TweetFollow Us on Twitter

Volume Number:2
Issue Number:6
Column Tag:Graphics Lab: Asm

Wizzo Shows Dissolve Effects

By Chris Yerga, Berkely, CA, MacTutor Contributing Editor

Fair Warning

Welcome to the second installment of the Graphic Lab. In this column we will explore the Mac's graphic capablilities and try to exploit them for all their worth. But I must warn prospective readers: This column is not for the so-called "power-users" or anyone else who bought their Mac to print out mailing labels. If you own a numeric keypad, this one isn't for you. This column is for people who'd rather watch a spaceship fly around on their screen than boot up Excel, given the choice. This column is for programmers who look forward to designing the title graphics for their applications, not the I/O drivers. This column is for those who never turn off the animation option in Switcher. So you've been warned. Everything beyond this paragraph will be pure frivolity. Let's go!

Crimes of Graphics

This second installment will deal with two crimes: one bad, and one good. First the bad one. Many of the people I've spoken with don't fully understand the potential of the Mac's graphics. They're blown away by some of the things they see, but they are convinced that the techniques are so involved that such feats are beyond their grasp. As a result, we haven't seen a lot of programs that push the Mac as far as they could. The good crime is one that we will commit, and one that will help us understand some basic principles of QuickDraw and graphics in general.

This is the crime of theft. We are going to use a Desk Accessory called BitNapper published in last month's column to steal graphics from other applications. Then we will show some title animation using those stolen bit maps in a fun little animation demo called Wizzo. The BitNapper DA is listed in last month's Graphics Lab column. With it, we can cut BitMaps from any application that supports desk accessories, or we can use it to cut our own graphics from MacPaint. BitNapper saves the stolen BitMap to disk as an MDS source file which allows us to install them as resources into our applications much like we have done with icons and the icon converter program published previously in Vol. 2 No.1 of MacTutor.

To use the BitNapper, install it into the system file on the disk with the application whose graphics you want to pilfer. When the picture you want is on the screen, select the BitNapper. It will install its own menu into the menu bar. Now select "Steal Bits" from its menu. Position the upper left hand corner of the selection rectangle at the upper left hand corner of the BitMap you want to steal. Now drag down to the lower right hand corner. The BitNapper will invert those bits within the selected rectangle. Release the button and the rest is self explanatory. The word constraint option will not be needed until later. It forces the selected BitMap to have left and right sides that coincide with word boundaries, which is sometimes useful. The BitNapper source, published last month, is also available on the source code disk #8 from MacTutor's mail order store.

What the good book has to say

Since we don't want to be complete outlaws, we will begin with some standard QuickDraw info taken straight from Inside Macintosh. The main QD data structure we will concern ourselves with is the BitMap. The BitMap is a rectangular arrangement of bits that describes some image. As a matter of fact, the Mac screen itself is a BitMap. Lets look at the structure of a BitMap.

From figure #1 we can see that the actual bit image of the BitMap is not a part of the BitMap data structure. Rather, there is a pointer to the bit image. This is because bit images, such as that of the Mac screen, tend to be quite large. The way that BitMaps are defined allows several different BitMaps use the same bit image. This is useful, as many times BitMaps only differ in their bounds rectangles. Another item of note is the fact that the rowBytes value should always be even. The reason for this is shown in figure #2. It makes sure that the beginning of each row of data, or each scanline in the case of the Mac screen, occurs on a word boundary. This allows us to access the rows using word or long sized instructions, which generally makes life simpler.

Peaceful coexistence

Now that we have grabbed a chunk of graphics from our favorite application, what shall we do next? How do we get our application to access the BitMap with ease? The answer is to keep the BitMap in the resource fork of the application. In the resource file for our application we do something like:

Resource 'GNRL' 135
Include  MyPicture.BMAP

Where MyPicture.BMAP is the filename of the BitMap that you saved with BitNapper. The ID number can be whatever you want. Although I was tempted to use my own resource type, I decided to go by the book and use GNRL, which Apple considers legal. To facilitate the use of BitMaps in resources, I have written a few utilities which simplify things a bit.

