TweetFollow Us on Twitter

Keyboard Sleuth
Volume Number:2
Issue Number:8
Column Tag:Resource Roundup

Be a Keyboard Sleuth!

By Joel West, Contributing Editor, Vista, CA

See the world through a keyboard

In the last installment of Resource Roundup, the general concepts of resources were introduced, and passing mention was made of their role in Apple’s international marketing.

Among the stated justfications for the resource concept was to make it easier to support software in multiple countries. Most software previously had strings embedded in the software, such as

 write('File ', filenam,
 ' cannot be opened.')

which have to be completely rewritten by a programmer (using the proprietary source code) for any foreign market. However, with resources available, a properly designed Macintosh application can be translated by just about anybody using REdit. (I don’t know Steve Jobs personally, so I can’t say if this was a major factor, or merely an after-the-fact rationalization for the design.)

If you’ve ever studied a foreign language, you’ve probably come to the shocking realization that not all of the Indo-European languages content themselves with the letters A-Z and standard punctuation. I can certainly recall struggling in high school Spanish trying to approximate the ¡ key with a typewriter (the ¿ wasn’t even worth trying) or to come up with the ß in German.

If you’ve concluded by this introduction that resources are used on the Macintosh to support foreign keyboards, you’re right. But these resources are also used to support the differences between the Macintosh and the Macintosh Plus keyboards, as well as implementing basic keyboard functions. There are also some important electronic and mechanical differences between the various keyboards.

Smart, but not smart enough

If you ask Apple how to read input from the keyboard, you’ll get the response that you shouldn’t use anything other than the ASCII value. Apple has gone to great lengths to make various keyboards and nationalities behave similarly.

However, the return values from GetNextEvent (and other less documented interfaces) do include the actual key number that is down. You can use this value to support key combinations that are not defined by Apple -- as long as you are aware of keyboard differences.

There are a number of reasons why you might need to go to these lower levels. My interest in keyboards was prompted by the terminal program I’ve been working on in my spare time (at the rate I’m going, it should be ready in 1993).

A number of otherwise good Macintosh programs have tried to reach this low level and failed. My ears first picked up when I heard a number of terminal emulation programs don’t work with non-US keyboards, or with the Mac Plus. The problem hasn’t even escaped Apple; an early version of their Smalltalk-80 is one such program, as we’ll see later.

Output of the Keyboard Sleuth!

But there are ways to look at lower levels that are compatible with all current systems and should be compatible with all future systems. This article tells how you can take complete control over the keyboard without sacrificing portability. It describes the various un- and semi-documented resources associated with keyboards, including the Macintosh Plus and those sold outside the US.

This article concludes with “Keyboard Sleuth”, a program example that analyzes and reports what keyboard you’re using, and which keys you are pressing. The program was written in 'Rascal', a Pascal type language from Reed College. This language is a combination Pascal, Basic and Assembly. It has a very nice shell that makes Mac programming fast and easy because it allows you more flexibility for dealing with the various toolbox data structures than the traditionally strongly typed Pascal. This makes it more suited to "quicky" programs where the Mac interface is secondary to the programming problem. (The distributor for Rascal is given at the end of this article.) The complete Rascal version is available on the source code disk for this issue. It should be fairly easy to translate the program into TML Pascal, and in fact, our Editor took me up on that challenge and did just that! Since many of MacTutor's readers probably have not heard of Rascal, we are publishing his TML version of the program with this article (see Sleuth, Part II in the next article).

Keyboard Properties

The best place to start on keyboard input is the “Toolbox Event Manager” chapter of Inside Macintosh, if you haven’t read it already. There’s also a brief discussion in the “Macintosh Hardware” chapter, but ignore the key numbers shown in Figure 9 of that chapter. My interest is software, not hardware, so I’ll focus on the former in this article.

For many purposes, the keyboard resembles a standard teletype (TTY) input. When you type on the keyboard, a series of ASCII characters are available for you.

If you want to dig deeper (and if you didn’t, you wouldn’t subscribe to MacTutor), there are a number of differences from a glass TTY:

• Extended characters. Character values 0 to 127 are defined by the ASCII standard. For the Lisa and Macintosh, Apple has added a number of characters (128 to 216, thus far) to support foreign languages and typographic symbols. I’ll refer to these as extended ASCII characters. For simplicity’s sake, I’ll use ASCII to refer to any code in the range 0 to 216, and standard ASCII for those in the range 0 to 127.

