TweetFollow Us on Twitter

Sound Wired
Volume Number:1
Issue Number:9
Column Tag:Assembly Language Lab

"Wired for Sound"

By Chris Yerga, MacTutor Contributing Editor

Can You Keep a Secret?

One of the Macintosh's best kept secrets is its wonderful sound driver. This beauty is capable of generating a variety of sounds including simple tones, multi-voice music, complex speech, and digitally recorded sounds. In spite of its power, it is relatively easy to use once the programmer takes the time to understand a few basic concepts. This month's column concerns itself with the sound driver and the techniques the programmer must employ to use it. First will come a description of the device manager, with emphasis on it's relation to the sound driver in particular. The actual sound driver description is next, followed by a sample program that ties it all together.

First Things First

First, a bit of background information on the device manager. The device manager is the part of the Macintosh ROM that allows the use and control of devices, which are usually hardware peripherals connected to the Mac. Examples of devices are the serial ports, the disk drives, the sound driver, etc (desk accessories are also considered devices, however, we will not include them in our general discussion).

There are two types of devices: character and block. Character devices can read or write only one character at a time and they must do so sequentially. That is, they cannot access any data other than the very next character. Whereas block devices read and write data in 512 character blocks and are randomly accessible. This means that they have access to any block of data, regardless of its position. Another matter of note is that many device manager routines may be executed either synchronously or asynchronously. Synchronous execution means that the calling program remains idle while the requested I/O operation is performed. Conversely, asynchronous I/O operations are performed while the calling program is running.

Now Some Specifics

The device manager is one of the portions of the Macintosh ROM that has a register based calling interface. As you may remember from previous columns, this means that the programmer invokes the desired trap macro with address register A0 pointing to a data structure in memory. It is through this data structure that parameters are passed between the calling program and the routine.

The data structure that the device manager routines use is called the ioParamBlock (from here on abbreviated as ioPB). Figure 1 shows the structure of the ioPB. The numbers in parenthesis are the byte offsets from the base address of the ioPB. There is a byte-division ruler to the right of the figure to ease the judgement of lengths.

The programmer need not concern himself with the first four fields of the ioPB, the device manager routines use them internally.

The fifth field, ioCompletion, is used for asyncronous I/O operations. When the device manager has finished an asyncronous operation, it will jump to the routine pointed to by ioCompletion, if it is nonzero. For example, you could request that the device manager send a page of data asynchronously through the serial port. While the device manager was doing this, you could set up the next page of data to be sent. When finished, the device manager would jump to your completion routine, which in turn would send the next page of data.

Upon returning from a device manager call, the ioResult field will contain a code describing what error, if any, occurred. IoNamePtr is only used when first opening a device. It points to the name of the device to be opened. All open devices are assigned reference numbers by the device manager. These reference numbers must be specified by the calling program and are stored in the ioRefNum field.

The device driver allows Control/Status calls to certain devices. These calls allow the user to send commands to devices (such as configuration commands) or to get status information from devices. A control/status call requires that the programmer send a control code to the device; this code is contained in the CSCode field of the ioPB. Certain control calls also need parameters of their own. These parameters are passed through the CSParam field.

When a read or write call is made, the address of the data buffer is passed in ioBuffer. The number of bytes that the programmer wants to read or write is contained in the ioReqCount; the number of bytes successfully read or written is returned in ioActCount. IoPosMode and ioPosOffset are used only with block devices. They allow the data to be accessed non-sequentially.

To use the sound driver from assembly language, the programmer must set up the appropriate fields of the ioPB, load A0 with a pointer to it, and then call the trap macro. Asyncronous execution is flagged by appending ",ASYNC" to the end of the trap name. For example to write a data buffer to a device, you would set up it's reference # etc. in the ioPB, store a pointer to the buffer in the ioBuffer field, load A0, and then execute _Write,ASYNC.

The sound driver is broken into three pieces: the square-wave synthesizer, the four-tone synthesizer, and the free-form synthesizer. Each synthesizer generates a different type of sound and requires a specific amount of processor time. Each type of sound is generated by making a write call to the device manager requesting that the proper data is sent to the sound driver. The square-wave and four-tone synthesizers will be described here.

