TweetFollow Us on Twitter

Debugging in Lisp
Volume Number:2
Issue Number:6
Column Tag:AI Applications

Debugging in Lisp

By Andy Cohen, AI Contributing Editor

[Since the last discussion on Macscheme, Semantic Microsystems has updated their product. They are currently shipping version 1.1 which includes access via Macscheme primitives to the Quickdraw routines in ROM. Version 1.1 is also compatible with The Mac+ and HFS. Registered owners of earlier versions can update by sending $20 and their original MacScheme disk to Sematic Microsystems. Additionally, Semantic Microsystems announced the first part of a new development system called Macscheme+Toolsmith. This product includes Pascal-like access to the Toolbox routines in ROM from Macscheme. It also allows the programmer to design an apparently free standing application without the MacScheme environment. A minimized run time system will be required, however, the application and the run time system may be sold without royalties to Sematic Microsystems. Macscheme+ToolSmith will be sold at $250, while Macscheme is still $125 (Which makes us wonder, why $20 for the update?!). We've been pleased with the MacScheme product and the developers' responses to help requests. This month we feature a simple description on using the debugger in MacScheme. - Andy Cohen, A.I. Contributing Editor]

Debugging in Lisp


Anne Hartheimer

Semantic Microsystems, Inc.

Most Lisp systems include good debugging tools, in part because Lisp has traditionally been an interactive, interpreted language. I am going to explain the sorts of debugging tools that are typically provided by Lisp systems, how to take advantage of them and, in particular, how to use the debugging aids provided by the MacScheme Lisp system.

What kinds of debugging help can a system give you? For starters, it can tell you that an error exists. It can also help you find the error that it has told you about. Of course, it can't detect all errors. For example, only you can tell if your program is doing the right thing or generating the output you desire. However, if you know that a program produces the wrong output, or at least questionable output, a debugging tool can help you figure out why. Once you have located the source of the error, Lisp debugging tools can help you fix your buggy program and test it conveniently.

There are several standard debugging tools. Compile-time and run-time error checks discover errors. Inspectors let you examine the scene of the crime. If you suspect that there might be something wrong with a particular procedure, then tracers, steppers, and the ability to insert breakpoints in a program can help you see what is happening as the program is executed. Lastly, editors and incremental compilers can make it easy to modify small parts of your program and move on to the next bug. (One of the reasons Lisp interpreters are popular is that they give you incremental compilation for free.)

MacScheme has all of these tools except a stepper. I'll be using MacScheme in the examples that follow.

Compile-time Checks

Error checks can be performed at compile-time or at run-time. A compiler checks for illegal syntax and some kinds of domain errors. (Compile-time checks for domain errors are usually called type-checks.) In MacScheme, when a compile-time error is detected, it is reported and the system performs a reset. For example, if is a reserved word, so it is not legal syntax to assign to it:

>>> (set! if 3)

ERROR:  Keywords of special forms may
        not be used as variables
(set! if 3)

If a procedure is known to the compiler, then the compiler can make sure it is given the right number of arguments. This is an example of a compile-time domain check.

>>> (cons 3 4 5)

ERROR:  Wrong number of arguments to
        integrable procedure
(cons 3 4 5)

MacScheme, like most Lisps, performs very few compile-time domain checks. This is because Lisp associates types with run-time objects instead of with variables, so compile-time checking is not possible in general. This puts Lisp at a disadvantage compared to Pascal because run-time domain checks are performed only on the pieces of code that are actually executed. If you have a program that contains several branches, you can not be sure that it is free of domain errors until you test each of the branches. In Pascal, on the other hand, many domain errors are caught at compile-time, placing less of a burden on testing. Lisp must make up for this disadvantage by having excellent run-time domain checking.

Run-time Checks

Interpretive Lisp systems excel at run-time error checks. An interpreter will detect undefined variables and domain errors such as passing the wrong number of arguments to a procedure, using a non-procedural object as a procedure, attempting to add two strings, etc. Most systems interrupt execution, print a helpful error message on the screen, and place you inside an inspector so you can examine the context of the error. This is a far cry from a core dump or a bomb window.