• Key codes. In addition to the ASCII numeric value, the actual key number is available. For each keyboard and nationality, Apple defines a standard mapping of modifiers and key codes to ASCII characters, but for some purposes (e.g., a terminal emulator) you may wish to use a different mapping.

• Modifier keys. The movement of certain keys is not normally available to your program. Instead, these keys modify the values returned by other, primary keys. These modifier keys are the Option, Command (), Shift and Caps Lock. A key code and a particular modifer pattern will (usually) determine the ASCII value your program sees.

• Function Keys. Apple has reserved certain special key combinations to invoke general-utility memory resident programs. These all take the form of Command-Shift-digit, of which only four are currently assigned. You may wish to disable these keys for some purposes. For example, cmd-shift-3 will capture the screen and save it to disk in a paint document. These are known as 'FKEYS' or function keys. You can create and install your own function key routines in the system file in a manner similar to writing desk accessories.

• “Dead” keys. In most cases, the accented letters used in French, Spanish, German and Italian are produced by first typing the accent, then typing the letter. Your program won’t normally see the first key; instead, the ASCII value of the two-key combination is returned. The first accent key is considered “dead” because it doesn’t return a separate ASCII value or key code.

• Different Keyboards. The Mac 128/512 and the Mac Plus have slightly different keyboard configurations. In addition, Apple has defined a whole family of keyboards for various countries and languages.

The resources and global variables used to implement these properties are listed in Fig. 1.

Figure 1: Keyboard-related resource and global variables

Character Set

The standard ASCII/ISO character set defines 95 printable characters (including space), which are directly supported by the Mac. There are also nine non-printing characters which can be typed, as shown with their corresponding hex codes in Figure 2. Backspace, Tab, and Return have meanings similar to their accepted ASCII usages, while Apple has adopted arbitrary ASCII values for the other six keys.

If you are echoing input characters to the screen, you will have to interpret these control characters yourself. Although TextEdit understands the Return key, in general, these keys won’t produce any meaningful display when using standard output routines, such as DrawString or TEUpdate.

Additionally, there are the 89 extended ASCII characters, as shown in Figure 3. A few support mathematical and word processing symbols, such as the copyright (©) and paragraph (¶) symbols.

However, most of these are used to support foreign languages and typography. A number of languages have extended alphabets. These include accented letters (such as á, à, â, ä, ã, å), combinations (æ, œ) and as well as characters that do not have English equivalents (ß).

In addition, each language has its own typographic customs. In Spanish, exclamatories and interrogatories require a leading punction mark, as in

¿Que? ¡Hola!

The German language prints quotations as

«Deises ist ein Zitat.»

Ironically, the extended set also includes American style quotation marks, as in

“This is a quotation.”

since the quote mark (") is strictly a typewriter convenience that does not extended to publishing.

All of the ASCII values in the range 32 to 216 (except for non-printing standard ASCII value 127, DEL) have corresponding characters in at least one font. (The various font-related resources will be discussed in depth in a future article.)

Keyboard Events

When a key is pressed, it generates a keyboard event. Normally, you will only receive a keyboard event when the key goes down, with the GetNextEvent function returning the EventRecord.what field set to keyDown. Unless you specifically enable keyDown events, such as with

SetEventMask(everyEvent)

GetNextEvent will not return keyUp events.

You will, however, get autoKey events by default. These are generated by the system after the key has been down for a specified delay, and are repeated automatically.

If the event mask you pass to GetNextEvent includes keyDownMask, it should also include autoKeyMask. If not, the consequences are hilarious, as I discovered in writing a desk accessory in which I decided not to bother with the repeating key case. The first letter goes to your program, and any subsequent letter will go to some other program or desk accessory.

The delay and repeat rate can be changed by the user with the “Control Panel” desk accessory, and are stored in global variables KeyThresh and KeyRepThresh, respectively, in units of ticks (1/60 of a second).

The values set by the user are also saved in the non-volatile parameter RAM,which are then used to initialize KeyThresh and KeyRepThresh. These permanent values can be accessed by the following fragment:

{1}

CONST
 aKeyRate = 8;
 aKeyThresh = 12;
VAR
 sysparm: SysParmType;
 num: LongInt;
 ...
BEGIN
 sysparm := GetSysPPtr;
 num := ORD4(sysparm^.kbdPrint);
 rate := BitAnd(BitShift(num,aKeyRate),
 ORD4(15))*2;
 thresh := BitAnd(BitShift(num,
 aKeyThresh), ORD4(15))*4;

(The value sysparm^.kbdPrint is also available as global variable SPKbd; this is the preferred interface for assembly language programmers).

