TweetFollow Us on Twitter

Float Point 2
Volume Number:2
Issue Number:8
Column Tag:Threaded Code

Floating Point Package, Part II

By Jörg Langowski, EMBL, c/o I.L.L., Grenoble, Cedex, France, Editorial Board

"Fast exp(x) and ln(x) in single precision"

We will continue with numerics this time, in order to give some examples how to put the 32 bit floating point package to practical use, and also because we got feedback that some more information about number crunching would be appreciated.

First, however, it is time for some apologies: the bugs have been creeping into the multiply routine, and when I noticed the last few traces they left, the article was already in press. The problem was that when the number on top of stack was zero, the routine would all of a sudden leave two numbers on the stack, one of which was garbage. This problem has been fixed in the revision, which is printed in Listing 1. I hope there will be no more errors, but please let me know if you find any. A reliable 32 bit package is so important for numerical applications on the Mac!

For many applications, the four basic operations +-*/ by themselves already help a lot in speeding up. However, alone they do not make a functional floating point package. For operations that are not used so frequently, like conversion between integer, single and extended or input/output on can still rely on the built-in SANE routines. But for the standard mathemetical functions you would want to have your own definitions that make full use of the speed of the 32 bit routines.

Developing a complete package of mathematical functions would be a project that is outside the scope of this column. I'll only give you two examples that serve to show that a very reasonable speed can be attained in Forth (here, Mach1) without making too much use of assembly language. The two examples, ln(x) and exp(x) are based on approximations taken from the Handbook of Mathematical Functions by M. Abramowitz and I.A. Stegun, Dover Publications, New York 1970. Furthermore, the routines given here profited a lot from ideas published in the April '86 issue of BYTE on number crunching.

First, we have to realize that a transcendental function like ln(x), using a finite number of calculation steps, can only be approximated over a certain range of input numbers to a certain maximum accuracy. It is intuitively clear that the wider the range of the argument x, the lengthier the calculation gets to achieve the desired accuracy. Therefore, approximation formulas for standard functions are usually given over a very restricted range of x. We have to see that we play some tricks on the input value x so that we can get a reliable approximation over the whole range of allowed floating point numbers, which is approximately 10-38 to 10+38 for the IEEE 32 bit format.

The handbook mentioned gives various approximations for ln(x) with different degrees of accuracy. The accuracy that we need for a 24 bit mantissa is 2-23 10-7, and a suitable approximation for this accuracy would be

ln(1+x)   a1x + a2x2 + a3x3 + a4x4 + a5x5+ a6x6 + a7x7 + a8x8  +  (error),
 [1]

where for 0 ¯ x ¯ 1 the error is less than 3.10-8. The coefficients a1 to a8 are:

a1 =  0.9999964239, a2 =  -0.4998741238, 
a3 =  0.3317990258, a4 =  -0.2407338084,
a5 =  0.1676540711, a6 =  -0.0953293897, 
a7 =  0.0360884937, a8 =  -0.0064535442 . 

To calculate eqn. [1] more rapidly, it is of course convenient to write it as

ln(1+x)   x.(a1 + x.(a2 + x.(a3 + x.(a4 + x.(a5 + x.(a6+ x.(a7 + x.a8))))))
 [2]

where by consecutive addition of coefficients and multiplication by the argument the polynomial may be evaluated with a minimum of operations. ln.base in Listing 2 calculates eqn. [2] and gives a good approximation for ln(x) in the range of x=1 2.

For numbers outside this range, we have to realize that

 ln(a.x) = ln(a) + ln(x),

and in the special case when a = 2n,

 ln(2n .x) = n.ln(2) + ln(x).

Now, all our floating point numbers are already split up in such a way; they contain a binary exponent n and a mantissa x such that x is between 1 and 2. So it remains to separate the exponent and mantissa, calculate eqn.[2] for the mantissa and add n times ln(2), which is a constant that we can calculate and store beforehand.

The separation of exponent and mantissa is done in get.exp, which will leave the biased exponent on top of stack, followed by the mantissa in the format of a 32-bit floating point number between 1 and 2. We now have to multiply the exponent by ln(2), an (integer) times (real) multiplication. Instead of writing another routine do do this, we use a faster method that, however, is a little memory consuming: we build a lookup table for all values of n.ln(2) with n between -127 and +128, the allowed range of exponents. Since the exponent is biased by +127, we can use it directly to index the table. The table consumes 1K of memory, so I wouldn't use it on a 48K CP/M system, but with 0.5 to 1 megabyte on a Mac, this can be justified. The lookup table is created using the SANE routines; this takes a couple of seconds, but it is done only for the initialization.

