to our windows}
 VIEWWindow :  windowPtr;
 Wrecord :  windowrecord;{Storage for our windows}
 Wrecord2 : windowrecord;
 gport3d :  port3d;{Our 3D grafport}
 XROT, YROT, ZROT : integer; {current scrollbar settings}
 OXROT, OYROT, OZROT : integer; {old scroll bar settings}
 which :  integer; {Object or world rotation?}
 XSpacerot, YSpaceRot, ZSpaceRot : integer; 
 XObjRot, YObjRot, ZObjRot : integer; 
 Dtetra, tetra : ARRAY[1..4] OF point3d; 
 delta :  integer; {inc or dec the scroll bars}

{------ crash --------}

{ --------- init ---------}
PROCEDURE init;  {set everything up}
 initgrf3d(@theport3d);{required graf3D equivalent}
 FlushEvents(everyEvent, 0);

 XROT := 0; {Set initial values}
 YROT := 0;
 ZROT := 0;
 OXROT := 1;
 OYROT := 1;
 OZROT := 1;
 XSpaceRot := 0;
 YSpaceRot := 0;
 ZSpaceRot := 0;
 XObjRot := 0;
 YObjRot := 0;
 ZObjRot := 0;
 which := object;{ default is to rotate the object}
 setpt3d(tetra[1], 0, -6553600, 0); {tetra vertices}
 setpt3d(tetra[2], -1638400, -3276800, 0);
 setpt3d(tetra[3], 1638400, -3276800, 0);
 setpt3d(tetra[4], 0, -4915200, 1638400);
 DTetra := tetra;
END;    {init}

{----------- drawvalues ----------}
PROCEDURE drawvalues;{Draw scroll bar settings as text}
 text1, text2, text3 : str255;
 trect : rect;
 IF (OXROT <> XROT) OR (OYROT <> YROT) OR (OZROT <> ZROT) OR (fromupdate) 
 BEGIN  {we only draw them if only if something has changed}
 setrect(trect, 0, 45, 512, 65);
 numtostring(xrot, text1);
 numtostring(yrot, text2);
 numtostring(zrot, text3);
 moveto(10, 55);
 moveto(175, 55);
 moveto(340, 55);
END;    {drawvalues}

{---------- drawlabels -------------}
PROCEDURE drawlabels; {label the scroll bars}
 labelrect : rect;
 setrect(labelrect, 0, 0, 512, 24);
 textfont(0);    {Chicago font}
 textsize(12);   {12 point}
 penpat(black);  {make sure we can see it}
 CASE which OF {which labels do we draw?}
 object : 
 moveto(10, 19);
 drawstring('X Rotation');
 moveto(175, 19);
 drawstring('Y Rotation');
 moveto(340, 19);
 drawstring('Z Rotation');
 world : 
 moveto(10, 19);
 moveto(175, 19);
 moveto(340, 19);
END;    {drawlabels}

{----------- drawgrid -----------}
PROCEDURE drawgrid;{Draw the “space grid”}
 i : integer;
BEGIN   {all coord in fixed point -- X by 65536}
 pitch(XSPACEROT * 65536);{rotate space by x value...}
 YAW(YSPACEROT * 65536);{rotate space by y value...}
 ROLL(ZSPACEROT * 65536);{rotate space by z value...}
 {now draw the grid in the newly rotated space}
 moveto3d(-6553600, 0, -6553600); {-100,0,-100}
 lineto3d(-6553600, 0, 6553600);{etc...}
 lineto3d(6553600, 0, 6553600);
 lineto3d(6553600, 0, -6553600);
 lineto3d(-6553600, 0, -6553600);
 moveto3d(0, 0, -6553600);
 lineto3d(0, 0, 6553600);
 moveto3d(-6553600, 0, 0);
 lineto3d(6553600, 0, 0);
END;    {drawgrid}

{-------- drawtetra ---------}
PROCEDURE drawtetra; {draw our object}
 {draw using DTetra which}
 {holds transformed coordinates}
 {Note that point3D's are already in}
 {fixed - point }
 moveto3d(Dtetra[1].x, Dtetra[1].y, Dtetra[1].z);
 lineto3d(Dtetra[2].x, Dtetra[2].y, Dtetra[2].z);
 lineto3d(Dtetra[3].x, Dtetra[3].y, Dtetra[3].z);
 lineto3d(Dtetra[1].x, Dtetra[1].y, Dtetra[1].z);
 lineto3d(Dtetra[4].x, Dtetra[4].y, Dtetra[4].z);
 moveto3d(Dtetra[2].x, Dtetra[2].y, Dtetra[2].z);
 lineto3d(Dtetra[4].x, Dtetra[4].y, Dtetra[4].z);
 lineto3d(Dtetra[3].x, Dtetra[3].y, Dtetra[3].z);
END;    {drawtetra}