If you want to change the permanent value for some reason, you can modify the value of kbdPrint (or SPKbd) and then call WriteParam to make the change permanent. See the “Operating System Utilities” of Inside Macintosh for more details.

Four of the keys on the keyboard are not considered to generate keycodes normally, but instead act as modifiers. These are the Shift, Caps Lock, Option, and Command key. The state of first three keys are mapped -- along with the key struck -- to generate an ASCII value.

The Command key is always a modifier, and never affects the ASCII value. On the US keyboard, there are six modifier combinations that affect the ASCII mapping:

(none)

Caps Lock

Shift

Option

Caps Lock-Option

Shift-Option

On the US keyboard, the Caps Lock is ignored if Shift is down, but there’s no guarantee that other keyboards will behave the same way. Note, however, your program can always detect if the Caps Lock key was down through the EventRecord.modifiers field. For example, the screen dump function key does this to distinguish Command-Shift-4 (print current window) from Command-Shift-CapsLock-4 (print entire screen).

Figure 6. Mac Classic Keyboard (Fr)

Function Keys

A number of function keys are defined; they are listed in in Technical Note #3, “List of Command-Shift-Number Keys”.

Function Keys #3 and #4 are contained as resources in the System file. Function Keys #1 and #2, which eject the disks, are presumably embedded in ROM.

Some applications (such as a terminal emulator or macro processor) may want to map all key combinations, including the function keys. If you wish to disable the effect of function keys, then the following subroutine will modifiy global variable ScrDmpEnb to do the job:

{2}

FUNCTION FKeyEnable(new: BOOLEAN):
 BOOLEAN;
TYPE
 boolptr = ^BOOLEAN;
CONST
 ScrDmpEnb = $2F8;
VAR
 old: BOOLEAN;
 bp: boolptr;
BEGIN
 bp := BOOLPTR(ScrDmpEnb);
 FKeyEnable := bp^;{ current state }
 bp^ := new;{ change state }
END;

Passing TRUE to FKeyEnable will enable function keys (your program will not see these key combinations), while FALSE will allow your program to receive function key inputs.

If you’re trying to take full control of the keyboard, you’ll also want to turn off the Switcher control codes, Command-[,] and \. These are contained in ESCK #256 and CFIG #0 resources in the Switcher application. The byte at offset 1 (second byte) of the CFIG #0 disables keyboard switching if true. The ESCK with ID 256 contains the keycodes (which will be discussed later) and ASCII values for the characters that control switching, as described by the following Pascal data structure:

{3}

TYPE

ESCKRsrc = RECORD
 unused: Byte;
 swRightKc: Byte;{ right keycode }
 swLeftKc: Byte; { left keycode }
 swBackKc: Byte; { back keycode }
 swRightChr: Byte; { right ASCII char }
 swLeftChr: Byte;{ left ASCII char }
END;

Different Keyboards

The original Mac 128 and 512 have a by now familiar keyboard, which, in the tradition of a certain beverage, I have dubbed the “classic” keyboard. For purposes of illustration, the keycaps for the original Mac are shown in Figure 4. (All keymaps show the unshifted output, except that letters are shown as capital letters.)

The new Mac Plus keyboard is shown in Figure 5. Note the addition of the four arrow keys, and the disappearance of the right-hand option key. More significant is the disappearance of the Enter key from the main keyboard, as we will see in a moment.

The various non-US keyboards are mechanically and electrically the same; all return the same keycode when you strike a particular key. However, the keycaps (hardware) are labelled differently, and the system disk contain different keyboard mapping procedures (software). The most successful foreign Macintosh market is France, so the key assignments for the original French keyboard are shown in Figure 6.

Fig. 7 Key code numbers (all boards)

There are three main differences between the US and non-US “classic” keyboard. The third row has an extra key, while the return is more vertical. Also, the lower left-hand corner has one additional key.

Fortunately, the situation with the Mac Plus is much cleaner. The physical layout of all “new” keyboards is identical; in fact, some Apple documentation refers to this as the “universal keyboard”, which should be reassuring to those developers who came to grief over the previous distinctions.