Nothing Fancy

The simplest subset of the sound driver is the square-wave synthesizer. When running asynchronously, the square-wave synthesizer uses approximately 2% of the processor's time- a modest degree of overhead. However, the type of sounds that this synthesizer is capable of creating are limited to simple tones or beeps.

To get the square-wave synthesizer going, the programmer simply writes a SWSythRec to the sound driver. The first word of the SWSythRec is -1. This tells the sound driver that the data in the record should be routed to the square-wave synthesizer. Following this is a list of tones to be produced. The end of the tone list is dentoed by a zero.

Each tone is 3 words long. The first word is the count value, where frequency = 783360 / count. Complete lists of count values for the C major scale and the equal tempered scale are contained in Inside Macintosh. The second word is the amplitude, or volume, of the tone. This value ranges from 0-255 inclusive, with 255 being maximum volume. The last word is the duration of the tone, in 1/60ths of a second.

An example set of data will make the above explanation clearer. The sample will be 3 tones with frequencies of 1000, 2000, and 4000 Hertz. The amplitude of the tones will be half volume. The lengths of the tones will be .5, 1, and 1.5 seconds.

The count values are calculated by dividing 783360 by the frequency. 783360/1000 = 783; 783360/2000 = 392; and 783360/4000 = 196. The amplitude will be 127 ( half of 255 ). Given that 1 second = 60 duration units, calculating the duration values is done by: (.5 )* 60 = 30; 1 * 60 = 60; 1.5 * 60 = 90.

The data looks like this:

A Barbershop Quartet in Your Mac

The four-tone synthesizer is the most taxing in terms of processor use- approximately 50%. However, it allows up to 4 tones to be produced simultaneously, allowing multi-voice music and chords to be produced. Its record, FTSynthRec, has the most complex structure of the three synthesizers.

The first word of data in the FTSynthRec is always a 1. Following this is the duration of the sound, again in 1/60ths of a second. Next are 4 pairs of values for each of the four tones to be produced.

The first long word of each pair is the rate value, a fixed-point number which is analogous to the SWSynthRec's count value. (A discussion of fixed-point numbers can be found on page 11 of the Memory Manager Introduction in Inside Macintosh ) In this case, the frequency is derived by the formula: frequency (Hz) = 1000000 / (11502.08 / rate). The last element of the pair is a long integer phase value. The phase can range in value from 0-255, and tells the square-wave synthesizer how many bytes in the tone's waveshape definition to skip before starting the tone (If this confuses you, don't worry about it. Great sounds can be created without any regard for phase).

After the four pairs of values come four Waveshape pointers, which point to waveshape definitions in memory. Each waveshape definition consists of 255 bytes that describe the shape of one pulse, or click, sent to the speaker. Consider a tone of any frequency. It is comprised of a series of pulses, or "clicks", that create a tone when generated at a certain rate. The pulse itself is a general unit used by all tones, and therefore has no effect on the frequency of the resulting tone if it is designed correctly. Figure 3 shows the waveform description of a square pulse. Although it is the simplest possible waveform to generate, it is not as "natural" sounding as a sine pulse. In most cases, a square pulse or a sine pulse will suffice; however, by changing the wave definition, various musical instruments can be simulated.

A C major chord will suit well for a set of sample data. This chord is comprised of the notes C, E, and G. The table in Inside Macintosh gives us fixed-point rate values of 3.03654, 3.79568, and 4.55481 for these notes. The equivalent hex values for these numbers are $030959, $03CBB0, and $048E06 respectively. A duration value of 60 will generate the sound for 1 second. Using the default phase value of 0, the only remaining task is the initialization of the waveshape definitions and pointers.

The sample waveshape definition is created by filling a 255 byte block of memory with data - the first half (bytes 0-127) with the value 255 and the last half (bytes 128-255) with the value 0. When this is done, the address of the block of memory is stored in the waveshape pointers of our three tones.

Here is a sample FTSynthRec with the data for a C major chord:

There are two other differences that make the four-tone synthesizer different from the square-wave synthesizer. After the FTSynthRec is set up in memory, it is not directly written to the sound driver. Rather, a six byte block is written. The first two bytes comprise an integer word of value 1. The last four bytes of this block contain a pointer to the actual FTSynthRec in memory. The second difference is that, by nature of this calling scheme, only one FTSynthRec can be written at a time. Therefore, it is necessary to loop if there is more than one sound to generate.

