TweetFollow Us on Twitter

Volume Number:2
Issue Number:6
Column Tag:Graphics Lab: Asm

Wizzo Shows Dissolve Effects

By Chris Yerga, Berkely, CA, MacTutor Contributing Editor

Fair Warning

Welcome to the second installment of the Graphic Lab. In this column we will explore the Mac's graphic capablilities and try to exploit them for all their worth. But I must warn prospective readers: This column is not for the so-called "power-users" or anyone else who bought their Mac to print out mailing labels. If you own a numeric keypad, this one isn't for you. This column is for people who'd rather watch a spaceship fly around on their screen than boot up Excel, given the choice. This column is for programmers who look forward to designing the title graphics for their applications, not the I/O drivers. This column is for those who never turn off the animation option in Switcher. So you've been warned. Everything beyond this paragraph will be pure frivolity. Let's go!

Crimes of Graphics

This second installment will deal with two crimes: one bad, and one good. First the bad one. Many of the people I've spoken with don't fully understand the potential of the Mac's graphics. They're blown away by some of the things they see, but they are convinced that the techniques are so involved that such feats are beyond their grasp. As a result, we haven't seen a lot of programs that push the Mac as far as they could. The good crime is one that we will commit, and one that will help us understand some basic principles of QuickDraw and graphics in general.

This is the crime of theft. We are going to use a Desk Accessory called BitNapper published in last month's column to steal graphics from other applications. Then we will show some title animation using those stolen bit maps in a fun little animation demo called Wizzo. The BitNapper DA is listed in last month's Graphics Lab column. With it, we can cut BitMaps from any application that supports desk accessories, or we can use it to cut our own graphics from MacPaint. BitNapper saves the stolen BitMap to disk as an MDS source file which allows us to install them as resources into our applications much like we have done with icons and the icon converter program published previously in Vol. 2 No.1 of MacTutor.

To use the BitNapper, install it into the system file on the disk with the application whose graphics you want to pilfer. When the picture you want is on the screen, select the BitNapper. It will install its own menu into the menu bar. Now select "Steal Bits" from its menu. Position the upper left hand corner of the selection rectangle at the upper left hand corner of the BitMap you want to steal. Now drag down to the lower right hand corner. The BitNapper will invert those bits within the selected rectangle. Release the button and the rest is self explanatory. The word constraint option will not be needed until later. It forces the selected BitMap to have left and right sides that coincide with word boundaries, which is sometimes useful. The BitNapper source, published last month, is also available on the source code disk #8 from MacTutor's mail order store.

What the good book has to say

Since we don't want to be complete outlaws, we will begin with some standard QuickDraw info taken straight from Inside Macintosh. The main QD data structure we will concern ourselves with is the BitMap. The BitMap is a rectangular arrangement of bits that describes some image. As a matter of fact, the Mac screen itself is a BitMap. Lets look at the structure of a BitMap.

From figure #1 we can see that the actual bit image of the BitMap is not a part of the BitMap data structure. Rather, there is a pointer to the bit image. This is because bit images, such as that of the Mac screen, tend to be quite large. The way that BitMaps are defined allows several different BitMaps use the same bit image. This is useful, as many times BitMaps only differ in their bounds rectangles. Another item of note is the fact that the rowBytes value should always be even. The reason for this is shown in figure #2. It makes sure that the beginning of each row of data, or each scanline in the case of the Mac screen, occurs on a word boundary. This allows us to access the rows using word or long sized instructions, which generally makes life simpler.

Peaceful coexistence

Now that we have grabbed a chunk of graphics from our favorite application, what shall we do next? How do we get our application to access the BitMap with ease? The answer is to keep the BitMap in the resource fork of the application. In the resource file for our application we do something like:

Resource 'GNRL' 135
Include  MyPicture.BMAP

Where MyPicture.BMAP is the filename of the BitMap that you saved with BitNapper. The ID number can be whatever you want. Although I was tempted to use my own resource type, I decided to go by the book and use GNRL, which Apple considers legal. To facilitate the use of BitMaps in resources, I have written a few utilities which simplify things a bit.