For faster indexing, I also defined the word 4* in assembly, which does not exist in Mach1 (it does, of course, in MacForth).

The final definition ln first separates exponent and mantissa and then computes ln(x) from those separate parts. Note that ln as well as ln.base are written completely in Forth. Fine-tuning of those routines, using assembler, should speed them up by another factor of 1.5 to 2 (wild guess). Still, you already gain a factor of 12 over the SANE routine (use speed.test to verify). The accuracy is reasonably good; the value calculated here differs from the 'exact' extended precision value by approximately 1 part in 107 to 108, just about the intrinsic precision of 32-bit floating point.

Let's now proceed to the inverse of the logarithm, the exponential. The handbook gives us the approximation

e-x    a1x + a2x2 + a3x3 + a4x4 + a5x5+ a6x6 + a7x7 + (error),

with the coefficients

a1 =  -0.9999999995, a2 =  0.4999999206, 
a3 =  -0.1666653019, a4 =  0.0416573745,
a5 =  -0.0083013598, a6 =  0.0013298820, 
a7 =  -0.0001413161 .

This approximation is valid to within 2.10-10 for x between 0 and ln(2) 0.6, and we use it for x = 0 1 for our purposes here, which still is sufficiently precise for a 24 bit mantissa.

Again, we have to scale down the input value of x in order to get it into the range of validity of the approximation. This time, we use the relationship

 e(N+f) = eN  . ef  ,

where N is the integer and f the fractional part of x. eN will be looked up in a table and ef calculated from the approximation. To get N, we need a real-to-integer conversion routine; this routine, together with its integer-to-real counterpart, is coded in assembler with some Forth code to get the signs correct (words s>i and i>s). The fractional part is calculated by subtracting the integer part from the input number; this is done in Forth without giving up too much in speed. exp puts it all together and calculates ex for the whole possible range of x values.

As before, the lookup table for the eN values is initialized separately, using the SANE routines.

The benchmark, speed.test, shows a 24 fold speed increase of this exponential function as compared to the 80-bit SANE version.

Other mathematical standard functions can be defined in a way very similar to the examples that I gave here. A good source of some approximations is the handbook mentioned above, also, many interesting ideas regarding numerical approximations can be found in BYTE 4/86.

Feedback dept.

Let's turn to some comments that I received through electronic mail on Bitnet and BIX.

Here comes a comment (through BIX) on the IC! bug in NEON, which leads to a very interesting observation regarding the 68000 instruction set:

Memo #82583

From: microprose

Date: Fri, 23 May 86 21:44:08 EDT

To: jlangowski

Cc: mactutor

Message-Id: <memo.82583>

Subject: "IC!" bug -- why it happens

Just got my April '86 MacTutor, and I thought I'd answer your question about the bug in the "IC!" word. Register A7 in the 68000 is always used as the stack pointer, and as such must always be kept word-aligned. As a special case, the pre-decrement and post-increment addressing modes, when used with a byte-sized operand, automatically push or pop an extra padding byte to keep the stack word-aligned. In the case of MOVE.B (A7)+,<dest>, this causes the most-significant byte of the word at the top of the stack to be transferred; then the stack pointer is adjusted by 2 (not 1). I would guess that a similar thing is happening with ADDQ #3,A7; since you mention nothing about a stack underflow, it seems that this instruction is adding 2 to A7, not 4 as I would have suspected. (Otherwise, in combination with the following instruction, an extra word is being removed from the stack.) Since the desired byte is at the bottom of the longword, your solution is the best one (assuming that D0 is a scratch register).

I should point out that this is based only on the material printed in your column, as I do not own Neon. I do, however, have Mach 1 (V1.2), and I am looking forward to more coverage of it in future issues of MacTutor.

Russell Finn

MicroProse Software

[Thank you for that observation. In fact, I tried to single step - with Macsbug - through code that looked like the following:

 NOP
 NOP
 MOVE.L A7,D0
>>>>> ADDQ.L #3,A7     <<<<<
 MOVE.L D0,A7
 etc. etc.