The program gives examples of using both the square-wave synthesizer and the four-tone synthesizer. One useful item is the macro named Center, which when given a string, the center X coordinate of the grafport, and the Y coordinate at which the text should appear, will draw the text centered at the given Y coordinate. This saves a great deal of "hit-and-miss" experimentation if, like me, you don't sit down and calculate the correct centers by hand.

With this information and a bit of patience, the average reader should be able to implement sound in his next assembly application to give it that special touch of style.


;                            
;   Sound Example #1   
;                            
;
; © 1985 By Chris Yerga for MacTutor 

INCLUDE MacTraps.D
 
;  Declare external labels 

XDEF    START 

; Define Macros

;  Note that this clever macro will center a
; string for you about the MidPT, on line Y
; for use with the _DrawString trap call.

MACRO   Center String,MidPT,Y = 

 CLR.W  -(SP)    ;Save room for INTEGER
 ;width of string
 PEA  '{String}' 
 _StringWidth  
 CLR.L  D3;Clear the high word of  ;D3 so the DIVU works 
 MOVE.W (SP)+,D3 ;Get the width (in pixels) in D3 
 DIVU #2,D3 ;Divide by 2
 MOVE.L #{MidPT},D4
 SUB.W  D3,D4  ;Subtract (Width/2) ;from center point 
 MOVE.W D4,-(SP) ;Push the X cordinat
 MOVE.W #{Y},-(SP);Push the Y cordinat
 _MoveTo;Position the pen 
 PEA  '{String}' 
 _DrawString 
|;End of Macro symbol 
;*** Local Constants ***

AllEvents EQU  $0000FFFF
MaxEvents EQU  12 
DWindLenEQU $AA  ; see DS storage area
 
; Start of Main Program 
 
BadPtr: _Debugger ;Should never get  ;here.  Is called when there is 
 ;a problem with the memory ;manager. 

START:  MOVEM.L  D0-D7/A0-A6,-(SP) LEA SAVEREGS,A0       MOVE.L
 A6,(A0)  MOVE.L A7,4(A0) 

;Initialize the ROM routines 

PEA-4(A5) ;QD Global ptr 
_InitGraf ;Init QD global 
_InitFonts;Init font manager 
_InitWindows;Init Window Mgr 
_InitMenus;Guess what...yes!
 
 CLR.L  -(SP)  
_InitDialogs
_TEInit ;Init ROM Text edit 

MOVE.L  #AllEvents,D0
_FlushEvents
_InitCursor ;Get the standard arrow     
;Allocate the memory that we need
 
MOVE.L  #50,D0 ;Get a 50 Byte ;nonrelocatable block 
_NewPtr 
 
CMP#0,D0;Did we get the block??
 BNE  BadPtr;Nope...jump to MacsBug 
LEAParamBlock,A1  ;Save the Ptr 
MOVE.L  A0,(A1)
MOVE.L  #255,D0
 
;Get a 255 byte block for waveform def 
_NewPtr,CLEAR    ;and fill it with
 ;zeros while you're at it 
CMP#0,D0;Did we get the mem? 
BNEBadPtr ;Nope...Debugger time 
LEAWave,A1;Save the Ptr 
MOVE.L  A0,(A1)     
; Set up the ioParamBlock fields     
MOVE.L  ParamBlock,A0
 ;Get the Ptr to ioParamBlock 
CLR.L 12(A0);No completion routine 
MOVE.W  #-4,24(A0) ;The Sound Driver reference # CLR.W   44(A0)
 ;Standard positioning 
CLR.L 46(A0);No offset for the write  
;Fill the Wave buffer with a simple ;Square Wave definition
  
MOVE.L  Wave,A0  ;Get the base     ;address of the block 
MOVE.L  #127,D0  ;Set up the wave definition

MakeWave:

 MOVE.B #255,(A0)+ ;Set bytes 0-127 of the wave def            
 ;and increment A0 
DBRA  D0,MakeWave  ;loop until 127...         
;Set up the Dialog Box 