If we distinguish between printing keys (including space), control keys (Return, Backspace, Tab, Enter), and modifier keys, this is how the various (main) keyboards compare:

Keyboard Print Control Modifier

US classic 47 4 6 (2 Option)

Euro-classic 48 4 6 (2 Option)

Plus 47 8 (arrows) 4 (no Enter)

You can see that the Plus is very similar to the US classic keyboard, but with one less Option key, a missing Enter, and four additional arrow keys.

Note that while particular keyboards are shipped with the corresponding Macs, there is no guarantee, for example, that a Mac 512 will have the original keyboard. Or, some users will pay for the Level 1 and Level 2 upgrades to a Mac 512, resulting in the hardware equivalent of a Mac Plus, but still use their original keyboard.

The only way to tell the two US keyboard types apart is the global variable KbdType. It contains the following values, which were empirically derived and don’t seem to be documented anywhere:

KbdType=3 classic keyboard

KbdType=11 new keyboard

Both the US and non-US original keyboards return a value of 3, so it takes a little sleuthing to tell the difference.

Key Mappings

When the Macintosh boots, two of the INIT resources are reserved for establishing nation-specific keyboard mappings. The INIT resource with ID #0 installs the main keyboard mapping routine in low memory and places a pointer to its entry point in Key1Trans. The INIT 1 resource does the same thing for the keypad mapping, storing its routine pointer in Key2Trans.

These resources -- and thus the software keyboard mappings can be changed by simply replacing the INIT 0 and 1 resources. The Localizer (May 1985 supplement, disk “5/85 MacStuff 1” provides the INIT resources for the following countries:

US (256,257)

UK (768,769)

France (512,513)

Germany (1024,1025)

Italy (1280,1281)

Sweden (2048,2049)

Spanish/Latin American (2304,2305)

French Canadian (3072,3073)

The numbers shown in parentheses are the resource ID’s of the corresponding INIT 0 and 1 resources in Localizer, if you ever need to access them directly.

The Localizer also changes other international parameters, and thus supports the Netherlands and Belgium. But these use the same keyboard assignments (hardware and software) as one of the previous eight countries.

In fact, there are some suprises in the mappings, which do not follow expected political boundaries. The sun has set on the British Empire, and this can be seen in those countries that share the same keyboard mappings:

UK

Ireland, Netherlands

US

Canada, Australia, New Zealand

Sweden

Norway

France

Belgium, french-speaking Switzerland

German

German-speaking Switzerland

In Japan, Apple sells a version of the Macintosh called the DynaMac, which supports a subset of three ideographic character sets in use there. The Japanese user types words phonetically using one of about a hundred characters from one of the two Kana character sets, Katakana or Hiragana. Next, the software takes the combination of phonetic characters and guesses as to which of several thousand pictographic words (Kanji) is appropriate. As with English, the translation of phonetic to written spellings is approximate, using contextual information to distinguish between homonyms.

The Kana and Kanji use the standard two-byte encoding scheme promoted by the Japanese Institute of Standards. However, when not being used for the entering Kana, the ASCII keycodes generated by the DynaMac are identical to those of the U.S. (and Australian and New Zealand) Mac 512!

In addition to setting the standard keyboard mapping, the Localizer also installs a new INTL resource; this includes a code that allows you to tell what the actual host country is. The KeyboardSleuth will use this to confirm its guesses.

Note that installing the non-US key mappings (on a classic keyboard) won’t do you any good unless you have one of the European keyboards. For example, with a French keyboard, I could use Localizer to try the U.K., German, Italian, etc. mappings, but the US keyboard was useless with these key mappings, and vice versa. Also, although the Localizer changes key mappings and the various international formats (date formats, month names, etc.), it does not translate applications or system software. Using Localizer on a French system disk allowed me to convince my test program that it was running on a Swedish system, but the Finder prompts were still in French!

Figure 9: Partial comparison of US keyboards (cf Figure 6)

Generating Keycodes

When you type a key, GetNextEvent returns the ASCII value of the key and its modifiers in the lower byte of EventRecord.message. The number of the primary key is also returned in the next most significant byte, and can be found by the expression

BitShift(BitAnd(msg, keyCodeMask),8)

This key number is known as a keycode. These keycodes are the lowest level of information available to your program.