I didn't even get a chance to look at the registers! As soon as the program hits the ADDQ.L instruction, the screen goes dark, bing! reset! Also, running right through that piece of code (setting a breakpoint after the point where A7 was restored) resulted in the same crash. Therefore, this behavior should have nothing to do with A7 being used intermediately by Macsbug. I see two explanations: Either an interrupt occuring while A7 is set to a wrong value or a peculiarity of the 68000, which makes the machine go reset when this instruction is encountered (???). At any rate, the designers of NEON never seem to have tested their IC! definition, otherwise they would have noticed it]

A last comment: we have received a nicely laid out newsletter of the MacForth User's group, which can be contacted at

MFUG,

3081 Westville Station, New Haven, CT 06515.

With the variety of threaded code systems for the Macintosh around and being actively used, I think it is a good idea to keep the topics dealt with in this column as general as possible; even though I am using Mach1 for my work at the moment, most of the things apply to other Forths as well.

What would help us a great deal, of course, is feedback from you readers 'out there'. If you have pieces of information, notes or even whole articles on Forth aspects that you think would be of interest to others (and if it interested you, it will interest others), please, send them in.

Listing 1: 32 bit FP multiply, first revision (and hopefully the last one)
CODE     S*     
         MOVE.L  (A6)+,D1
         BEQ     @zero
         MOVE.L  (A6)+,D0
         BEQ     @end
         MOVE.L  D0,D2
         MOVE.L  D1,D3
         SWAP.W  D2
         SWAP.W  D3
         CLR.W   D4
         CLR.W   D5
         MOVE.B  D2,D4
         MOVE.B  D3,D5
         BSET    #7,D4
         BSET    #7,D5
(        ANDI.W  #$FF80,D2 )
         DC.L    $0242FF80
(        ANDI.W  #$FF80,D3 )
         DC.L    $0243FF80
         ROL.W   #1,D2
         ROL.W   #1,D3
         SUBI.W  #$7F00,D2
         SUBI.W  #$7F00,D3
         ADD.W   D2,D3
         BVS     @ovflchk
         MOVE.W  D4,D2  
         MULU.W  D1,D2  
         MULU.W  D0,D1  
         MULU.W  D5,D0  
         MULU.W  D4,D5 
         ADD.L   D2,D0  
         MOVE.W  D5,D1 
         SWAP.W  D1
         ADD.L   D1,D0  
         BPL     @nohibit
     ADDI.W  #$100,D3
         BVC     @round
         BRA     @ovflchk
@nohibit ADD.L   D0,D0
@round   BTST    #7,D0
         BEQ     @blk.exp
         BTST    #6,D0
         BNE     @incr
         BTST    #8,D0
         BEQ     @blk.exp
@incr    ADDI.L  #$80,D0
         BCC     @blk.exp
         ADDI.W  #$100,D3
         BVC     @blk.exp
@ovflchk BPL     @makezero
         MOVE.L  #$7F800000,-(A6)  
         RTS
@makezero  CLR.L D0
         MOVE.L  D0,-(A6)
         RTS
@zero    CLR.L D0
         MOVE.L  D0,(A6)
         RTS
@blk.exp ADDI.W  #$7F00,D3
         BLE     @makezero
         ROR.W   #1,D3
(        ANDI.W  #$FF80,D3 )
         DC.L    $0243FF80
         LSR.L   #8,D0
         BCLR    #23,D0
         SWAP.W  D3
         CLR.W   D3
         OR.L    D3,D0
@end     MOVE.L  D0,-(A6)
         RTS     
END-CODE          
Listing 2: Example definitions for exponential and natural logarithm, Mach1 
only forth definitions also assembler also sane
include" add.sub"
include" mul.sp"
include" div.sp"
(  files  I keep my floating point routines )

CODE 4*
     MOVE.L (A6)+,D0
     ASL.L  #2,D0
     MOVE.L D0,-(A6)
     RTS
END-CODE MACH

( extract biased exponent & mantissa 
from 32 bit FP # )

CODE get.exp
     MOVE.L  (A6)+,D0
     MOVE.L  D0,D1
     SWAP.W  D0
     LSR.W   #7,D0
     ANDI.L  #$FF,D0
     MOVE.L  D0,-(A6)
     ANDI.L  #$7FFFFF,D1
     ORI.L   #$3F800000,D1
     MOVE.L  D1,-(A6)
     RTS
END-CODE
   