The first utility is a routine called GetBitMap, which loads a BitMap in from resources. It looks for an ID number in D0 and returns a handle to the BitMap in A2. The handle allows the BitMap to be relocatable in memory, preventing heap fragmentation, but creating a problem. The way that BitNapper stores the data is shown in figure #3. Since our resource BitMaps can move around in memory behind our backs, we can never be sure if the basAddr pointer actually points to the bit image that follows it.

The answer is a routine called LockBitMap. It locks the BitMap in memory and correctly sets the basAddr pointer according to the current position of the BitMap in memory. It takes a handle to the BitMap in A2 and returns a pointer to the BitMap in A3. Call LockBitMap just before you start using the BitMap. If memory is sparse, try to avoid allocating memory when there are locked BitMaps in memory. This will sidestep any heap fragmentation problems.

After you are done working with a BitMap, call UnLockBitMap to allow the memory manager to relocate the BitMap as it sees fit. UnlockBitMap takes a handle to the BitMap in A2. But be sure to lock it down again before using it.

The final routine is KillBitMap which, given a handle to the BitMap in A2, releases the memory occupied by the BitMap. If you don't want to kill your application as well, be sure not to use the handle after killing the BitMap.

More than one way to skin a BitMap

So we've stolen a BitMap, linked it into our resource fork, and are holding onto it by the handle. Now lets get it on the screen. This month's source code contains a couple examples of alternate ways to display a BitMap.

These routines fall into two general categories: ones that employ patterns and ones that employ regions. Lets start with the pattern based copies.

Wizzo Shows Bit Map Animation

Our Wizzo program shows how we can read in the stolen bit maps created with BitNapper and display it on the screen with some dissolve effects. Wizzo has two pattern based routines for use in titling or other dramatic drawing of the bit map. The two examples of pattern based routines are FadeIn and FadeOut.

FadeIn Shows Dissolve Effect

FadeIn takes a BitMap handle in A2 and dissolves it slowly onto the screen. The top,left corner of the destination is passed to FadeIn in D3,D4. First it locks the BitMap in memory. Then it makes a duplicate copy of the BitMap.

In the main loop it copies the source BitMap to the destination BitMap (which is off the screen). It then sets the pen mode to notPatBic. In this mode, any time a pattern is drawn on the BitMap, it performs a logical AND with the BitMap's current bit image. Figure #4 should make this more clear. The application has a table of 18 patterns of increasing darkness. In each iteration, a pattern is drawn over the entire duplicate BitMap, which at this point contains a copy of the source BitMap. Now we have a copy of the source BitMap in which only those bits set in our current pattern are set. I know...confusing, but the illustration is more clear.

After this, the duplicate is copied to the screen. Then the process begins again with a slightly darker pattern, until finally we have an all-black pattern which copies the entire BitMap. FadeIn then unlocks the source BitMap and disposes of the memory it allocated for the duplicate BitMap.

FadeOut does the opposite, as you may have guessed. Except that FadeOut only requires that you pass it a pointer to a rectangle in A4. It dissolves the bits enclosed within the rectangle on the screen. When it returns, the rectangle will be completely white.

FadeOut simply sets the pen mode to notPatBic and repeatedly does a _PaintRect with successively lighter patterns. It works from the end of our pattern list to the beginning.

These are fairly simple examples. Other possibilities are patterns of diagonal lines which move in barbershop-polelike fashion. Or perhaps altternating checkerboard patterns. Experiment with different variations.