The first utility is a routine called GetBitMap, which loads a BitMap in from resources. It looks for an ID number in D0 and returns a handle to the BitMap in A2. The handle allows the BitMap to be relocatable in memory, preventing heap fragmentation, but creating a problem. The way that BitNapper stores the data is shown in figure #3. Since our resource BitMaps can move around in memory behind our backs, we can never be sure if the basAddr pointer actually points to the bit image that follows it.

The answer is a routine called LockBitMap. It locks the BitMap in memory and correctly sets the basAddr pointer according to the current position of the BitMap in memory. It takes a handle to the BitMap in A2 and returns a pointer to the BitMap in A3. Call LockBitMap just before you start using the BitMap. If memory is sparse, try to avoid allocating memory when there are locked BitMaps in memory. This will sidestep any heap fragmentation problems.

After you are done working with a BitMap, call UnLockBitMap to allow the memory manager to relocate the BitMap as it sees fit. UnlockBitMap takes a handle to the BitMap in A2. But be sure to lock it down again before using it.

The final routine is KillBitMap which, given a handle to the BitMap in A2, releases the memory occupied by the BitMap. If you don't want to kill your application as well, be sure not to use the handle after killing the BitMap.

More than one way to skin a BitMap

So we've stolen a BitMap, linked it into our resource fork, and are holding onto it by the handle. Now lets get it on the screen. This month's source code contains a couple examples of alternate ways to display a BitMap.

These routines fall into two general categories: ones that employ patterns and ones that employ regions. Lets start with the pattern based copies.

Wizzo Shows Bit Map Animation

Our Wizzo program shows how we can read in the stolen bit maps created with BitNapper and display it on the screen with some dissolve effects. Wizzo has two pattern based routines for use in titling or other dramatic drawing of the bit map. The two examples of pattern based routines are FadeIn and FadeOut.

FadeIn Shows Dissolve Effect

FadeIn takes a BitMap handle in A2 and dissolves it slowly onto the screen. The top,left corner of the destination is passed to FadeIn in D3,D4. First it locks the BitMap in memory. Then it makes a duplicate copy of the BitMap.

In the main loop it copies the source BitMap to the destination BitMap (which is off the screen). It then sets the pen mode to notPatBic. In this mode, any time a pattern is drawn on the BitMap, it performs a logical AND with the BitMap's current bit image. Figure #4 should make this more clear. The application has a table of 18 patterns of increasing darkness. In each iteration, a pattern is drawn over the entire duplicate BitMap, which at this point contains a copy of the source BitMap. Now we have a copy of the source BitMap in which only those bits set in our current pattern are set. I know...confusing, but the illustration is more clear.

After this, the duplicate is copied to the screen. Then the process begins again with a slightly darker pattern, until finally we have an all-black pattern which copies the entire BitMap. FadeIn then unlocks the source BitMap and disposes of the memory it allocated for the duplicate BitMap.

FadeOut does the opposite, as you may have guessed. Except that FadeOut only requires that you pass it a pointer to a rectangle in A4. It dissolves the bits enclosed within the rectangle on the screen. When it returns, the rectangle will be completely white.

FadeOut simply sets the pen mode to notPatBic and repeatedly does a _PaintRect with successively lighter patterns. It works from the end of our pattern list to the beginning.

These are fairly simple examples. Other possibilities are patterns of diagonal lines which move in barbershop-polelike fashion. Or perhaps altternating checkerboard patterns. Experiment with different variations.

A two-edged sword

The next set of copy routines are region based. They facilitate the use of QuickDraw's ability to clip graphics to an arbitraty region. The problem that arises here is that QuickDraw, as David Letterman might say, is "just too darn powerful." It can do all sorts of fabulous calculations with regions, but it requires great sacrifices in speed. When any kind of region calculations are involved, QuickDraw bogs down. There are certain solutions, but in some cases it is better to write your own application-specific routines which are frightfully optimized for your specific case. Examples of this will come in future issues. Stay tuned, campers.

Our region based routines, OpenRight and OpenOut repeatedy call _CopyBits with maskRgns that reveal more and more of the BitMap with each iteration. If you are not aware of it, _CopyBits allows the caller to pass it a region to which the copied bits will be clipped. OpenRight starts with a rectangular region which clips all but the leftmost vertical row of bits, and expands the region to the right until the entire BitMap is copied. OpenOut starts with a region that clips all but the centermost bit of the BitMap and expands outward in all directions until the entire BitMap is copied. Both of these routines use the routine _RectRgn which creates a rectangular region, given a rectangle and a region handle.