The following example is from page 72 of The Little Lisper. vec+ is a function which takes two vectors and returns the vector that is their sum. (The Little Lisper represents vectors as lists instead of using Scheme's built-in vector data type.)

>>> (define vec+
      (lambda (vec1 vec2)
         ((null? vec1) ())
         (t (cons
             (+ (car vec1) (car vec2))
             (vec+ (cdr vec1)
                   (cdr vec2)))))))
>>> (vec+ '(3 4 5) '(1 1 1))
(4 5 6)
>>> (vec+ '(1 2 3 4) '(0 2))

ERROR:  Bad argument to cdr

Entering debugger.  Enter ? for help.

Oops! Let's track down the cause of this error message. We first ask for the name of the procedure in which the error occured.

debug:> i ; "i" means "identify procedure"

So the error occurred in our vec+ routine. Let's look at the code for vec+.

debug:> c ; "c" means "show code"
(lambda (vec1 vec2)
  (cond ((null? vec1) ())
         (cons (+ (car vec1) (car vec2))
               (vec+ (cdr vec1)
                     (cdr vec2))))))

Since the error message told us that cdr was passed a bad argument of (), we should think about the calls to cdr in vec+. (In Scheme, cdr is defined only on non-null lists. When applied to a non-null list, it returns a list consisting of everything in its argument except the first element.) Let's check out the values of vec1 and vec2 since these are the two possible arguments to cdr that could be causing the error.

debug:> a ; "a" means "all variables"

vec1 = (3 4)
vec2 = ()

So vec2 is the problem. Looking more carefully at the code, we can see that we're testing to see if vec1 is null but not vec2. We need to add a test for vec2.

Inside the MacScheme debugger you can find out the name of the procedure in which the error occurred, the arguments that were passed to that procedure, the variables accessible at that point and their values, and the chain of procedures awaiting results. You can move back to the context of any procedure awaiting a result and look at the variables that are accessible to that procedure. You can evaluate arbitrary expressions in the environment of any of the procedures along the chain. You can modify arguments passed to those procedures, and then resume computation. You can modify the values of variables and procedure definitions within the environments of any of the procedures along the chain and resume computation. In addition, you can exit the MacScheme debugger, perform some other computation, and then decide that you want to do additional inspecting of the last bug you encountered. You can reenter the debugger and be back in the state of the most recent error.

Breakpoints, Tracers, and Steppers

Let's shift gears now, and consider the following situation. Suppose your program is producing incorrect output. The traditional approach is to insert print statements in it. The problem with inserting print statements is that it is difficult to know what information to print, and if you print too much the information is unwieldy. It is better to insert breakpoints into your program. In MacScheme, when (break) is evaluated, execution is interrupted and you are placed in the MacScheme debugger. You can now use the full power of the inspector to examine the context of the breakpoint. Instead of having to decide at compile-time what features will be of interest (as you had to do when you debugged by inserting print statements), you get to decide interactively what to look at. For breakpoints to be really useful, your inspector must let you resume the computation. Then you can move on to the next breakpoint that you have set if you decide that things look just fine in the context of the first breakpoint.

It's also useful to be able to induce a break manually to snoop around in computations that seem to be taking a long time or acting weirdly. MacScheme lets you do so by selecting Break from the menu. This interrupts a computation and places you in the MacScheme debugger. When you have finished looking around, you can type an "r" to resume the computation.

If you suspect that a particular routine embedded in your program is producing bad outputs or receiving bad inputs, a convenient way to test your hypothesis is to trace the routine. Whenever a traced routine is called, the MacScheme tracer prints its name and the arguments it was passed. When the routine returns, its name and the value it returns are printed.