CLR.L -(SP) ;Save room for DIalogPtr 
MOVE.W  #128,-(SP) ;The ResID of the dialog 
PEADStorage(A5)  ;Where to put the DialogRec 
MOVE.L  #-1,-(SP);Put it in front, 
_GetNewDialog  
LEADHandle,A2    ;Save handle, but keep it
MOVE.L  (SP),(A2);on the stack 
_DrawDialog ;Draw the dialog.. 
LEADHandle,A2  
MOVE.L  (A2),-(SP) ;Set the Dialog to  ;the current GrafPort 
_SetPort    
MOVE.W  #7,-(SP) ;Select Athens 
_TextFont 
MOVE.W  #18,-(SP);in 18Pt size 
_TextSize   

Center  Sound Example #1,206,35      
MOVE.W  #1,-(SP) ;Select Chicago 
_TextFont 
MOVE.W  #12,-(SP);in 12Pt size 
_TextSize   

Center  ©1985 Chris Yerga for MacTutor,206,52 

; Main Event Loop 

MAIN:   

CLR.L -(SP) ;NIL for FilterProc 
PEAItemHit;VAR ItemHit 
_ModalDialog;handle the dialog for us! 
MOVE  ItemHit,D0 ;Get the result 

CMP#1,D0;Is it Square Wave? 
BEQSquare ;Yes....   
CMP#2,D0;Is it 4Tone? 
BEQFourTone ;You got it....   
CMP#3,D0;Is it Bye Bye?? 
BEQ   Adios ;Uh huh...    
BRAMain ;Keep going till we get    ;a valid event...      
Square: 
 
MOVE.L  ParamBlock,A0 ;Get the Ptr to ioParamBlock 
MOVE.L  #SqEnd-SqBegin,36(A0) ;The length of the data, so we   
 ;can tell the device manager
 ;how much to write  
LEASqBegin,A1    ;Ptr to our data buffer 
MOVE.L  A1,32(A0) 
_Write  ;this is the actual Write call.                        
 ;Be sure to have A0 pointing to   ;your ioParamBlock!   
BRAMain ;We're done for now..  

SqBegin: 

DC.W  -1;This tells the sound ;driver that the data is         
 ;for the square-wave     ;driver. 

 ;Play the C major diatonic scale... 
 
DC.W  5937,128,20  ;C
DC.W  5278,128,20  ;D 
DC.W  4750,128,20  ;E
DC.W  4453,128,20  ;F 
DC.W  3958,128,20  ;G
DC.W  3562,128,20  ;A
DC.W  3167,128,20  ;B
DC.W  2969,128,20  ;C
DC.W  3167,128,20  ;B
DC.W  3562,128,20  ;A 
DC.W  3958,128,20  ;G 
DC.W  4453,128,20  ;F 
DC.W  4750,128,20  ;E 
DC.W  5278,128,20  ;D 
DC.W  5937,128,20  ;C 
DC.W  0,0,0 
SqEnd:  DC.W0  ;End of the data  

FourTone:
 
MOVE.L  ParamBlock,A0 ;Get the Ptr to  ;our ioParamBlock 
MOVE.L  #6,36(A0)  ;ioCount (how many   ;bytes to write)       
  ;in this case always     ;6 bytes  
MOVE.L  Wave,A2  ;Get the Ptr to the 
 ;waveshape def 
LEAFTSynthRec,A1 ;Get the Ptr to the sound table 
MOVE.L  #3,D0    ;Loop 4 times 

SetWave: 
 
MOVE.W  #30,(A1) ;Set the tone length  ;to .5 seconds 
ADDA  #34,A1;Adjust A1 to point    ;to WavePtr fields 
MOVE.L  A2,(A1)+ ;Set 1st WavePtr 
MOVE.L  A2,(A1)+ ;Set 2nd WavePtr 
MOVE.L  A2,(A1)+ ;Set 3rd WavePtr 
MOVE.L  A2,(A1)+ ;Set 4th WavePtr 
DBRA  D0,SetWave   
LEAFTBegin,A3    ;Set the BuffPtr in ;the ParamBlock 
MOVE.L  A3,32(A0);to point to our data ;buffer 
LEAFTSynthRec,A2 ;Set the FTSRecPtr  ;in the Data
MOVE.L  #3,D3    ;Loop 4 times 

FTLoop: MOVE.L A2,2(A3) ;Set the
 ;pointer to point 
 ;to the next sound  
MOVE.L  ParamBlock,A0 ;Get Ptr to  ;ioParamBlock in A0 
_Write  ;Write it! 
ADDA  #50,A2;Point to the next     ;tone record 
DBRA  D3,FTLoop    ;and loop...    
BRAMain ;Thank you...    