The keycodes for the three previously mentioned keyboards are shown in Figure 7. Most of the key codes are common to all three keyboards. Where different, the key codes for the Plus and the non-US 512 are shown on the side.

Figure 8 shows the keycodes for both the optional Mac 512 keypad and the Mac Plus’s standard keypad. Note that the keycode for a 1 on the keypad is not the same as the keycode for the 1 on the main keyboard, although the ASCII value returned will be the same.

There are three suprisingly major differences between the two keypads:

• The “,” has become an “=”.

• The numeric operators and their corresponding keycodes have been shuffled around.

• The numeric operator keys return a “Shift” modifier, even when pressed without the Shift key.

This last feature is perhaps the oddest of all, but was done in the name of compatibility, so that although the arrow and numeric operator keys have been separated, no new key codes have been introduced.

If you want to continuously monitor which keys are down, including detecting multiple primary keys down at one time (presumably for a game or an organ keyboard), the global variables KeyMap and KeypadMap are byte arrays containing a bit map (PACKED ARRAY OF BOOLEAN) indicating which keys are currently depressed. The “official” way to read these bit maps is to call GetKeys.

Likely Problem Areas

If there are incompatibilities between your Mac 512-based program and the other keyboards, here are where they are likely to occur:

Physical layout.. If you draw a map of the keyboard, you will have to change it, depending on the keyboard type, as shown in the figures.

Different keycodes. Key #42 on the US machines produces “\”, while key #39 is a “Return”. On the non-US, #42 is “Return” and #39 is a printing character. The space and “Enter” keys are similarly reversed, while the bottom row is shifted over one.

Different keycodes. Key #10 is accessible only on the non-US keyboards. Key #52 (US Enter) is not available anywhere on the Plus.

Let’s look back at Mac Smalltalk, which expects click-Enter to simulate the “blue” (right) button of the original Xerox three-button mouse. This would be click-Space on the non-US Macs, but it is completely inaccessible on a Mac Plus. Fortunately, there’s another way to simulate the blue button in Mac Smalltalk, by clicking on the top edge of a Smalltalk window.

National Idiosyncracies

There are a number of significant differences between the various non-US keyboards. If you refer back to the French keyboard in Figure 6, you can see two notable differences from the standard US layout:

• The top row does not produce numbers unless shifted; and

• The layout is AZERT instead of QWERTY. Note also the M is to the right of the L, instead of on the bottom row.

Oddly, the Italians follow the French form, except that the A and Q are reversed; both of these patterns are the same on the Mac Plus.

Otherwise, the national differences are largely confined to the mappings of the 12 printing keys assigned to neither letters nor numbers. Figure 9 shows the output of the right-hand edge of the classic keyboard (unshifted) for six countries, which should be compared to the complete French keyboard shown in Figure 6. For the Plus, the key mappings differ yet again, although they are largely similar to those shown.

We will use these mappings in building our keyboard sleuth.

Identifying keyboards

This following sample program identifies the keyboard in use. It was written in Rascal, a real-time Pascal-like language developed at Reed College and distributed by MetaResearch (1100 SE Woodward, Portland, OR 92702; price $129) Rascal includes a built-in development environment (editor, compiler, linker, executor), although not one as elaborate as LightSpeedC, which it predates. [The Rascal source is on the source code disk. The TML version is presented in the next article as a courtesy to our readership, most of whom do not yet have Rascal. -Ed.]

I’ve tried to stick to the Pascal-like syntax as much as possible. KeyboardSleuth is short enough to translate into any language that includes a built-in assembler. (I don’t have MDS, and didn’t feel like hand-assembling the code in TML Pascal using $INLINE directives.)

KeyBoardSleuth uses several techniques. First, it prints the country, as determined by the INTL resource. Second, it tells whether the classic Mac or Mac Plus keyboard is in use, by examining the keyboard type.

If it is a classic keyboard, it decides whether this is a US or non-US keyboard. The best way is to check the keycode of the Space key, which differs between the two keyboards. For the various non-US keyboards, it looks at the keycode mappings by directly calling the keyboard translation routine. I used derived results to figure out which of the UK, France, French Canadian, German, Italian, Spanish or Swedish mappings have been chosen. (I don’t own a Mac Plus, so I didn’t have a chance to Localize it to each country to test sleuthing clues for telling its national keyboards apart).