>>> (define (fact n)
      (if (zero? n)
          (* n (fact (- n 1)))))
>>> (fact 3)
>>> (trace fact)
>>> (fact 3)
Computing (#<PROCEDURE fact> 3)
 Computing (#<PROCEDURE fact> 2)
  Computing (#<PROCEDURE fact> 1)
   Computing (#<PROCEDURE fact> 0)
   (#<PROCEDURE fact> 0) --> 0
  (#<PROCEDURE fact> 1) --> 0
 (#<PROCEDURE fact> 2) --> 0
(#<PROCEDURE fact> 3) --> 0

Here we see that the recursive calls are passing the correct arguments, but the wrong results are returned.

Once you have determined the problem to be a routine that is receiving good inputs and producing bad outputs, and you have little idea why, you might want to step through the procedure to see what is going wrong. A stepper allows you to view the evaluation of each subexpression of a routine as it is happening. Some steppers let you use the full power of the inspector at each step along the way. You can view a stepper as the ability to insert breakpoints automatically between every expression of your program. A stepper is the one tool I've mentioned that MacScheme doesn't have. To explain why MacScheme does not have a stepper, we must look at the interaction between compiling and debugging.

Interpreters and Compilers

Interpreters are best for development and debugging because they work with the source code, which programmers understand. Compilers turn nice, readable source code into the gobbledygook of machine language--but that machine language sure runs fast. Most Lisp compilers also give up some run-time checking in order to get more speed. One of the main advantages of special-purpose Lisp machines over comparably priced conventional computers is that Lisp machines have special hardware to perform run-time checks very quickly.

MacScheme, like Smalltalk-80, uses a compromise. It compiles to byte code--the machine language for a hypothetical Lisp machine--and then interprets the byte code. This approach gives most of the speed of compiled code together with most of the nice debugging associated with interpreted code. The byte code is also more compact than either native code or source code if the source code is discarded after compilation, but MacScheme normally keeps the source code around to aid in debugging.

Though MacScheme keeps the source code for each user-defined procedure, it does not try to remember the correspondence between individual byte code instructions and source code subexpressions. There just isn't enough memory on a Macintosh to maintain the large tables that would be necessary, which is why MacScheme doesn't have a stepper. Smalltalk-80, on the other hand, does something very clever. Whenever you run its stepper, Smalltalk constructs those tables incrementally, by de-compiling the byte code if necessary.

Texas Instruments' PC Scheme for the IBM PC and TI Professional also uses byte code. Compared to MacScheme, PC Scheme emphasizes speed at some cost to debugging. For example, PC Scheme normally does not retain source code. Because the PC is slower than the Mac and can address less memory, this is a reasonable engineering compromise.


No set of debugging tools can make debugging easy, but they certainly can make it easier, faster, and more fun. We've looked at the help provided by compile-time and run-time error checking, inspectors, breakpoints, tracers and steppers. These tools were first developed for Lisp systems in the 1960's, yet are still hard to find in other languages. Lisp's supportive programming environment is one of the main reasons why so many Lisp programmers are fanatical about their favorite language.


Daniel Friedman and Matthias Felleisen. The Little Lisper. Second Edition. Chicago: Science Research Associates, Inc. (ISBN 0-574-21955-2) 1986.

Adele Goldberg. Smalltalk-80: The Interactive Programming Environment. Menlo-Park: Addison-Wesley Publishing Co. 1984.

How to Turn Off the Debugger

If the automatic placement into the debugger is confusing or it is just a pain to you, try the following procedure sent to us by the folks at Semantic Microsystems:

;;; (debugger #!false) turns off the debugger.
;;; (debugger #!true) turns on the debugger.
;;; (debugger) returns #!true if the debugger is on,
;;; otherwise it returns #!false

(define debugger
 (let ((state #!true)
 (real-debug debug)
 (fake-debug (lambda args (reset))))
 (lambda flags        ; flags is a list of arguments
 (if (null? flags)
 state            ; no arguments
 (set! debug (if (car flags) real-debug fake-debug))
 (set! state (car flags))


A couple of typos from the last column on MacScheme were identified by the author. The first was in one of the code samples using sort. The following is the correct code:

>>> (sort '("Even" "mathematicians" "are" "accustomed" "to" "treating" 
"functions" "as" "underprivileged" "objects")
 (lambda (x y)
 (or (<? (string-length x) (string-length y))
 (string<? x y))))

("as ...)