;The four-tone record is unique in that it is not actually written ;to 
the sound driver.  Rather,  only a ptr to the actual tones is ;written. 
This means that only one set of 4 tones can be written ;at a time. 

FTBegin:  

DC.W 1  ;Four tone = 1 
DC.L   0  ;Holder for Ptr to the actual
        ;tones   

 FTSynthRec:   

DC.W  60;Do sound for 1 sec 
DC.L  $3CBB0,0    
DC.L  $5B188,0
DC.L  $4DBC3,0
DC.L  $00000,0 
DC.L  0,0,0,0    ;Place holders for  ;WavePtr's          
DC.W  60;Do sound for 1 sec 
DC.L  $36A85,0
DC.L  $50F95,0   
DC.L  $6D50A,0   
DC.L  $00000,0   
DC.L  0,0,0,0    ;Place holders for  ;WavePtr's          
DC.W  75;.5 SEC 
DC.L  $287CA,0   
DC.L  $3CBB0,0   
DC.L  $30959,0 
DC.L  $00000,0   
DC.L  0,0,0,0    

DC.W  30  
DC.L  $1E5D8,0   
DC.L  $287CA,0 
DC.L  $30959,0   
DC.L  $00000,0   
DC.L  0,0,0,0     

ADIOS:  LEA SaveRegs,A0   MOVE.L (A0),A6     
 MOVE.L 4(A0),A7 
 MOVEM.L(SP)+,D0-D7/A0-A6 RTS 

; Program Variables 
 
SaveRegs: DCB.L  2,0 ;For saving the SP etc.. 

DHandle:DC.L0    ;For the dialog Handle 
ItemHit:DC.W0    ;For _ModalDialog ParamBlock:     
 DC.L 0 ;For the ioPB 
Wave: DC.L0 ;For the WaveShape definition 

; Dialog Record 
 
DStorage: DS.W   DWindLen 
;  END OF SOURCE CODE


;     Resource File    
; for Sound Exercize #1
 
RESOURCE 'BDOG' 0 'IDENTIFICATION' 

STRING_FORMAT  2 
DC.B  'FREEWAVE VER -0.1 OF 3/19/85' STRING_FORMAT  0 

.ALIGN 2 
RESOURCE 'BNDL' 128 'BUNDLE' 

DC.L  'BDOG';Name of Signature
DC.W  0,1 ;Data 

DC.L  'FREF';FREF Mappings 
DC.W  0 ;1 Mapping ( 1-1 = 0 ) 
DC.W  0,128  
DC.L  'ICN#';ICN# Mappings 
DC.W  0 ;2 Mappings ( 1-1 = 0 ) 
DC.W  0,128
 
.ALIGN 2 
RESOURCE 'FREF' 128 'FREF#1' 
 
DC.B  'APPL',0,0,0  
.ALIGN 2 
RESOURCE 'ICN#' 128 'Application Icon' 

INCLUDE WaveIcon.ASM 

.ALIGN 2 
RESOURCE 'ICON' 128 'DlogIcon' 

INCLUDE SoundIcon.ASM 

;      Dialog Box    

.ALIGN 2 
RESOURCE 'DLOG' 128 'AboutBox' STRING_FORMAT  2
DC.W  95,50,270,462;BoundsRect
DC.W  1 ;ProcID
DC.B  1,1 ;TRUE for visible
DC.B  0,0 ;FALSE for GoAway 
DC.L  0 ;Refcon (Chuckle!)
DC.W  129 ;DITL ResID
DC.B  'HI';Title (unused) 

;    Dialog Box Items    
.ALIGN 2 
RESOURCE 'DITL' 129 'AboutBox items' 