Fig. 5 Output of the BitNapper DA Formatted for an MDS Resource Include File

The saga continues...

These examples were intended to give you a basic familiarity with the techniques involved with using the BitNapper and the sample routines. In the coming months we will explore other areas of interest, such as scrolling and animation techniques. I'm very interested in hearing from readers. If you have any suggestions or questions, drop me a line at:

2556 Mabel St.

Berkeley, CA 94702-2141

Figure 5 shows the MDS text file format that BitNapper creates for us. As you can see, this is all ready to be included in our resource file. Figure 6 shows the bit map example used by Wizzo. Of course with any animation example, the real action is over by the time we get a screen shot. Perhaps next time we will look at exploding and imploding BitMaps...see you then.

Fig. 6 Output of our Wizzo program after Fadein Animation.

Chris Yerga wins $50 as our outstanding article for his Bitnapper DA and this month's Wizzo program!


/Output WizzoGraf





;  BitMap Demo #1  
; © 1986 by Chris Yerga for MacTutor


;  Declare external labels


MACRO   Center String,MidPT,Y =

 CLR.W  -(SP)    
 PEA    '{String}'
 CLR.L  D3; Clear high word of D3 for DIVU
 MOVE.W (SP)+,D3 ; Get the width (in pixels) in D3
 DIVU   #2,D3    ; Divide by 2
 MOVE.L #{MidPT},D4
 SUB.W  D3,D4    ;103-(width/2) to center text
 MOVE.W D4,-(SP) ;Push the X coordinate
 MOVE.W #{Y},-(SP) ;Push the Y coordinate
 _MoveTo;Position the pen
 PEA  '{String}'
 | ;End of Macro
;========= Local Constants =================

AllEvents EQU  $0000FFFF  ; Mask for FlushEvents
MaxEvents EQU  12
DWindLenEQU $AA  ; size of a Dialog Record
windowSizeEQU  $9C   ; size of window data struct
DiskEvent EQU  7
shiftKeyEQU 512  ; eventRec mask modifier bits

;======= Start of Main Program ================

BadPtr: _Debugger;Should never get here.  

 MOVEM.LD0-D7/A0-A6,-(SP) ;The routine 
 LEA    SaveRegs(A5),A0 ;which saves the registers
 MOVE.L A6,(A0)  
 MOVE.L A7,4(A0)
;======== Initialize the ROM routines =============

 PEA    -4(A5) ;QD Global ptr
 _InitGraf;Init QD global
 _InitFonts ;Init font manager
 _InitWindows    ;Init Window Manager
 _InitMenus ;Guess got it!
 CLR.L  -(SP)    ;Standard SysErr/DS dialog
 _InitDialogs    ;Init Dialog Manger
 _TEInit;Init ROM Text edit
 MOVE.L #AllEvents,D0;And flush ALL previous
 _FlushEvents    ;events
 _InitCursor;Get the standard arrow
;======== Begin our routine processing ==========

 MOVE #128,D0    ;get bitmap #128
 BSR    GetBitMap;from resources into A2
; This is where the BitMap routines are called

 PEA    Screen
 PEA    White
 MOVE #2,-(SP)   ;Get Geneva 12
 MOVE #12,-(SP)
 Center MacTutor BitMap Demo,256,50
 MOVE #100,D3    ;top coordinate
 MOVE #140,D4    ;left coordinate
 BSR    FadeIn   ;FadeIn (Note handle in A2)
 LEA    TempRect(A5),A4 ;get tempRect 
 BSR    FadeOut  ;and erase its contents
 MOVE #100,D3    ;top coordinate
 MOVE #140,D4    ;left coordinate
 BSR    OpenRight;OpenRight
 LEA    TempRect(A5),A4 ;get tempRect again
 BSR    FadeOut  ;and erase its contents
 MOVE #100,D3    ;top
 MOVE #140,D4    ;left
 BSR    OpenOut  ;OpenOut
 BSR    BlackOut
 BSR    GetEvent ;check for any events
 MOVE Event(A5), D0
 CMP    #0, D0   ;do we have an event?
 BEQ    BMTest   ;no, keep going
 LEA    SaveRegs(A5),A0 ;yes prepare to exit
 MOVE.L (A0),A6
 MOVE.L 4(A0),A7