{----------- drawview -----------}
PROCEDURE drawview;
{draw the contents of the view window using }
{current transform matrix}
 setport(viewwindow);{where we need to be to draw}
 penpat(black);  {eraser color}
 paintrect(theport^.portrect); {erase the screen}
 penpat(white);  {line color}
 drawgrid;{draw the plane -- space rotated on return}
 drawtetra; {draw the object}
 identity;{reset the transform matrix }
 setport(inputwindow);  {Back to the control window!}
END;    {Drawview}

{----------- drawinput ---------}
PROCEDURE drawinput;  {Draw the control window}
END;    {drawinput}

{----------- TRANS -----------}
PROCEDURE TRANS; {transform on current scroll bar settings}
 i : integer;
 PITCH(XROT * 65536);{x rotation}
 YAW(YROT * 65536);{y rotation}
 ROLL(ZROT * 65536); {z rotation}
 IF which = object THEN {if rotating the object...}
 FOR i := 1 TO 4 DO
 transform(tetra[i], Dtetra[i]); 
 {apply matrix to each point in virgin tetra and}
 END; {store it in the drawing tetra}
 identity;{reset the matrix then draw window}
 drawview;{so drawview proc controls global viewpoint}

{------------- updateRots ------------}
PROCEDURE updateRots;{update values from scroll bars}
 XROT := GETCTLVALUE(XSCROLL); {get the current values}
 DrawValues;{draw them}
 CASE which OF
 object : {which values need updating?}
 XObjRot := XROT;
 world : 
 XspaceRot := XROT;
 YspaceROT := YROT;
 ZspaceROT := ZROT;
END;    {updaterots}

{--------- dowindows ------------}
PROCEDURE dowindows;  {set up windows and 3D stuff}
 Vrect : rect;
 InputWindow := GetNewWindow(INPUTWINDOWID, @Wrecord2, POINTER(-1));
 xScroll := GetNewControl(XScrollID, InputWindow);
 yScroll := GetNewControl(YScrollID, InputWindow);
 zScroll := GetNewControl(ZScrollID, InputWindow);
 ViewWindow := GetNewWindow(VIEWWINDOWID, @Wrecord, POINTER(-1));
 {set up a 3D grafport (uses reg. grafport for drawing}
 {set the drawing area to the full window}
 lookat(XMIN * 65536, YMIN * 65536, XMAX * 65536, YMAX * 65536); {set 
the image space}
 {set the angle  25° = human field of view. } 
 {0°=no persp.  80°=fish-eye lens}
 viewangle(1638400); {25° * 65536}
END;    {doWindows}

{---------- domenus ----------}
PROCEDURE domenus; {set up menus}
 i : integer;
 myMenus[appleM] := GetMenu(appleID);
 AddResMenu(myMenus[appleM], 'DRVR');
 myMenus[FileM] := GetMenu(fileID);
 myMenus[EditM] := GetMenu(editID);
 mymenus[SwitchM] := GetMenu(switchID);
 FOR i := appleM TO lastmenu DO
 insertMenu(myMenus[i], 0);
 SetItemIcon(myMenus[0], 1, 195);
END;    {doMenus}

{---------- aboutme -----------}
PROCEDURE aboutme; {do about box}
 foo : integer;
 foo := alert(aboutID, NIL);
END;    {aboutme}

{------------ applfile ---------}
PROCEDURE applfile (theItem : integer); {handle file menu}
 exittoshell;  {they chose Quit}
END;    {applfile}

{---------- DoCommand -----------}
PROCEDURE DoCommand (theCommand : LongInt); {menu choices}
 theMenu, theItem : integer;
 name : str255;
 RefNum : integer;
 dum :  integer;
 blah : boolean;
 theMenu := hiWord(theCommand);
 theItem := loWord(theCommand);
 CASE theMenu OF
 AppleID : 
 IF (theItem = 1) THEN
 AboutMe{about box}
 getItem(myMenus[appleM], theItem, name); 
 dum := OpenDeskAcc(Name)
 END;   {else}
 END;   {appleM}