DC.W  3 ;4 Items in the list 
 ;(4 - 1) = 3
;  Item #1   
DC.L  0 ;Handle holder
DC.W  114,41,136,201 ;BoundsRect 
DC.B  4 ;Button 
DC.B  'Square Wave ' ;Text Preceded by length byte 
;  Item #2     
DC.L  0 ;Handle holder
DC.W  114,210,136,361;BoundsRect DC.B4 ;Button
DC.B  'Four Tone '   ;Text Preceded by length byte 
;  Item #3   
DC.L  0 ;Handle holder
DC.W  144,41,166,361 ;BoundsRect 
DC.B  4 ;Button
DC.B  'Ive had enough fun for now' ;Text Preceded by length byte 
;  Item #4     
DC.L  0 ;Handle Holder
DC.W  60,194,92,226  ;BoundsRect
DC.B  128+32;Disabled Icon
DC.B  2 
DC.W  128 ;ICON ResID STRING_FORMAT  0 
 ;EOF 

Linker file

 !START

 /Output Sound

 ]
 
 SoundOff

 /Resources
 SOResource

 /TYPE 'APPL' 'BDOG'

 $
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

calibre 2.17 - Complete e-library manage...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
OmniGraffle Pro 6.1.2 - Create diagrams,...
OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use... Read more
OmniGraffle 6.1.2 - Create diagrams, flo...
OmniGraffle helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use Graffle to... Read more
RoboForm 2.0.2 - Password manager; syncs...
RoboForm is a password manager that offers one-click login, mobile syncing, easy form filling, and reliable security. Password Manager. RoboForm remembers your passwords so you don't have to! Just... Read more
Apple MainStage 3.1 - Live performance t...
Love the sound you got on your recording? MainStage 3 makes it easy to bring all the same instruments and effects to the stage. Everything from the Sound Library and Smart Controls you're familiar... Read more
Freeway Pro 7.0.2 - Drag-and-drop Web de...
Freeway Pro lets you build websites with speed and precision... without writing a line of code! With its user-oriented drag-and-drop interface, Freeway Pro helps you piece together the website of... Read more
A Better Finder Rename 9.44 - File, phot...
A Better Finder Rename is the most complete renaming solution available on the market today. That's why, since 1996, tens of thousands of hobbyists, professionals and businesses depend on A Better... Read more
Stacks 2.6.9 - New way to create pages i...
Stacks is a new way to create pages in RapidWeaver. It's a plugin designed to combine drag-and-drop simplicity with the power of fluid layout. Features: Fluid Layout: Stacks lets you build pages... Read more
Sid Meier's Civilization: Beyond Ea...
Sid Meier's Civilization: Beyond Earth is a new science-fiction-themed entry into the award-winning Civilization series. Set in the future, global events have destabilized the world leading to a... Read more
Logic Pro X 10.1 - Music creation and au...
Apple Logic Pro X is the most advanced version of Logic ever. Sophisticated new tools for professional songwriting, editing, and mixing are built around a modern interface that's designed to get... Read more

Choice Provisions is Set to Launch Destr...
Choice Provisions is Set to Launch Destructamundo on iOS This Month Posted by Tre Lawrence on January 23rd, 2015 [ permalink ] Choice Provisions – home stable to | Read more »
King of Thieves – An Interview With Zept...
Ahead of the release of ZeptoLab’s King of Thieves, we were able to ask ZeptoLab’s co-founder, Semyon Voinov, a few questions about the inspiration behind the game and what that means for the Cut the Rope franchise. | Read more »
Handle Review
Handle Review By Jennifer Allen on January 23rd, 2015 Our Rating: :: SPEEDY ORGANIZINGUniversal App - Designed for iPhone and iPad Handle is a very convenient way of juggling your emails, To Do list, and Calendar all through one... | Read more »
The New Disney Inquizitive App Offers a...
The New Disney Inquizitive App Offers a Place for Fans to Take Disney Quizzes Posted by Tre Lawrence on January 23rd, 2015 [ permalink ] | Read more »
Hands-On With Cut the Rope Developer Zep...
Marking quite a departure from ZeptoLab’s past successes, namely the Cut The Rope series, King of Thieves is shaping up to be quite promising. Due for release in February, we were lucky enough to have some time with a preview build to see exactly... | Read more »
Fast Fishing Review
Fast Fishing Review By Jennifer Allen on January 23rd, 2015 Our Rating: :: LIVES UP TO ITS NAMEUniversal App - Designed for iPhone and iPad Fishing is far from relaxing in Fast Fishing, but it is fun.   | Read more »
The LEGO Movie Video Game is Available N...
The LEGO Movie Video Game is Available Now for iOS Posted by Ellis Spice on January 23rd, 2015 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Satellina Review
Satellina Review By Jennifer Allen on January 23rd, 2015 Our Rating: :: TWITCHY BUT TACTICALUniversal App - Designed for iPhone and iPad Satellina requires quick thinking and twitchy fingers, and it’s pretty fun.   | Read more »
Tail Drift, the Crazy 360 Degree Flyer,...
Tail Drift, the Crazy 360 Degree Flyer, Has Gone Free-to-Play in a New Update Posted by Jessica Fisher on January 22nd, 2015 [ permalink ] | Read more »
PureSkate 2 Review
PureSkate 2 Review By Tre Lawrence on January 22nd, 2015 Our Rating: :: ALMOST ALL AIRUniversal App - Designed for iPhone and iPad PureSkate 2 lets one’s fingers do the skateboarding.   | Read more »