; ========== Subroutines ==================

 CLR    -(SP)    ;returned event 
 MOVE #AllEvents,-(SP)  ;mask all events
 PEA    EventRecord(A5) ; event record block
 _GetNextEvent   ;go check the mouse 
 MOVE (SP)+,D0   ;get event result
 MOVE D0, Event(A5);save event in our global
 RTS    ;return
; =======These are the general BitMap utilities ======

; GetBitMap : Reads a BitMap in from resources
;on entry : D0 = BitMap resource ID
;returns a handle to the BitMap in A2

 CLR.L  -(SP)    ;room for Handle
 MOVE.L #'GNRL',-(SP);the resType
 MOVE D0,-(SP)   ;resID
 MOVE.L (SP)+,A2 ;get the handle
; LockBitMap : Locks the BitMap in memory and calculates the 
;       BasAddr field so that it's ready to use.
;on entry : A2 = handle to BitMap
;returns a pointer to the locked BitMap in A3

 MOVE.L A2,A0    ;copy handle
 _HLock ;lock it
 MOVE.L (A2),A3  ;get pointer
 ADDA   #14,A3   ;point to bit image
 MOVE.L A3,-14(A3) ;set basAddr field
 MOVE.L (A2),A3  ;get pointer
; UnLockBitMap : makes the BitMap relocatable.  Called
; whenever processing has been finished on a bitMap
; that will be used again so that Heap Fragmentation
; doesn't occur.
;on entry : A2 = handle to bitMap

 MOVE.L A2,A0    ;copy handle
 _HUnLock ;unlock it
; KillBitMap : Does what it says
;on entry : A2 = handle to bitMap

 MOVE.L A2,A0    ;copy handle
; ====These are the sample BitMap display routines =====

; FadeIn : Displays the BitMap with a reverse dissolving effect
;on entry : A2 = bitMap handle
;D3,D4 = top,left coordinates of display rect

 MOVE.L A2,A0    ;copy handle
 _GetHandleSize  ;get handle size
 _NewPtr,Clear   ;allocate an equal sized block
 MOVE.L A0,A4    ;copy pointer
 BSR    LockBitMap ;lock and init bitMap
 LEA    TempRect(A5),A0 ;get ptr to dest rect
 MOVE D3,(A0)    ;copy top
 MOVE D4,2(A0)   ;copy left
 ADD    10(A3),D3;calculate bottom
 MOVE D3,4(A0)
 ADD    12(A3),D4;calculate right
 MOVE D4,6(A0)   ;copy the header info
 MOVE.L 4(A3),4(A4)
 MOVE.L 8(A3),8(A4)
 MOVE 12(A3),12(A4)
 LEA    14(A4),A0
 MOVE.L A0,(A4)  ;set basAddr
 MOVE.L A4,-(SP) ;the dest bitMap
 MOVE #15,-(SP)  ;notPatBic mode
 MOVE #0,D3 ;pat counter
@1 MOVE.L A3,-(SP) ;source BitMap
 MOVE.L A4,-(SP) ;dest BitMap
 LEA    6(A3),A0 ;get pointer to bitMap bounds
 MOVE.L A0,-(SP) ;sourceRect
 MOVE.L A0,-(SP) ;destRect
 MOVE #0,-(SP)   ;srcCopy
 CLR.L  -(SP)
 LEA    PatList,A0 ;ptr to patterns
 MOVE D3,D0 ;copy pattern index
 MULU   #8,D0    ;offset to pattern
 ADDA   D0,A0
 MOVE.L A0,-(SP) ;point to pattern
 PEA    6(A4)    ;BitMap bounds
 _PaintRect ;paint the rect
 MOVE.L A4,-(SP) ;source BitMap
 MOVE.L (A5),A0  
 PEA    $FFFFFF86(A0);dest BitMap (GrafPort)
 PEA    6(A4)    ;sourceRect
 PEA    TempRect(A5) ;destRect
 MOVE #0,-(SP)   ;srcCopy
 CLR.L  -(SP)
 ADDQ #1,D3 ;next pattern...
 CMP    #19,D3   ;done?
 BNE    @1;not done..
 MOVE.L (A5),A0  ;restore screenbits
 PEA    $FFFFFF86(A0)
 MOVE.L A4,A0    ;free up memory
 BSR    UnLockBitMap
; FadeOut : Erases the contents of a rect with a dissolve
;on entry : A4 = pointer to rect to be erased