Fourth, KeyboardSleuth allows you to type keys and see what the result is; I used this to find out what the actual national mappings were. All the output is saved to a file, so you can print it out and examine it later.

Acknowledgements

Since the MacTutor’s travel budget is somewhat limited, I was unable to convince the editor that he should send me to each of the previously mentioned countries to examine the keyboards first-hand!

However, several foreign correspondents were kind enough to run earlier versions of the program on their machines. The assistance of Tohru Asami, John Dibble, and Tony Vignaux helped with countries not addressed by any of the documentation. Eric Zocher lent me the Airborne! French (classic) keyboard. Finally, Mark Baumwell of Macintosh Technical Support provided keycode and ASCII assignments for the Mac Pluses of the world.

Joel wins the Program of the Month award for this outstanding article covering a new topic not well understood. Congratulations, and a $50 night out on us! See the next article for the TML source.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

OmniGraffle Pro 7.2.2 - Create diagrams,...
OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use... Read more
OmniGraffle 7.2.2 - Create diagrams, flo...
OmniGraffle helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use Graffle to... Read more
Spotify 1.0.44.100. - Stream music, crea...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
Microsoft OneNote 15.29 - Free digital n...
OneNote is your very own digital notebook. With OneNote, you can capture that flash of genius, that moment of inspiration, or that list of errands that's too important to forget. Whether you're at... Read more
WALTR 2 2.0.8 - $39.95
WALTR 2 helps you wirelessly drag-and-drop any music, ringtones, videos, PDF, and ePub files onto your iPhone, iPad, or iPod without iTunes. It is the second major version of Softorino's critically-... Read more
Dropbox 16.3.27 - Cloud backup and synch...
Dropbox is an application that creates a special Finder folder that automatically syncs online and between your computers. It allows you to both backup files and keep them up-to-date between systems... Read more
EtreCheck 3.1.5 - For troubleshooting yo...
EtreCheck is an app that displays the important details of your system configuration and allow you to copy that information to the Clipboard. It is meant to be used with Apple Support Communities to... Read more
Carbon Copy Cloner 4.1.12 - Easy-to-use...
Carbon Copy Cloner backups are better than ordinary backups. Suppose the unthinkable happens while you're under deadline to finish a project: your Mac is unresponsive and all you hear is an ominous,... Read more
VueScan 9.5.62 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
SpamSieve 2.9.27 - Robust spam filter fo...
SpamSieve is a robust spam filter for major email clients that uses powerful Bayesian spam filtering. SpamSieve understands what your spam looks like in order to block it all, but also learns what... Read more

Latest Forum Discussions

See All

Track Santa with these three festive app...
Christmas is fast approaching and that means it's time to prepare for Santa's yearly pilgrimage around the globe. Christmas Eve is an exciting time as parents help their kids get ready to welcome Santa. You've got the cookies and milk all planned... | Read more »
Galaxy on Fire 3 and four other fantasti...
Galaxy on Fire 3 - Manticore brings the series back for another round of daring space battles. It's familiar territory for folks who are familiar with the franchise. If you've beaten the game and are looking to broaden your horizons, might we... | Read more »
The best apps for your holiday gift exch...
What's that, you say? You still haven't started your holiday shopping? Don't beat yourself up over it -- a lot of people have been putting it off, too. It's become easier and easier to procrastinate gift shopping thanks to a number of apps that... | Read more »
Toca Hair Salon 3 (Education)
Toca Hair Salon 3 1.0 Device: iOS Universal Category: Education Price: $2.99, Version: 1.0 (iTunes) Description: | Read more »
Winter comes to Darkwood as Seekers Note...
MyTona, based in the chilly Siberian city of Yakutsk, has brought a little festive fun to its hidden object game Seekers Notes: Hidden Mystery. The Christmas update introduces some new inhabitants to players, and with them a chance to win plenty of... | Read more »
Bully: Anniversary Edition (Games)
Bully: Anniversary Edition 1.03.1 Device: iOS Universal Category: Games Price: $6.99, Version: 1.03.1 (iTunes) Description: *** PLEASE NOTE: This game is officially supported on the following devices: iPhone 5 and newer, iPod Touch... | Read more »
PINE GROVE (Games)
PINE GROVE 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: A pine grove where there are no footsteps of people due to continuous missing cases. The case is still unsolved and nothing has... | Read more »
Niantic teases new Pokémon announcement...
After rumors started swirling yesterday, it turns out there is an official Pokémon GO update on its way. We’ll find out what’s in store for us and our growing Pokémon collections tomorrow during the Starbucks event, but Niantic will be revealing... | Read more »
3 reasons why Nicki Minaj: The Empire is...
Nicki Minaj is as business-savvy as she is musically talented and she’s proved that by launching her own game. Designed by Glu, purveyors of other fine celebrity games like cult favorite Kim Kardashian: Hollywood, Nicki Minaj: The Empire launched... | Read more »
Clash of Clans is getting its own animat...
Riding on its unending wave of fame and success, Clash of Clans is getting an animated web series based on its Clash-A-Rama animated shorts.As opposed to the current shorts' 60 second run time, the new and improved Clash-A-Rama will be comprised of... | Read more »