CODE stoi  
        MOVE.L  (A6)+,D0
        MOVE.L  D0,D1
        SWAP.W  D0
        LSR.W   #7,D0
        SUBI.B  #127,D0
        BMI     @zero
        BEQ     @one
        ANDI.L  #$7FFFFF,D1
        BSET    #23,D1
        CMP.B   #8,D0
        BCC     @long.shift
        LSL.L   D0,D1
        CLR.W   D1
        SWAP.W  D1
        LSR.L   #7,D1
        MOVE.L  D1,-(A6)
        RTS
@long.shift
        LSL.L   #7,D1
        SUBQ.B  #7,D0
        CLR.L   D2
@shifts LSL.L   #1,D1
        ROXL.L  #1,D2
        SUBQ.B  #1,D0
        BNE     @shifts
        CLR.W   D1
        SWAP.W  D1
        LSR.L   #7,D1
        LSL.L   #8,D2
        ADD.L   D2,D2
        OR.L    D2,D1
        MOVE.L  D1,-(A6)
        RTS
@zero   CLR.L   D0
        MOVE.L  D0,-(A6)
        RTS
@one    MOVEQ.L #1,D0
        MOVE.L  D0,-(A6)
        RTS
END-CODE

: s>i dup 0< if stoi negate else stoi then ;

CODE itos
        MOVE.L  (A6)+,D0
        BEQ     @zero
        CLR.L   D1
        MOVE.L  #$7F,D2
@shifts CMPI.L  #1,D0
        BEQ     @one
        LSR.L   #1,D0
        ROXR.L  #1,D1
        ADDQ.L  #1,D2
        BRA     @shifts
@one    LSR.L   #8,D1
        LSR.L   #1,D1
        SWAP.W  D2
        LSL.L   #7,D2
        BCLR    #31,D2
        OR.L    D2,D1
        MOVE.L  D1,-(A6)
        RTS
@zero   MOVE.L  D0,-(A6)
        RTS
END-CODE        
hex
: i>s dup 0< if negate itos 80000000 or
 else itos then ;
decimal
 
: s. s>f f. ;

vocabulary maths also maths definitions

decimal
fp 9 float

-inf f>s constant -infinity
 inf f>s constant  infinity

1.0  f>s constant one
10.  f>s constant ten
100. f>s constant hun
pi f>s constant pi.s
2.718281828  f>s constant eu

( exponential, natural log )

 .9999964239 f>s constant a1ln
-.4998741238 f>s constant a2ln
 .3317990258 f>s constant a3ln
-.2407338084 f>s constant a4ln
 .1676540711 f>s constant a5ln
-.0953293897 f>s constant a6ln
 .0360884937 f>s constant a7ln
-.0064535442 f>s constant a8ln

variable ln2table 1020 vallot
  2.0 fln    f>s constant ln2
: fill.ln2table
    256 0 do ln2 i 127 - i>s s*
             i 4* ln2table + !
          loop
;
: ln.base 
    one s- a8ln over s*
           a7ln s+ over s*
           a6ln s+ over s*
           a5ln s+ over s*
           a4ln s+ over s*
           a3ln s+ over s*
           a2ln s+ over s*
           a1ln s+ s*
;
: ln dup 0> if get.exp
               ln.base
               swap 4* ln2table + @
               s+
            else drop -infinity
            then
;
: lnacc
  1000 0 do 
    i . i i>s ln  dup s.
        i i>f fln fdup f.
          s>f f- f. cr
    loop
;
variable exptable 700 vallot
: fill.exptable
      176 0 do i 87 - i>f fe^x f>s
             i 4* exptable + !
          loop
;
  
-.9999999995 f>s constant a1exp
 .4999999206 f>s constant a2exp
-.1666653019 f>s constant a3exp
 .0416573745 f>s constant a4exp
-.0083013598 f>s constant a5exp
 .0013298820 f>s constant a6exp
-.0001413161 f>s constant a7exp

: exp.base a7exp over s*
           a6exp s+ over s*
           a5exp s+ over s*
           a4exp s+ over s*
           a3exp s+ over s*
           a2exp s+ over s*
           a1exp s+ s*
           one s+
           one swap s/
;
: exp dup s>i swap over i>s s- exp.base swap 
          dup -87 < if 2drop 0
     else dup  88 > if 2drop infinity
     else 87 + 4* exptable + @ 
           ( get exp of integer part ) s* then
     then
;
: expacc
  1000 0 do 
    i . i i>s hun  s/  exp  dup s.
        i i>f 100. f/ fe^x fdup f.
          s>f f- f. cr
    loop
;
:  emptyloop 0  1000 0 do  dup  drop loop  drop ;
: femptyloop 0. 1000 0 do fdup fdrop loop fdrop ;
: testexp  ten one s+ 1000 0 do  dup  exp  drop loop  drop ;
: testfexp        11. 1000 0 do fdup fe^x fdrop loop fdrop ;
: testln  ten one s+ 1000 0 do  dup  ln  drop loop  drop ;
: testfln        11. 1000 0 do fdup fln fdrop loop fdrop ;
: speed.test cr
  ." Testing 32 bit routines..." cr
 ."    empty..." counter emptyloop timer cr
."      exp..." counter testexp timer cr
 ."       ln..." counter testln timer cr cr
    ." Testing SANE routines..." cr
    ."    empty..." counter femptyloop timer cr
    ."      exp..." counter testfexp timer cr
    ."       ln..." counter testfln timer cr
;
 