 FileID : 

 EditID : 
 blah := systemEdit(theItem - 1);

 SwitchID : 
 CASE which OF {adjust menuand controls}
 object : {switch to rotating space}
 which := world;
 setitem(mymenus[switchM], 1, 'Rotate Object');
 setctlvalue(xscroll, xspacerot);
 {pick up settings from space values}
 setctlvalue(yscroll, yspacerot);
 setctlvalue(zscroll, zspacerot);
 xrot := xspacerot; {update our holders}
 yrot := yspacerot;
 zrot := zspacerot;
 drawvalues; {values for scroll bars}
 END;   {object case}
 world : 
 BEGIN  {switch from world to object}
 which := object;
 setitem(mymenus[switchM], 1, 'Rotate Space');
 setctlvalue(xscroll, xobjrot);
 setctlvalue(yscroll, yobjrot);
 setctlvalue(zscroll, zobjrot);
 xrot := xobjrot;
 yrot := yobjrot;
 zrot := zobjrot;
 END;   {world case}
 END;   {case which of}
 END; {switch menu case}
 END;   {case theMenu}
 hiliteMenu(0);  {turn off menu hilight}
END; {doCommand}

{--------- chagearrow ----------}
PROCEDURE changearrow;
 setctlvalue(whichcontrol, getctlvalue(whichcontrol) + delta);

{--------- ApplMouseDown -----------}
PROCEDURE ApplMouseDown (theWindow : windowPtr;
 MousePoint : point); 
 partcode : integer;
 dummy, temp : integer;
 IF theWindow = inputwindow THEN
 partcode := findcontrol(mousepoint, theWindow, whichcontrol);
 CASE partcode OF
 inupbutton : 
 delta := -1;
 dummy := trackcontrol(whichcontrol, mousepoint, @changearrow);
 indownbutton : 
 delta := 1;
 dummy := trackcontrol(whichcontrol, mousepoint, @changearrow);
 inpageup : 
 delta := -10;
 dummy := trackcontrol(whichcontrol, mousepoint, @changearrow);
 inpagedown : 
 delta := 10;
 dummy := trackcontrol(whichcontrol, mousepoint, @changearrow);
 inthumb : 
 temp := getctlvalue(whichcontrol);
 dummy := trackcontrol(whichcontrol, mousepoint, NIL);
 IF getctlvalue(whichcontrol) <> temp THEN
 END; {case partcode of}
 END;   {if}
END;    {applMouseDown}

{---------- DoKeyDown -----------}
PROCEDURE DoKeyDown (Event : EventRecord);   {they pressed a key}
 CharCode : char;
 CharCode := chr(Event.message MOD 256);
 IF BitAnd(Event.modifiers, CmdKey) = CmdKey THEN 
 {must of been a command key, right?}
 DoCommand(MenuKey(CharCode)) {pass it to menu handler}
END;  { DoKeyDown }

{----------- EventLoop ----------}
PROCEDURE EventLoop; {the meat of the Mac application -- process those 
 saveport : GrafPtr;
 GotEvent : boolean;
 NewEvent : EventRecord;
 WhichWindow : WindowPtr;
 Key : char;
 KeyCommand : LongInt;
flushevents(everyevent, 0);
 GotEvent := GetNextEvent(EveryEvent, NewEvent);
 IF GotEvent THEN
 CASE NewEvent.What OF
 mouseDown : 
 CASE FindWindow(NewEvent.where, whichWindow) OF
 inMenuBar : 
 inSysWindow : 
 SystemClick(newEvent, whichWindow);
 inContent : 
 applMouseDown(whichWindow, NewEvent.where); 
 inGoAway : 
 IF TrackGoAway(whichWindow, NewEvent.Where) THEN
 inDrag : 
 IF whichWindow <> FrontWindow THEN
 applMouseDown(whichWindow, NewEvent.where);
 END; {case FWReturnCode}
 END; {case mouseDown}

 KeyDown : 
 END; {Case KeyDown}

 UpdateEvt : 
 getport(saveport); {store current grafport}
 setport(viewwindow); {set it to viewwindow}
 setport(inputwindow); {now do control window}
 fromupdate := true; {draw values if needed}
 fromupdate := false; {reset the toggle}
 setport(saveport); {restore the port}
 END;   {updateEvt}
 END;   {NewEvent.What}
 END;   {if}
 systemTask; {handle periodic stuff}
UNTIL HellFreezesOver;  {let it run for a long time}
END; {EventLoop}