 MOVE #15,-(SP)  ;set pattern mode to notPatBic
 MOVE #18,D3;init pattern counter
@1 LEA  PatList,A0 ;ptr to patterns
 MOVE D3,D0 ;copy pattern index
 MULU   #8,D0    ;offset to pattern
 ADDA   D0,A0
 MOVE.L A0,-(SP) ;point to pattern
 MOVE.L A4,-(SP) ;BitMap bounds
 _PaintRect ;paint the rect
 TST    D3;are we done
 BEQ    @2;yes
 SUBQ #1,D3 ;decrement the pattern number
 BRA    @1;loop
@2 RTS  
; OpenRight : Opens the BitMap on the screen from left to right
;on entry : D3,D4 = top,left of screen destination
;     A2 = handle to bitMap

 BSR    LockBitMap ;lock the handle in memory
 CLR.L  -(SP)    ;room for rgnHandle
 MOVE.L (SP)+,TempRgn(A5) ;save the handle
 MOVE D3,RgnRect(A5) ;copy top  of bounds
 MOVE D4,RgnRect+2(A5)    ;copy left of bounds
 ADD    10(A3),D0;calc bottom
 MOVE D0,RgnRect+4(A5)
 MOVE D4,RgnRect+6(A5)    ;make it 1 pixel wide    
@1 ADD  #1,RgnRect+6(A5)  ;extend right edge 1 pixel
 MOVE.L TempRgn(A5),-(SP) ;push rgnHandle
 PEA    RgnRect(A5);push the rect
 _RectRgn ;make it a region
 MOVE.L TempRgn(A5),A4  ;copy rgnHandle to A4
 BSR    ShowBitMap
 ADD    #1,RgnRect+2(A5)  ;extend left edge 1 pixel
 MOVE 12(A3),D0  ;get right edge of BitMap
 ADD    D4,D0    ;calculate width
 CMP    RgnRect+6(A5),D0  ;have we extended the rect
 ;all the way there?
 BNE    @1;no...keep going
 MOVE.L TempRgn(A5),-(SP) ;free up memory

; OpenOut : Opens the BitMap up from the center outward
;on entry : D3,D4 = top,left of display rect
;   A2 = handle to bitMap

 BSR    LockBitMap ;lock the handle in memory
 CLR.L  -(SP)    ;room for rgnHandle
 MOVE.L (SP)+,TempRgn(A5) ;save the handle
 MOVE D3,D0 ;copy top
 ADD    D3,D0    ;multiply by 2
 ADD    10(A3),D0;add offset
 EXT.L  D0;extend to 32 bit precision
 DIVU   #2,D0    ;find center
 MOVE D4,D1 ;copy left
 ADD    D4,D1    ;multiply by 2
 ADD    12(A3),D1;add offset
 EXT.L  D1;extend precision
 DIVU   #2,D1    ;find center
 MOVE D0,RgnRect(A5) ;top of the rect
 MOVE D1,RgnRect+2(A5)  ;left
 ADD    #1,D0
 MOVE D0,RgnRect+4(A5)  ;bottom
 ADD    #1,D1
 MOVE D1,RgnRect+6(A5)  ;right
@1 MOVE.L TempRgn(A5),-(SP) ;push the rgnHandle
 PEA    RgnRect(A5);and the rect
 MOVE.L TempRgn(A5),A4  ;copy rgnHandle to A4
 BSR    ShowBitMap
 ADD    #1,RgnRect+4(A5)  ;extend the bottom 1 pixel
 ADD    #1,RgnRect+6(A5)  ;extend the right  1 pixel
 SUB    #1,RgnRect(A5)  ;extend the top 1 pixel
 SUB    #1,RgnRect+2(A5)  ;extend the left 1 pixel
 MOVE 12(A3),D0  ;get right edge of BitMap
 ADD    D4,D0    ;calculate width
 CMP    RgnRect+6(A5),D0  ;have we extended the rect
 ;all the way there?
 BGE    @1;no...keep going
 MOVE 10(A3),D0  ;get bottom of BitMap
 ADD    D3,D0
 CMP    RgnRect+4(A5),D0  ;are we done?
 BGE    @1;no...
 MOVE.L TempRgn(A5),-(SP)