The second error was in the code defining the procedure make-counter. The code should have included the argument n as follows:

(define make-counter
 (lambda (n)
 (lambda ()
 (set! n (+ n 1))

There was also an error in the third reference. The reference was supposed to read Joseph Stoy's Denotational Semantics of Programming Languages. Our thanks to Will Clinger of the Tektronix Computer Research Laboratory (and also of Semantic Microsystems).


Community Search:
MacTech Search:

Software Updates via MacUpdate

ExpanDrive - Access cloud storag...
ExpanDrive builds cloud storage in every application, acts just like a USB drive plugged into your Mac. With ExpanDrive, you can securely access any remote file server directly from the Finder or... Read more
Markly 1.5.3 - Create measurement and de...
Markly is a measurement and design-spec plugin/extension for Photoshop and Sketch. It is made for modern Web designers and app front-end developers. You can add specification marks simply by clicking... Read more
Suitcase Fusion 6 17.3.0 - Font manageme...
Suitcase Fusion 6 is the creative professional's font manager. Every professional font manager should deliver the basics: spectacular previews, powerful search tools, and efficient font organization... Read more
Nisus Writer Pro 2.1.2 - Multilingual wo...
Nisus Writer Pro is a powerful multilingual word processor, similar to its entry level products, but brings new features such as table of contents, indexing, bookmarks, widow and orphan control,... Read more
calibre 2.40.0 - Complete e-book library...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
Vivaldi - An advanced browser...
Vivaldi is a browser for our friends. In 1994, two programmers started working on a web browser. Our idea was to make a really fast browser, capable of running on limited hardware, keeping in mind... Read more
OmniPlan 3.0 - Robust project management...
With OmniPlan, you can create logical, manageable project plans with Gantt charts, schedules, summaries, milestones, and critical paths. Break down the tasks needed to make your project a success,... Read more
Yummy FTP 1.11 - FTP/SFTP/FTPS client fo...
Yummy FTP is an FTP + SFTP + FTPS file transfer client which focuses on speed, reliability and productivity. Whether you need to transfer a few files or a few thousand, schedule automatic backups, or... Read more
Tweetbot 2.1 - Popular Twitter client. (...
Tweetbot is a full-featured OS X Twitter client with a lot of personality. Whether it's the meticulously-crafted interface, sounds and animation, or features like multiple timelines and column views... Read more
MacPilot 8.0 - Enable over 1,200 hidden...
MacPilot gives you the power of UNIX and the simplicity of Macintosh, which means a phenomenal amount of untapped power in your hands! Use MacPilot to unlock over 1,200 features, and access them all... Read more