{ ---------- Main Program ----------------}
 init;  {Init toolbox stuff and appl variables}
 dowindows; {draw windows and setup 3D grafport}
 domenus; {do menus}
 identity;{reset transformation matrix }
 drawview;{draw contents of view window}
 drawinput; {draw contents ofcontrol window}
 eventloop; {Handle events}
END.    {That's all for now }

Community Search:
MacTech Search:

Software Updates via MacUpdate

Tunnelblick 3.7.3 - GUI for OpenVPN.
Tunnelblick is a free, open source graphic user interface for OpenVPN on OS X. It provides easy control of OpenVPN client and/or server connections. It comes as a ready-to-use application with all... Read more
Opera 48.0.2685.50 - High-performance We...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
Tor Browser Bundle 7.0.7 - Anonymize Web...
The Tor Browser Bundle is an easy-to-use portable package of Tor, Vidalia, Torbutton, and a Firefox fork preconfigured to work together out of the box. It contains a modified copy of Firefox that... Read more
FotoMagico 5.5 - Powerful slideshow crea...
FotoMagico lets you create professional slideshows from your photos and music with just a few, simple mouse clicks. It sports a very clean and intuitive yet powerful user interface. High image... Read more
Adobe Audition CC 2018 11.0.0 - Professi...
Audition CC 2018 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous Audition customer). Adobe Audition CC 2018 empowers you to create and... Read more
Alfred 3.5.1 - Quick launcher for apps a...
Alfred is an award-winning productivity application for OS X. Alfred saves you time when you search for files online or on your Mac. Be more productive with hotkeys, keywords, and file actions at... Read more
AirRadar 4.0 - $9.95
With AirRadar, scanning for wireless networks is now easier and more personalized! It allows you to scan for open networks and tag them as favourites or filter them out. View detailed network... Read more
DEVONthink Pro 2.9.16 - Knowledge base,...
Save 10% with our exclusive coupon code: MACUPDATE10 DEVONthink Pro is your essential assistant for today's world, where almost everything is digital. From shopping receipts to important research... Read more
ForkLift 3.0.8 Beta - Powerful file mana...
ForkLift is a powerful file manager and ferociously fast FTP client clothed in a clean and versatile UI that offers the combination of absolute simplicity and raw power expected from a well-executed... Read more
Data Rescue 5.0.1 - Powerful hard drive...
Data Rescue’s new and improved features let you scan, search, and recover your files faster than ever before. We have modernized the file-preview capabilities, added new files types to the recovery... Read more

Wheels of Aurelia (Games)
Wheels of Aurelia 1.0.1 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0.1 (iTunes) Description: | Read more »
Halcyon 6: Starbase Commander guide - ti...
Halcyon 6 is a well-loved indie RPG with stellar tactical combat and some pretty good writing, too. It's now landed on the App Store, so mobile fans, if you're itching for a good intergalactic adventure, here's your game. Being a strategy RPG, the... | Read more »
Game of Thrones: Conquest guide - how to...
Fans of base building games might be excited to know that yet another entry in the genre has materialized - Game of Thrones: Conquest. Yes, you can now join the many kingdoms of the famed book series, or create your own, as you try to conquer... | Read more »
Halcyon 6: Starbase Commander (Games)
Halcyon 6: Starbase Commander Device: iOS Universal Category: Games Price: $6.99, Version: (iTunes) Description: An epic space strategy RPG with base building, deep tactical combat, crew management, alien diplomacy,... | Read more »
Legacy of Discord celebrates its 1 year...
It’s been a thrilling first year for fans of Legacy of Discord, the stunning PvP dungeon-crawling ARPG from YOOZOO Games, and now it’s time to celebrate the game’s first anniversary. The developers are amping up the festivities with some exciting... | Read more »
3 reasons to play Thunder Armada - the n...
The bygone days of the Battleship board game might have past, but naval combat simulators still find an audience on mobile. Thunder Armada is Chinese developer Chyogames latest entry into the genre, drawing inspiration from the explosive exchanges... | Read more »
Experience a full 3D fantasy MMORPG, as...
Those hoping to sink their teeth into a meaty hack and slash RPG that encourages you to fight with others might want to check out EZFun’s new Eternity Guardians. Available to download for iOS and Android, Eternity Guardians is an MMORPG that lets... | Read more »
Warhammer Quest 2 (Games)
Warhammer Quest 2 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Dungeon adventures in the Warhammer World are back! | Read more »
4 of the best Halloween updates for mobi...
Halloween is certainly one of our favorite times for mobile game updates. Many popular titles celebrate this spooky season with fun festivities that can stretch from one week to even the whole month. As we draw closer and closer to Halloween, we'... | Read more »
Fire Rides guide - how to swing to succe...
It's another day, which means another Voodoo game has come to glue our hands to our mobile phones. Yes, it's been an especially prolific month for this particular mobile publisher, but we're certainly not complaining. Fire Rides is yet another... | Read more »