; ShowBitMap : Displays the BitMap on the screen
;on entry : D3,D4 top,left of screen destination
;   A4 = maskRgn or NIL
 BSR    LockBitMap ;lock it in memory
 LEA    TempRect(A5),A0 ;get ptr to dest rect
 MOVE D3,(A0)    ;copy top
 MOVE D4,2(A0)   ;copy left
 ADD    10(A3),D0;calculate bottom
 MOVE D0,4(A0)
 ADD    12(A3),D1;calculate right
 MOVE D1,6(A0)
 MOVE.L A3,-(SP) ;source BitMap
 PEA    thePort(A5);get GrafPtr
 MOVE.L thePort(A5),A0
 PEA    2(A0)    ;dest BitMap (GrafPort)
 PEA    6(A3)    ;sourceRect
 PEA    TempRect(A5) ;destRect
 MOVE #0,-(SP)
 MOVE.L A4,-(SP)
; BlackOut :  Matthias Jabs would be proud...

 MOVE #8,-(SP) ;set the pattern mode to patCopy
 MOVE #0,D3 ;init pattern counter
@1 LEA  PatList,A0 ;ptr to patterns
 MOVE D3,D0 ;copy pattern index
 MULU   #8,D0    ;offset to pattern
 ADDA   D0,A0
 MOVE.L A0,-(SP) ;point to pattern
 PEA    Screen   ;the whole screen
 _PaintRect ;paint the rect
 CMP    #18,D3   ;are we done
 BEQ    @2;yes
 ADDQ #1,D3 ;decrement the pattern number
 BRA    @1;loop
@2 RTS  
;======== Program Variables ==================

SaveRegs: DS.L 2 ;For saving the SP etc..

TempRect: DS.W 4

EventRecord:DS.B 16;event record block
Event:  DS.W1  ;save event number
; ======Program Constants =================

White:  DC.L0,0

Screen: DC.W0,0,342,512

PatList:;Pattern data for fade routines...if you have
 ;to type this in,  you have my sympathy
DC.B 0,0,0,0,0,0,0,0
DC.B $08,$00,$00,$00,$02 
DC.B $00,$00,$00,$08 
DC.B $00,$00,$00,$02 
DC.B $20,$00,$00,$08 
DC.B $00,$40,$00,$02 
DC.B $24,$00,$00,$08 
DC.B $00,$42,$00,$02 
DC.B $24,$80,$08,$88 
DC.B $00,$42,$00,$02 
DC.B $26,$80,$28,$A8 
DC.B $00,$42,$00,$82 
DC.B $26,$80,$28,$A8 
DC.B $00,$4E,$20,$82 
DC.B $A6,$80,$2E,$A9 
DC.B $01,$4E,$21,$82 
DC.B $A6,$C0,$2E,$A9 
DC.B $01,$5E,$21,$86 
DC.B $A6,$C0,$2E,$A9 
DC.B $23,$5E,$25,$C6 
DC.B $A6,$C0,$2E,$A9 
DC.B $23,$5E,$25,$C6 
DC.B $AE,$D1,$2E,$AD 
DC.B $23,$DF,$25,$D6 
DC.B $AE,$D1,$AE,$AD 
DC.B $23,$DF,$E5,$D6 
DC.B $AE,$D7,$AE,$FF 
DC.B $6F,$DF,$E5,$DF 
DC.B $AF,$F7,$BE,$FF 
DC.B $6F,$DF,$F5,$FF 
DC.B $AF,$F7,$BE,$FF 
DC.B $7F,$DF,$FD,$FF 

;  Thats it...