A two-edged sword

The next set of copy routines are region based. They facilitate the use of QuickDraw's ability to clip graphics to an arbitraty region. The problem that arises here is that QuickDraw, as David Letterman might say, is "just too darn powerful." It can do all sorts of fabulous calculations with regions, but it requires great sacrifices in speed. When any kind of region calculations are involved, QuickDraw bogs down. There are certain solutions, but in some cases it is better to write your own application-specific routines which are frightfully optimized for your specific case. Examples of this will come in future issues. Stay tuned, campers.

Our region based routines, OpenRight and OpenOut repeatedy call _CopyBits with maskRgns that reveal more and more of the BitMap with each iteration. If you are not aware of it, _CopyBits allows the caller to pass it a region to which the copied bits will be clipped. OpenRight starts with a rectangular region which clips all but the leftmost vertical row of bits, and expands the region to the right until the entire BitMap is copied. OpenOut starts with a region that clips all but the centermost bit of the BitMap and expands outward in all directions until the entire BitMap is copied. Both of these routines use the routine _RectRgn which creates a rectangular region, given a rectangle and a region handle.

Fig. 5 Output of the BitNapper DA Formatted for an MDS Resource Include File

The saga continues...

These examples were intended to give you a basic familiarity with the techniques involved with using the BitNapper and the sample routines. In the coming months we will explore other areas of interest, such as scrolling and animation techniques. I'm very interested in hearing from readers. If you have any suggestions or questions, drop me a line at:

2556 Mabel St.

Berkeley, CA 94702-2141

Figure 5 shows the MDS text file format that BitNapper creates for us. As you can see, this is all ready to be included in our resource file. Figure 6 shows the bit map example used by Wizzo. Of course with any animation example, the real action is over by the time we get a screen shot. Perhaps next time we will look at exploding and imploding BitMaps...see you then.

Fig. 6 Output of our Wizzo program after Fadein Animation.

Chris Yerga wins $50 as our outstanding article for his Bitnapper DA and this month's Wizzo program!


/Output WizzoGraf





;  BitMap Demo #1  
; © 1986 by Chris Yerga for MacTutor


;  Declare external labels


MACRO   Center String,MidPT,Y =

 CLR.W  -(SP)    
 PEA    '{String}'
 CLR.L  D3; Clear high word of D3 for DIVU
 MOVE.W (SP)+,D3 ; Get the width (in pixels) in D3
 DIVU   #2,D3    ; Divide by 2
 MOVE.L #{MidPT},D4
 SUB.W  D3,D4    ;103-(width/2) to center text
 MOVE.W D4,-(SP) ;Push the X coordinate
 MOVE.W #{Y},-(SP) ;Push the Y coordinate
 _MoveTo;Position the pen
 PEA  '{String}'
 | ;End of Macro
;========= Local Constants =================

AllEvents EQU  $0000FFFF  ; Mask for FlushEvents
MaxEvents EQU  12
DWindLenEQU $AA  ; size of a Dialog Record
windowSizeEQU  $9C   ; size of window data struct
DiskEvent EQU  7
shiftKeyEQU 512  ; eventRec mask modifier bits

;======= Start of Main Program ================

BadPtr: _Debugger;Should never get here.  

 MOVEM.LD0-D7/A0-A6,-(SP) ;The routine 
 LEA    SaveRegs(A5),A0 ;which saves the registers
 MOVE.L A6,(A0)  
 MOVE.L A7,4(A0)
;======== Initialize the ROM routines =============

 PEA    -4(A5) ;QD Global ptr
 _InitGraf;Init QD global
 _InitFonts ;Init font manager
 _InitWindows    ;Init Window Manager
 _InitMenus ;Guess got it!
 CLR.L  -(SP)    ;Standard SysErr/DS dialog
 _InitDialogs    ;Init Dialog Manger
 _TEInit;Init ROM Text edit
 MOVE.L #AllEvents,D0;And flush ALL previous
 _FlushEvents    ;events
 _InitCursor;Get the standard arrow
;======== Begin our routine processing ==========