Price Scanner via

Apple restocks full line of refurbished 13″ M...
Apple has restocked a full line of Apple Certified Refurbished 2017 13″ MacBook Pros for $200-$300 off MSRP. A standard Apple one-year warranty is included with each MacBook, and shipping is free.... Read more
13″ 3.1GHz/256GB MacBook Pro on sale for $167...
Amazon has the 2017 13″ 3.1GHz/256GB Space Gray MacBook Pro on sale today for $121 off MSRP including free shipping: – 13″ 3.1GHz/256GB Space Gray MacBook Pro (MPXV2LL/A): $1678 $121 off MSRP Keep an... Read more
13″ MacBook Pros on sale for up to $120 off M...
B&H Photo has 2017 13″ MacBook Pros in stock today and on sale for up to $120 off MSRP, each including free shipping plus NY & NJ sales tax only: – 13-inch 2.3GHz/128GB Space Gray MacBook... Read more
15″ MacBook Pros on sale for up to $200 off M...
B&H Photo has 15″ MacBook Pros on sale for up to $200 off MSRP. Shipping is free, and B&H charges sales tax in NY & NJ only: – 15″ 2.8GHz MacBook Pro Space Gray (MPTR2LL/A): $2249, $150... Read more
Roundup of Apple Certified Refurbished iMacs,...
Apple has a full line of Certified Refurbished 2017 21″ and 27″ iMacs available starting at $1019 and ranging up to $350 off original MSRP. Apple’s one-year warranty is standard, and shipping is free... Read more
Sale! 27″ 3.8GHz 5K iMac for $2098, save $201...
Amazon has the 27″ 3.8GHz 5K iMac (MNED2LL/A) on sale today for $2098 including free shipping. Their price is $201 off MSRP, and it’s the lowest price available for this model (Apple’s $1949... Read more
Sale! 10″ Apple WiFi iPad Pros for up to $100...
B&H Photo has 10.5″ WiFi iPad Pros in stock today and on sale for $50-$100 off MSRP. Each iPad includes free shipping, and B&H charges sales tax in NY & NJ only: – 10.5″ 64GB iPad Pro: $... Read more
Apple iMacs on sale for up to $130 off MSRP w...
B&H Photo has 21-inch and 27-inch iMacs in stock and on sale for up to $130 off MSRP including free shipping. B&H charges sales tax in NY & NJ only: – 27″ 3.8GHz iMac (MNED2LL/A): $2179 $... Read more
2017 3.5GHz 6-Core Mac Pro on sale for $2799,...
B&H Photo has the 2017 3.5GHz 6-Core Mac Pro (MD878LL/A) on sale today for $2799 including free shipping plus NY & NJ sales tax only . Their price is $200 off MSRP. Read more
12″ 1.2GHz Space Gray MacBook on sale for $11...
Amazon has the 2017 12″ 1.2GHz Space Gray Retina MacBook on sale for $100 off MSRP. Shipping is free: 12″ 1.2GHz Space Gray MacBook: $1199.99 $100 off MSRP Read more

Jobs Board

*Apple* Retail - Multiple Positions - Farmin...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Frameworks Engineer, *Apple* Watch - Apple...
Job Summary Join the team that is shaping the future of software development for Apple Watch! As a software engineer on the Apple Watch Frameworks team you will Read more
*Apple* News Product Marketing Mgr., Publish...
Job Summary The Apple News Product Marketing Manager will work closely with a cross-functional group to assist in defining and marketing new features and services. Read more
Fraud Analyst, *Apple* Advertising Platform...
Job Summary Apple Ad Platforms has an opportunity to redefine advertising on mobile devices. Apple reaches hundreds of millions of iPhone, iPod touch, and iPad Read more
*Apple* Information Security - Security Data...
Job Summary This role is responsible for helping to strengthen Apple 's information security posture through the identification and curation of security event data. Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.