; This is how you get your BitMaps 
; in your resource fork

.Align 2
Resource  'GNRL' 128  'test BitMap'

Community Search:
MacTech Search:

Software Updates via MacUpdate

A Better Finder Rename 10.00b1 - File, p...
A Better Finder Rename is the most complete renaming solution available on the market today. That's why, since 1996, tens of thousands of hobbyists, professionals and businesses depend on A Better... Read more
CrossOver 14.1.6 - Run Windows apps on y...
CrossOver can get your Windows productivity applications and PC games up and running on your Mac quickly and easily. CrossOver runs the Windows software that you need on Mac at home, in the office,... Read more
Printopia 2.1.14 - Share Mac printers wi...
Run Printopia on your Mac to share its printers to any capable iPhone, iPad or iPod Touch. Printopia will also add virtual printers, allowing you to save print-outs to your Mac and send to apps.... Read more
Google Drive 1.24 - File backup and shar...
Google Drive is a place where you can create, share, collaborate, and keep all of your stuff. Whether you're working with a friend on a joint research project, planning a wedding with your fiancé, or... Read more
Chromium 45.0.2454.85 - Fast and stable...
Chromium is an open-source browser project that aims to build a safer, faster, and more stable way for all Internet users to experience the web. Version 45.0.2454.85: Note: Does not contain the "... Read more
OmniFocus 2.2.5 - GTD task manager with...
OmniFocus helps you manage your tasks the way that you want, freeing you to focus your attention on the things that matter to you most. Capturing tasks and ideas is always a keyboard shortcut away in... Read more
iFFmpeg 5.7.1 - Convert multimedia files...
iFFmpeg is a graphical front-end for FFmpeg, a command-line tool used to convert multimedia files between formats. The command line instructions can be very hard to master/understand, so iFFmpeg does... Read more
VOX 2.6 - Music player that supports man...
VOX is a beautiful music player that supports many filetypes. The beauty is in its simplicity, yet behind the minimal exterior lies a powerful music player with a ton of features and support for all... Read more
Box Sync 4.0.6567 - Online synchronizati...
Box Sync gives you a hard-drive in the Cloud for online storage. Note: You must first sign up to use Box. What if the files you need are on your laptop -- but you're on the road with your iPhone? No... Read more
Carbon Copy Cloner 4.1.4 - Easy-to-use b...
Carbon Copy Cloner backups are better than ordinary backups. Suppose the unthinkable happens while you're under deadline to finish a project: your Mac is unresponsive and all you hear is an ominous,... Read more

You Can Play Madfinger Games' Unkil...
Madfinger Games - probably best known for the Dead Trigger series - has officially launched their newest zombie shooter (that isn't called Dead Trigger), named Unkilled. [Read more] | Read more »
KORG iELECTRIBE for iPhone (Music)
KORG iELECTRIBE for iPhone 1.0.1 Device: iOS iPhone Category: Music Price: $9.99, Version: 1.0.1 (iTunes) Description: ** 50% OFF Special Launch Sale - For a Limited Time **The ELECTRIBE reborn in an even smaller form A full-fledged... | Read more »
I am Bread (Games)
I am Bread 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: ‘I am Bread’ is the latest quirky adventure from the creators of 'Surgeon Simulator', Bossa Studios. This isn't the best thing... | Read more »
Rock(s) Rider - HD Edition (Games)
Rock(s) Rider - HD Edition 1.0.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.0 (iTunes) Description: *** PLEASE NOTE: Compatible with iPhone 4s, iPad 2, iPad mini, iPod touch (5th generation) or newer *** Do you... | Read more »
Rebuild 3: Gangs of Deadsville (Games)
Rebuild 3: Gangs of Deadsville 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: It's been a few years since the zombpocalypse turned the world's cities into graveyards and sent the few... | Read more »
Power Ping Pong (Games)
Power Ping Pong 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Do you wield your bat with zen-like focus or do your balls of fury give you a killer spin? Table tennis goes mobile with a... | Read more »
Z.O.N.A Project X (Games)
Z.O.N.A Project X 1.00 Device: iOS Universal Category: Games Price: $1.99, Version: 1.00 (iTunes) Description: Z.O.N.A Project X - shooter in the post-apocalyptic world. | Read more »
Trick Shot (Games)
Trick Shot 1.0.6 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.6 (iTunes) Description: A game where all you have to do is throw a ball into a box, simple? Trick Shot is a minimalist physics puzzler with 90 levels... | Read more »
VoxelCity (Games)
VoxelCity 1.0.2 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.2 (iTunes) Description: Looking for a new city builder? Tired of social media anti-games with no strategy? Look no further! NO IAP EVER! VoxelCity is a... | Read more »
Goat Simulator MMO Simulator (Games)
Goat Simulator MMO Simulator 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: ** IMPORTANT - SUPPORTED DEVICESiPhone 4S, iPad 2, iPod Touch 5 or better.** Coffee Stain Studios brings next-gen... | Read more »