 MOVE #128,D0    ;get bitmap #128
 BSR    GetBitMap;from resources into A2
; This is where the BitMap routines are called

 PEA    Screen
 PEA    White
 MOVE #2,-(SP)   ;Get Geneva 12
 MOVE #12,-(SP)
 Center MacTutor BitMap Demo,256,50
 MOVE #100,D3    ;top coordinate
 MOVE #140,D4    ;left coordinate
 BSR    FadeIn   ;FadeIn (Note handle in A2)
 LEA    TempRect(A5),A4 ;get tempRect 
 BSR    FadeOut  ;and erase its contents
 MOVE #100,D3    ;top coordinate
 MOVE #140,D4    ;left coordinate
 BSR    OpenRight;OpenRight
 LEA    TempRect(A5),A4 ;get tempRect again
 BSR    FadeOut  ;and erase its contents
 MOVE #100,D3    ;top
 MOVE #140,D4    ;left
 BSR    OpenOut  ;OpenOut
 BSR    BlackOut
 BSR    GetEvent ;check for any events
 MOVE Event(A5), D0
 CMP    #0, D0   ;do we have an event?
 BEQ    BMTest   ;no, keep going
 LEA    SaveRegs(A5),A0 ;yes prepare to exit
 MOVE.L (A0),A6
 MOVE.L 4(A0),A7

; ========== Subroutines ==================

 CLR    -(SP)    ;returned event 
 MOVE #AllEvents,-(SP)  ;mask all events
 PEA    EventRecord(A5) ; event record block
 _GetNextEvent   ;go check the mouse 
 MOVE (SP)+,D0   ;get event result
 MOVE D0, Event(A5);save event in our global
 RTS    ;return
; =======These are the general BitMap utilities ======

; GetBitMap : Reads a BitMap in from resources
;on entry : D0 = BitMap resource ID
;returns a handle to the BitMap in A2

 CLR.L  -(SP)    ;room for Handle
 MOVE.L #'GNRL',-(SP);the resType
 MOVE D0,-(SP)   ;resID
 MOVE.L (SP)+,A2 ;get the handle
; LockBitMap : Locks the BitMap in memory and calculates the 
;       BasAddr field so that it's ready to use.
;on entry : A2 = handle to BitMap
;returns a pointer to the locked BitMap in A3

 MOVE.L A2,A0    ;copy handle
 _HLock ;lock it
 MOVE.L (A2),A3  ;get pointer
 ADDA   #14,A3   ;point to bit image
 MOVE.L A3,-14(A3) ;set basAddr field
 MOVE.L (A2),A3  ;get pointer
; UnLockBitMap : makes the BitMap relocatable.  Called
; whenever processing has been finished on a bitMap
; that will be used again so that Heap Fragmentation
; doesn't occur.
;on entry : A2 = handle to bitMap

 MOVE.L A2,A0    ;copy handle
 _HUnLock ;unlock it
; KillBitMap : Does what it says
;on entry : A2 = handle to bitMap

 MOVE.L A2,A0    ;copy handle
; ====These are the sample BitMap display routines =====

; FadeIn : Displays the BitMap with a reverse dissolving effect
;on entry : A2 = bitMap handle
;D3,D4 = top,left coordinates of display rect