AAPL
$105.22
Apple Inc.
+0.39
MSFT
$46.13
Microsoft Corpora
+1.11
GOOG
$539.78
Google Inc.
-4.20

MacTech Search:
Community Search:

Software Updates via MacUpdate

OS X Server 4.0 - For OS X 10.10 Yosemit...
Designed for OS X and iOS devices, OS X Server makes it easy to share files, schedule meetings, synchronize contacts, develop software, host your own website, publish wikis, configure Mac, iPhone,... Read more
TotalFinder 1.6.12 - Adds tabs, hotkeys,...
TotalFinder is a universally acclaimed navigational companion for your Mac. Enhance your Mac's Finder with features so smart and convenient, you won't believe you ever lived without them. Tab-based... Read more
BusyCal 2.6.3 - Powerful calendar app wi...
BusyCal is an award-winning desktop calendar that combines personal productivity features for individuals with powerful calendar sharing capabilities for families and workgroups. BusyCal's unique... Read more
calibre 2.7 - Complete e-library managem...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital... Read more
Skitch 2.7.3 - Take screenshots, annotat...
With Skitch, taking, annotating, and sharing screenshots or images is as fun as it is simple.Communicate and collaborate with images using Skitch and its intuitive, engaging drawing and annotating... Read more
Delicious Library 3.3.2 - Import, browse...
Delicious Library allows you to import, browse, and share all your books, movies, music, and video games with Delicious Library. Run your very own library from your home or office using our... Read more
Art Text 2.4.8 - Create high quality hea...
Art Text is an OS X application for creating high quality textual graphics, headings, logos, icons, Web site elements, and buttons. Thanks to multi-layer support, creating complex graphics is no... Read more
Live Interior 3D Pro 2.9.6 - Powerful an...
Live Interior 3D Pro is a powerful yet very intuitive interior designing application. View Video Tutorials It has every feature of Live Interior 3D Standard, plus some exclusive ones: Create multi... Read more
The Hit List 1.1.7 - Advanced reminder a...
The Hit List manages the daily chaos of your modern life. It's easy to learn - it's as easy as making lists. And it's powerful enough to let you plan, then forget, then act when the time is right.... Read more
jAlbum Pro 12.2.4 - Organize your digita...
jAlbum Pro has all the features you love in jAlbum, but comes with a commercial license. With jAlbum, you can create gorgeous custom photo galleries for the Web without writing a line of code!... Read more

Latest Forum Discussions

See All

Rami Ismail Opens Up distribute​() for D...
Rami Ismail Opens Up distribute​() for Developers Posted by Jessica Fisher on October 24th, 2014 [ permalink ] Rami Ismail, Chief Executive of Business and Development at indie game studio | Read more »
Great Hitman GO Goes on Sale and Gets Ne...
Great Hitman GO Goes on Sale and Gets New Update – Say That Three Times Fast Posted by Jessica Fisher on October 24th, 2014 [ permalink ] | Read more »
Rival Stars Basketball Review
Rival Stars Basketball Review By Jennifer Allen on October 24th, 2014 Our Rating: :: RESTRICTIVE BUT FUNUniversal App - Designed for iPhone and iPad Rival Stars Basketball is a fun mixture of basketball and card collecting but its... | Read more »
Rubicon Development Makes Over a Dozen o...
Rubicon Development Makes Over a Dozen of Their Games Free For This Weekend Only Posted by Jessica Fisher on October 24th, 2014 [ permalink ] | Read more »
I Am Dolphin Review
I Am Dolphin Review By Jennifer Allen on October 24th, 2014 Our Rating: :: NEARLY FIN-TASTICUniversal App - Designed for iPhone and iPad Swim around and eat nearly everything that moves in I Am Dolphin, a fun Ecco-ish kind of game... | Read more »
nPlayer looks to be the ultimate choice...
Developed by Newin Inc, nPlayer may seem like your standard video player – but is aiming to be the best in its field by providing high quality video play performance and support for a huge number of video formats and codecs. User reviews include... | Read more »
Fighting Fantasy: Caverns of the Snow Wi...
Fighting Fantasy: Caverns of the Snow Witch Review By Jennifer Allen on October 24th, 2014 Our Rating: :: CLASSY STORYTELLINGUniversal App - Designed for iPhone and iPad Fighting Fantasy: Caverns of the Snow Witch is a sterling... | Read more »
A Few Days Left (Games)
A Few Days Left 1.01 Device: iOS Universal Category: Games Price: $3.99, Version: 1.01 (iTunes) Description: Screenshots are in compliance to App Store's 4+ age rating! Please see App Preview for real game play! **Important: Make... | Read more »
Toca Boo (Education)
Toca Boo 1.0.2 Device: iOS Universal Category: Education Price: $2.99, Version: 1.0.2 (iTunes) Description: BOO! Did I scare you!? My name is Bonnie and my family loves to spook! Do you want to scare them back? Follow me and I'll... | Read more »
Intuon (Games)
Intuon 1.1 Device: iOS Universal Category: Games Price: $.99, Version: 1.1 (iTunes) Description: Join the battle with your intuition in a new hardcore game Intuon! How well do you trust your intuition? Can you find a needle in a... | Read more »