Price Scanner via

Near-Office Input Functionality Virtually Any...
Today Logitech introduced the Logitech K380 Multi-Device Bluetooth Keyboard and the Logitech M535 Bluetooth Mouse, giving users the freedom to work on any device, most anywhere. According to... Read more
College Student Deals: Additional $100 off Ma...
Take an additional $100 off all MacBooks and iMacs at Best Buy Online with their College Students Deals Savings, valid through September 4, 2015. Anyone with a valid .EDU email address can take... Read more
Will You Buy An iPad Pro? – The ‘Book Mystiqu...
It looks like we may not have to wait much longer to see what finally materializes as a new, larger-panel iPad (Pro/Plus?) Usually reliable Apple product prognosticator KGI Securities analyst Ming-... Read more
eFileCabinet Announces SMB Document Managemen...
Electronic document management (EDM) eFileCabinet, Inc., a hosted solutions provider for small to medium businesses, has announced that its SecureDrawer and eFileCabinet Online services will be... Read more
WaterField Designs Unveils American-Made, All...
San Francisco’s WaterField Designs today unveiled their all-leather Cozmo 2.0 — an elegant attach laptop bag with carefully-designed features to suit any business environment. The Cozmo 2.0 is... Read more
Apple’s 2015 Back to School promotion: Free B...
Purchase a new Mac or iPad at The Apple Store for Education and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free,... Read more
128GB MacBook Airs on sale for $100 off MSRP,...
B&H Photo has 11″ & 13″ MacBook Airs with 128GB SSDs on sale for $100 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 11″ 1.6GHz/128GB MacBook Air: $799.99, $100 off MSRP... Read more
13-inch 2.5GHz MacBook Pro (refurbished) avai...
The Apple Store has Apple Certified Refurbished 13″ 2.5GHz MacBook Pros available for $829, or $270 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.... Read more
27-inch 3.2GHz iMac on sale for $1679, save $...
B&H Photo has the 27″ 3.2GHz iMac on sale for $1679.99 including free shipping plus NY sales tax only. Their price is $120 off MSRP. Read more
Apple and Cisco Partner to Deliver Fast-Lane...
Apple and Cisco have announced a partnership to create a “fast lane” for iOS business users by optimizing Cisco networks for iOS devices and apps. The alliance integrates iPhone with Cisco enterprise... Read more

Jobs Board

*Apple* Desktop Analyst - KDS Staffing (Unit...
…field and consistent professional recruiting achievement. Job Description: Title: Apple Desktop AnalystPosition Type: Full-time PermanentLocation: White Plains, NYHot Read more
Simply Mac *Apple* Specialist- Repair Techn...
Simply Mac is the greatest premier retailer of Apple products expertise in North America. We're looking for dedicated individuals to provide personalized service and Read more
Simply Mac *Apple* Specialist- Service Repa...
Simply Mac is the greatest premier retailer of Apple products expertise in North America. We're looking for dedicated individuals to provide personalized service and Read more
*Apple* Desktop Analyst - KDS Staffing (Unit...
…field and consistent professional recruiting achievement. Job Description: Title: Apple Desktop AnalystPosition Type: Full-time PermanentLocation: White Plains, NYHot Read more
Simply Mac- *Apple* Specialist- Store Manag...
Simply Mac is the largest premier retailer for Apple products and solutions. We're looking for dedicated individuals with a passion to simplify and enhance the Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.