 MOVE.L A2,A0    ;copy handle
 _GetHandleSize  ;get handle size
 _NewPtr,Clear   ;allocate an equal sized block
 MOVE.L A0,A4    ;copy pointer
 BSR    LockBitMap ;lock and init bitMap
 LEA    TempRect(A5),A0 ;get ptr to dest rect
 MOVE D3,(A0)    ;copy top
 MOVE D4,2(A0)   ;copy left
 ADD    10(A3),D3;calculate bottom
 MOVE D3,4(A0)
 ADD    12(A3),D4;calculate right
 MOVE D4,6(A0)   ;copy the header info
 MOVE.L 4(A3),4(A4)
 MOVE.L 8(A3),8(A4)
 MOVE 12(A3),12(A4)
 LEA    14(A4),A0
 MOVE.L A0,(A4)  ;set basAddr
 MOVE.L A4,-(SP) ;the dest bitMap
 MOVE #15,-(SP)  ;notPatBic mode
 MOVE #0,D3 ;pat counter
@1 MOVE.L A3,-(SP) ;source BitMap
 MOVE.L A4,-(SP) ;dest BitMap
 LEA    6(A3),A0 ;get pointer to bitMap bounds
 MOVE.L A0,-(SP) ;sourceRect
 MOVE.L A0,-(SP) ;destRect
 MOVE #0,-(SP)   ;srcCopy
 CLR.L  -(SP)
 LEA    PatList,A0 ;ptr to patterns
 MOVE D3,D0 ;copy pattern index
 MULU   #8,D0    ;offset to pattern
 ADDA   D0,A0
 MOVE.L A0,-(SP) ;point to pattern
 PEA    6(A4)    ;BitMap bounds
 _PaintRect ;paint the rect
 MOVE.L A4,-(SP) ;source BitMap
 MOVE.L (A5),A0  
 PEA    $FFFFFF86(A0);dest BitMap (GrafPort)
 PEA    6(A4)    ;sourceRect
 PEA    TempRect(A5) ;destRect
 MOVE #0,-(SP)   ;srcCopy
 CLR.L  -(SP)
 ADDQ #1,D3 ;next pattern...
 CMP    #19,D3   ;done?
 BNE    @1;not done..
 MOVE.L (A5),A0  ;restore screenbits
 PEA    $FFFFFF86(A0)
 MOVE.L A4,A0    ;free up memory
 BSR    UnLockBitMap
; FadeOut : Erases the contents of a rect with a dissolve
;on entry : A4 = pointer to rect to be erased

 MOVE #15,-(SP)  ;set pattern mode to notPatBic
 MOVE #18,D3;init pattern counter
@1 LEA  PatList,A0 ;ptr to patterns
 MOVE D3,D0 ;copy pattern index
 MULU   #8,D0    ;offset to pattern
 ADDA   D0,A0
 MOVE.L A0,-(SP) ;point to pattern
 MOVE.L A4,-(SP) ;BitMap bounds
 _PaintRect ;paint the rect
 TST    D3;are we done
 BEQ    @2;yes
 SUBQ #1,D3 ;decrement the pattern number
 BRA    @1;loop
@2 RTS  
; OpenRight : Opens the BitMap on the screen from left to right
;on entry : D3,D4 = top,left of screen destination
;     A2 = handle to bitMap

 BSR    LockBitMap ;lock the handle in memory
 CLR.L  -(SP)    ;room for rgnHandle
 MOVE.L (SP)+,TempRgn(A5) ;save the handle
 MOVE D3,RgnRect(A5) ;copy top  of bounds
 MOVE D4,RgnRect+2(A5)    ;copy left of bounds
 ADD    10(A3),D0;calc bottom
 MOVE D0,RgnRect+4(A5)
 MOVE D4,RgnRect+6(A5)    ;make it 1 pixel wide    
@1 ADD  #1,RgnRect+6(A5)  ;extend right edge 1 pixel
 MOVE.L TempRgn(A5),-(SP) ;push rgnHandle
 PEA    RgnRect(A5);push the rect
 _RectRgn ;make it a region
 MOVE.L TempRgn(A5),A4  ;copy rgnHandle to A4
 BSR    ShowBitMap
 ADD    #1,RgnRect+2(A5)  ;extend left edge 1 pixel
 MOVE 12(A3),D0  ;get right edge of BitMap
 ADD    D4,D0    ;calculate width
 CMP    RgnRect+6(A5),D0  ;have we extended the rect
 ;all the way there?
 BNE    @1;no...keep going
 MOVE.L TempRgn(A5),-(SP) ;free up memory