Balloony Land offers a fresh twist on th...
Balloony Land by Palringo offers a fresh twist on the match three genre and is out now on iOS and Android. First-off, you'll be popping balloons instead of crushing candy and the balloons will float up and fill the empty spaces instead of dropping... | Read more »
Graphic - vector illustration and design...
Graphic - vector illustration and design 1.0 Device: iOS iPhone Category: Productivity Price: $2.99, Version: 1.0 (iTunes) Description: Autodesk Graphic is a powerful full-featured vector drawing and illustration application right in... | Read more »
Sago Mini Babies (Education)
Sago Mini Babies 1.0 Device: iOS Universal Category: Education Price: $2.99, Version: 1.0 (iTunes) Description: Introducing the Sago Mini babies. Boys and girls love caring for these adorable characters. Feed Robin her favorite mush... | Read more »
PAUSE - Relaxation at your fingertip (H...
PAUSE - Relaxation at your fingertip 1.1 Device: iOS iPhone Category: Healthcare & Fitness Price: $1.99, Version: 1.1 (iTunes) Description: | Read more »
Super Sharp (Games)
Super Sharp 1.1 Device: iOS Universal Category: Games Price: $1.99, Version: 1.1 (iTunes) Description: Your finger has never been so sharp! Cut with skill to complete the 120 ingenious physics levels of Super Sharp and become a cut... | Read more »
Assembly - Graphic design for everyone...
Assembly - Graphic design for everyone 1.0 Device: iOS Universal Category: Photography Price: $2.99, Version: 1.0 (iTunes) Description: Assembly is the easiest most powerful design tool on the App Store. Create anything you can... | Read more »
Dub Dash (Games)
Dub Dash 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: ARE YOU READY FOR THE ULTIMATE CHALLENGE? UNIQUE SYMBIOSIS OF MUSIC AND GRAPHICS | Read more »
Leave Me Alone (Games)
Leave Me Alone 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: 33% off launch sale!!! Somewhere between the 1980s and 1990s there exists a world that never was. A world of skatepunks,... | Read more »
YAMGUN (Games)
YAMGUN 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: The invasion has begun! Protect the walls of the citadel against waves of enemies! But watch out, you will soon run out of ammo...... | Read more »
Chesh (Games)
Chesh 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: It’s like chess, only not at all. ***40% off for a limited time to celebrate our launch!*** Chesh is a game of skill, strategy, luck,... | Read more »

Price Scanner via

Apple restocks refurbished Mac minis for up t...
Apple has restocked Certified Refurbished 2014 Mac minis, with models available starting at $419. Apple’s one-year warranty is included with each mini, and shipping is free: - 1.4GHz Mac mini: $419 $... Read more
TP-LINK Next-Gen Routers Support a Large Numb...
TP-LINK, specialists in consumer and business networking products, have announced the availability of Archer C2600, the company’s next-generation router featuring wireless AC, multi-user MIMO, and 4-... Read more
Apple’s Education discount saves up to $300 o...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free, and... Read more
Save up to $350 with Apple refurbished iMacs
Apple has Certified Refurbished iMacs available for up to $350 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 27″ 3.5GHz 5K iMac – $1949 $350 off MSRP - 27... Read more
Mac Pros on sale for up to $300 off MSRP
B&H Photo has Mac Pros on sale for up to $300 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2818.99, $181 off MSRP - 3.5GHz 6-core Mac Pro: $3699... Read more
5K iMacs on sale for up to $150 off MSRP, fre...
B&H Photo has the 27″ 3.3GHz 5K iMac on sale for $1899.99 including free shipping plus NY tax only. Their price is $100 off MSRP. They have the 27″ 3.5GHz 5K iMac on sale for $2149, $150 off MSRP... Read more
Twelve South Redesigns BookArc For Today’s Sm...
Twelve South has announced a redesigned version of their very first product, BookArc for MacBook. Tailored specifically for the newest generation of MacBooks, BookArc holds the new, smaller Apple... Read more
Phone 6s Tips & Tricks – Tips Book For iP...
Poole, United Kingdom based Tap Guides Ltd. has announced the release and immediate availability of iPhone 6s Tips & Tricks, an in-depth eBook available in the iBookstore that’s priced just $2.99... Read more
Apple refurbished 2014 13-inch Retina MacBook...
Apple has Certified Refurbished 2014 13″ Retina MacBook Pros available for up to $400 off original MSRP, starting at $979. An Apple one-year warranty is included with each model, and shipping is free... Read more
13-inch 2.5GHz MacBook Pro on sale for $994,...
Best Buy has the 13″ 2.5GHz MacBook Pro available for $994.99 on their online store. Choose free shipping or free instant local store pickup (if available). Their price is $105 off MSRP. Price valid... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
iOS Passbook & *Apple* Pay Engineer - A...
…place. New in iOS 8, you can now add credit and debit cards to Passbook using Apple Pay. You can use Apple Pay in stores accepting contactless payments and in apps Read more
*Apple* Online Store UAT Lead - Apple (Unite...
**Job Summary** The Apple Online Store is a fast paced and ever evolving business environment. A UAT lead in this organization is able to have a direct impact on one of Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, you're Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.