Price Scanner via MacPrices.net

New 2016 13-inch Touch Bar MacBook Pros on sa...
B&H Photo the new 2016 Apple 13″ 2.9GHz/256GB Touch Bar MacBook Pros on sale for $50 off MSRP, each including free shipping plus NY sales tax only: - 13″ 2.9GHz/256GB Touch Bar MacBook Pro Space... Read more
12-inch 1.2GHz Space Gray Retina MacBook on s...
B&H Photo has dropped their price on the 2016 Apple 12″ 1.2GHz Space Gray Retina MacBook (MLH82LL/A) to $1399 including free shipping plus NY sales tax only. Their price is $200 off MSRP, and it’... Read more
Never Settle for Low Performing Wifi With iOS...
AppYogi Software has announced the release of WiFi Signal Strength Status App 1.0, the company’s new utility developed exclusively for macOS. WiFi Signal Strength Status App features a unique, single... Read more
New 2016 13-inch Touch Bar MacBook Pros in st...
B&H Photo has stock of new 2016 Apple 13″ Touch Bar MacBook Pro models, each including free shipping plus NY sales tax only: - 13″ 2.9GHz/512GB Touch Bar MacBook Pro Space Gray: $1999 - 13″ 2.... Read more
New 2016 15″ Touch Bar MacBook Pros in stock...
B&H Photo has new 2016 Apple 15″ Touch Bar MacBook Pro models in stock today including free shipping plus NY sales tax only: - 15″ 2.7GHz Touch Bar MacBook Pro Space Gray: $2799 - 15″ 2.7GHz... Read more
DietSensor App Targeting Diabetes and Obesity...
DietSensor, Inc., a developer of smart food and nutrition applications designed to fight diabetes and obesity and help improve overall fitness, has announced the launch of its DietSensor app for... Read more
Holiday 2016 13-inch 2.0GHz MacBook Pro sales...
B&H has the non-Touch Bar 13″ MacBook Pros in stock today for $50-$100 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.0GHz MacBook Pro Space Gray (MLL42LL/A): $1449 $... Read more
Holiday sale: Apple TVs for $51-$40 off MSRP,...
Best Buy has dropped their price on the 64GB Apple TV to $159.99 including free shipping. That’s $40 off MSRP. 32GB Apple TVs are on sale right now for $98 on Sams Club’s online store. That’s $51 off... Read more
12-inch Retina MacBooks, Apple refurbished, n...
Apple has restocked a full line of Certified Refurbished 2016 12″ Retina MacBooks, now available for $200-$260 off MSRP. Refurbished 2015 models are available starting at $929. Apple will include a... Read more
Holiday sale: 12-inch Retina MacBook for $100...
B&H has 12″ Retina MacBooks on sale for $100 off MSRP as part of their Holiday sale. Shipping is free, and B&H charges NY sales tax only: - 12″ 1.1GHz Space Gray Retina MacBook: $1199 $100... Read more

Jobs Board

Integration Technician, *Apple* - Zones, In...
…at Zones and for our customers each day. Position Overview The Apple Integration Technician will be responsible for performing customer specific configuration Read more
*Apple* Brand Ambassador (Macy's) - The...
…(T-ROC), is proud of its unprecedented relationship with our partner and client, APPLE ,in bringing amazing" APPLE ADVOCATES"to "non" Apple store locations. Read more
*Apple* Retail - Multiple Positions- Trumbul...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
US- *Apple* Store Leader Program - Apple (Un...
…Summary Learn and grow as you explore the art of leadership at the Apple Store. You'll master our retail business inside and out through training, hands-on Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.