; OpenOut : Opens the BitMap up from the center outward
;on entry : D3,D4 = top,left of display rect
;   A2 = handle to bitMap

 BSR    LockBitMap ;lock the handle in memory
 CLR.L  -(SP)    ;room for rgnHandle
 MOVE.L (SP)+,TempRgn(A5) ;save the handle
 MOVE D3,D0 ;copy top
 ADD    D3,D0    ;multiply by 2
 ADD    10(A3),D0;add offset
 EXT.L  D0;extend to 32 bit precision
 DIVU   #2,D0    ;find center
 MOVE D4,D1 ;copy left
 ADD    D4,D1    ;multiply by 2
 ADD    12(A3),D1;add offset
 EXT.L  D1;extend precision
 DIVU   #2,D1    ;find center
 MOVE D0,RgnRect(A5) ;top of the rect
 MOVE D1,RgnRect+2(A5)  ;left
 ADD    #1,D0
 MOVE D0,RgnRect+4(A5)  ;bottom
 ADD    #1,D1
 MOVE D1,RgnRect+6(A5)  ;right
@1 MOVE.L TempRgn(A5),-(SP) ;push the rgnHandle
 PEA    RgnRect(A5);and the rect
 MOVE.L TempRgn(A5),A4  ;copy rgnHandle to A4
 BSR    ShowBitMap
 ADD    #1,RgnRect+4(A5)  ;extend the bottom 1 pixel
 ADD    #1,RgnRect+6(A5)  ;extend the right  1 pixel
 SUB    #1,RgnRect(A5)  ;extend the top 1 pixel
 SUB    #1,RgnRect+2(A5)  ;extend the left 1 pixel
 MOVE 12(A3),D0  ;get right edge of BitMap
 ADD    D4,D0    ;calculate width
 CMP    RgnRect+6(A5),D0  ;have we extended the rect
 ;all the way there?
 BGE    @1;no...keep going
 MOVE 10(A3),D0  ;get bottom of BitMap
 ADD    D3,D0
 CMP    RgnRect+4(A5),D0  ;are we done?
 BGE    @1;no...
 MOVE.L TempRgn(A5),-(SP)

; ShowBitMap : Displays the BitMap on the screen
;on entry : D3,D4 top,left of screen destination
;   A4 = maskRgn or NIL
 BSR    LockBitMap ;lock it in memory
 LEA    TempRect(A5),A0 ;get ptr to dest rect
 MOVE D3,(A0)    ;copy top
 MOVE D4,2(A0)   ;copy left
 ADD    10(A3),D0;calculate bottom
 MOVE D0,4(A0)
 ADD    12(A3),D1;calculate right
 MOVE D1,6(A0)
 MOVE.L A3,-(SP) ;source BitMap
 PEA    thePort(A5);get GrafPtr
 MOVE.L thePort(A5),A0
 PEA    2(A0)    ;dest BitMap (GrafPort)
 PEA    6(A3)    ;sourceRect
 PEA    TempRect(A5) ;destRect
 MOVE #0,-(SP)
 MOVE.L A4,-(SP)
; BlackOut :  Matthias Jabs would be proud...

 MOVE #8,-(SP) ;set the pattern mode to patCopy
 MOVE #0,D3 ;init pattern counter
@1 LEA  PatList,A0 ;ptr to patterns
 MOVE D3,D0 ;copy pattern index
 MULU   #8,D0    ;offset to pattern
 ADDA   D0,A0
 MOVE.L A0,-(SP) ;point to pattern
 PEA    Screen   ;the whole screen
 _PaintRect ;paint the rect
 CMP    #18,D3   ;are we done
 BEQ    @2;yes
 ADDQ #1,D3 ;decrement the pattern number
 BRA    @1;loop
@2 RTS  
;======== Program Variables ==================

SaveRegs: DS.L 2 ;For saving the SP etc..