Price Scanner via MacPrices.net

Weekend sale: 13-inch 128GB MacBook Air for $...
Best Buy has the 2014 13-inch 1.4GHz 128GB MacBook Air on sale for $849.99, or $150 off MSRP, on their online store. Choose free home shipping or free local store pickup (if available). Price valid... Read more
Nimbus Note Cross=Platform Notes Utility
Nimbus Note will make sure you never forget or lose your valuable data again. Create and edit notes, save web pages, screenshots and any other type of data – and share it all with your friends and... Read more
NewerTech’s Snuglet Makes MagSafe 2 Power Con...
NewerTech has introduced the Snuglet, a precision-manufactured ring designed to sit inside your MagSafe 2 connector port, providing a more snug fit to prevent your power cable from unintentional... Read more
Apple Planning To Sacrifice Gross Margins To...
Digitimes Research’s Jim Hsiao says its analysts believe Apple is planning to sacrifice its gross margins to save its tablet business, which has recently fallen into decline. They project that Apple’... Read more
Who’s On Now? – First Instant-Connect Search...
It’s nighttime and your car has broken down on the side of the highway. You need a tow truck right away, so you open an app on your iPhone, search for the closest tow truck and send an instant... Read more
13-inch 2.5GHz MacBook Pro on sale for $949,...
Best Buy has the 13″ 2.5GHz MacBook Pro available for $949.99 on their online store. Choose free shipping or free instant local store pickup (if available). Their price is $150 off MSRP. Price is... Read more
Save up to $125 on Retina MacBook Pros
B&H Photo has the new 2014 13″ and 15″ Retina MacBook Pros on sale for up to $125 off MSRP. Shipping is free, and B&H charges NY sales tax only. They’ll also include free copies of Parallels... Read more
Apple refurbished Time Capsules available sta...
The Apple Store has certified refurbished Time Capsules available for up to $60 off MSRP. Apple’s one-year warranty is included with each Time Capsule, and shipping is free: - 2TB Time Capsule: $255... Read more
Textilus New Word, Notes and PDF Processor fo...
Textilus is new word-crunching, notes, and PDF processor designed exclusively for the iPad. I haven’t had time to thoroughly check it out yet, but it looks great and early reviews are positive.... Read more
WD My Passport Pro Bus-Powered Thunderbolt RA...
WD’s My Passport Pro RAID solution is powered by an integrated Thunderbolt cable for true portability and speeds as high as 233 MB/s. HighlightsOverviewSpecifications Transfer, Back Up And Edit In... Read more

Jobs Board

*Apple* Solutions Consultant - Apple Inc. (U...
…important role that the ASC serves is that of providing an excellent Apple Customer Experience. Responsibilities include: * Promoting Apple products and solutions Read more
Senior Event Manager, *Apple* Retail Market...
…This senior level position is responsible for leading and imagining the Apple Retail Team's global event strategy. Delivering an overarching brand story; in-store, Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
Project Manager / Business Analyst, WW *Appl...
…a senior project manager / business analyst to work within our Worldwide Apple Fulfillment Operations and the Business Process Re-engineering team. This role will work Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.