TempRect: DS.W 4

EventRecord:DS.B 16;event record block
Event:  DS.W1  ;save event number
; ======Program Constants =================

White:  DC.L0,0

Screen: DC.W0,0,342,512

PatList:;Pattern data for fade routines...if you have
 ;to type this in,  you have my sympathy
DC.B 0,0,0,0,0,0,0,0
DC.B $08,$00,$00,$00,$02 
DC.B $00,$00,$00,$08 
DC.B $00,$00,$00,$02 
DC.B $20,$00,$00,$08 
DC.B $00,$40,$00,$02 
DC.B $24,$00,$00,$08 
DC.B $00,$42,$00,$02 
DC.B $24,$80,$08,$88 
DC.B $00,$42,$00,$02 
DC.B $26,$80,$28,$A8 
DC.B $00,$42,$00,$82 
DC.B $26,$80,$28,$A8 
DC.B $00,$4E,$20,$82 
DC.B $A6,$80,$2E,$A9 
DC.B $01,$4E,$21,$82 
DC.B $A6,$C0,$2E,$A9 
DC.B $01,$5E,$21,$86 
DC.B $A6,$C0,$2E,$A9 
DC.B $23,$5E,$25,$C6 
DC.B $A6,$C0,$2E,$A9 
DC.B $23,$5E,$25,$C6 
DC.B $AE,$D1,$2E,$AD 
DC.B $23,$DF,$25,$D6 
DC.B $AE,$D1,$AE,$AD 
DC.B $23,$DF,$E5,$D6 
DC.B $AE,$D7,$AE,$FF 
DC.B $6F,$DF,$E5,$DF 
DC.B $AF,$F7,$BE,$FF 
DC.B $6F,$DF,$F5,$FF 
DC.B $AF,$F7,$BE,$FF 
DC.B $7F,$DF,$FD,$FF 

;  Thats it...

; This is how you get your BitMaps 
; in your resource fork

.Align 2
Resource  'GNRL' 128  'test BitMap'

Community Search:
MacTech Search:

Software Updates via MacUpdate

Battle Cars (Games)
Battle Cars 1.1 Device: iOS Universal Category: Games Price: $1.99, Version: 1.1 (iTunes) Description: Welcome to the world of Battle Cars. Battle Cars is a classic arcade top-down racing game with fast mini cars and funny weapons to... | Read more »
How to get started with
One could be forgiven for thinking that there are already plenty of streaming video apps out there. It's just that the App Store charts would insist that you're mistaken. [Read more] | Read more »
Rodeo Stampede: Guide to all Savannah an...
A "gotta catch 'em all" joke seems appropriate here, even though we're talking animals in Rodeo Stampede and not pocket monsters. By now you've probably had plenty of rides, tamed some animals and built yourself a pretty nice zoo | Read more »
Is there cross-platform play in slither....
So you've sunken plenty of hours into crawling around in on your iPhone or iPad. You've got your stories of tragedy and triumph, the times you coiled four snakes at one time balanced out by the others when you had a length of more than... | Read more »
Rodeo Stampede guide to running a better...
In Rodeo Stampede, honing your skills so you can jump from animal to animal and outrun the herd as long as possible is only half the fun. Once you've tamed a few animals, you can bring them home with you. [Read more] | Read more »
VoxSyn (Music)
VoxSyn 1.0 Device: iOS Universal Category: Music Price: $6.99, Version: 1.0 (iTunes) Description: VoxSyn turns your voice into the most flexible vocal sound generator ever. Instantly following even subtle modulations of pitch and... | Read more »
Catch Battleplans on Google Play from Ju...
Real-time strategy title Battleplans is due for release on Google Play on June 30th, following its release for iOS systems last month. With its simple interface and pretty graphics, the crowd-pleaser brings a formerly overlooked genre out for the... | Read more »
iDoyle: The interactive Adventures of Sh...
iDoyle: The interactive Adventures of Sherlock Holmes - A Scandal in Bohemia 1.0 Device: iOS Universal Category: Books Price: $1.99, Version: 1.0 (iTunes) Description: Special Release Price $1.99 (Normally $3.99) | Read more »
Five popular free apps to help you slim...
Thanks to retail and advertising, we're used to thinking one season ahead. Here we are just a week into the summer and we're conditioned to start thinking about the fall. [Read more] | Read more »
How to ride longer and tame more animals...
It's hard to accurately describe Rodeo Stampede to people who haven't seen it yet. It's like if someone took Crossy Roadand Disco Zoo and put them in a blender, yet with a unique game mechanic that's still simple and fun for anyone. [Read more] | Read more »

Price Scanner via

MacBook Airs on sale for up to $50-$100 off M...
B&H Photo has 13″ and 11″ MacBook Airs on sale for up to $100 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 11″ 1.6GHz/128GB MacBook Air: $849 $50 off list price - 11″ 1.... Read more
Brexit Vote Result Forecast To Slash UK 2016...
Uncertainty and economic volatility can be expected to increase over the next nine months, as the Brexit and concerns over the future of the EU hit IT investment, say Canalys market analysts, with... Read more
13-inch 256GB MacBook Air on sale for $1149,...
Amazon has the 2016 13″ 1.6GHz/256GB MacBook Air (model MMGG2LL/A) on sale for $1149.99 including free shipping. Their price is also $50 off MSRP. Read more
Haven App Launches New Age Of Wirless 911 Eme...
Haven from RapidSOS represents a transformation in access to emergency services from a phone call solely dependent on voice to a robust data connection for voice, text, medical/demographic data.... Read more
Cu Parachute 1.1 Retirement Success PLanning...
Tucson, Arizona based Indie developer Bradley McCarthy has announce the release of Cu (Copper) Parachute 1.1 for iPhone, iPad, and iPod touch devices — a tool with which users can continuously... Read more
Research and Markets Releases iPhone 6s Plus...
A new analysis report from Dublin-based Research and Markets observes that with the iPhone 6s Plus, Apple introduced a new rear camera module. The new device has similar structure and technology than... Read more
Apple refurbished Retina MacBook Pros availab...
Apple has Certified Refurbished 2015 13″ and 15″ Retina MacBook Pros available for up to $380 off the cost of new models. An Apple one-year warranty is included with each model, and shipping is free... Read more
Apple refurbished 11-inch MacBook Airs availa...
Apple has Certified Refurbished 11″ MacBook Airs (the latest models), available for up to $170 off the cost of new models. An Apple one-year warranty is included with each MacBook, and shipping is... Read more
Apple price trackers, updated continuously
Scan our Apple Price Trackers for the latest information on sales, bundles, and availability on systems from Apple’s authorized internet/catalog resellers. We update the trackers continuously: - 15″... Read more
12-inch 32GB and 128GB WiFi iPad Pros on sale...
B&H Photo has 12″ 32GB & 128GB WiFi iPad Pros on sale for up to $80 off MSRP, each including free shipping. B&H charges sales tax in NY only: - 12″ Space Gray 32GB WiFi iPad Pro: $749 $50... Read more

Jobs Board

*Apple* Retail - Multiple Positions, Willow...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* iPhone 6s and New Products Tester Ne...
…we therefore look forward to put out products to quality test for durability. Apple leads the digital music revolution with its iPods and iTunes online store, Read more
*Apple* iPhone 6s and New Products Tester Ne...
…we therefore look forward to put out products to quality test for durability. Apple leads the digital music revolution with its iPods and iTunes online store, Read more
*Apple* iPhone 6s and New Products Tester Ne...
…we therefore look forward to put out products to quality test for durability. Apple leads the digital music revolution with its iPods and iTunes online store, Read more
*Apple* Retail - Multiple Positions, Towson...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.