Price Scanner via MacPrices.net

College Student Deals are back, additional $5...
Take an additional $50 off all MacBooks and iMacs at Best Buy Online with their College Students Deals Savings, valid through April 11, 2015. Anyone with a valid .EDU email address can take advantage... Read more
iPhone 6 and 6 Plus GIve Apple Half Of US Mob...
Chicago-based Consumer Intelligence Research Partners, LLC (CIRP) have released analysis of the results of its research on mobile phone manufacturers for the calendar quarter that ended December 31,... Read more
Save $100 on MacBook Airs with 256GB of stora...
B&H Photo has 256GB MacBook Airs on sale for $100 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 11″ 1.4GHz/256GB MacBook Air: $999 $100 off MSRP - 13″ 1.4GHz/256GB MacBook... Read more
21-inch 2.7GHz iMac on sale for $1179, save $...
B&H Photo has the 21″ 2.7GHz iMac on sale for $1179 including free shipping plus NY sales tax only. Their price is $120 off MSRP, and it’s the lowest price available for this model from any... Read more
iPhone Usage Rates by State Correlate With Ed...
Chitika Insights notes that despite iPhones being the largest source of smartphone Internet traffic in North America, their latest study finds a relatively high degree of variation of iPhone usage... Read more
ProGearX Extendable Pole “Pov/Selfie Stick” M...
There’s something inescapably narcissistic about the concept of selfies as they’ve developed as a smartphone-driven social (particularly social media) phenomenon that rubs me the wrong way. However,... Read more
iPad Air 2 on sale for up to $100 off MSRP, 2...
 Best Buy has iPad Air 2s on sale for up to $100 off MSRP on their online store for the next two days. Choose free shipping or free local store pickup (if available). Sale prices available for online... Read more
Roundup of Apple refurbished MacBook Pros and...
The Apple Store has Apple Certified Refurbished 2014 MacBook Pros and MacBook Airs available for up to $400 off the cost of new models. An Apple one-year warranty is included with each model, and... Read more
Sale! 13-inch 2.8GHz Retina MacBook Pro for $...
 B&H Photo has the 13″ 2.8GHz Retina MacBook Pro on sale for $1599 including free shipping plus NY sales tax only. Their price is $200 off MSRP, and it’s the lowest price available for this model... Read more
Next OS X/iOS Version Upgrades Should Concent...
On stage at Apple’s World Wide Developers’ Conference in June 2009, Bertrand Serlet, the company’s Senior Vice President of Software Engineering at the time, announced that the forthcoming OS X... Read more

Jobs Board

*Apple* Solutions Consultant (ASC)- Retail S...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
*Apple* Lead Operator, GSOC - Apple (United...
**Job Summary** Apple is seeking an exceptional, customer service oriented and experienced persons to fulfill the role of Apple Lead Operator (ALO) as part of the Read more
Order Support Supervisor- *Apple* Online Sto...
**Job Summary** The Apple Online Store (AOS) Order Administration team is looking for an Order Support Supervisor to manage and lead a team of Specialists through the Read more
Senior Program Manager, *Apple* Online Supp...
**Job Summary** The Apple Online Support Planning team is looking for an experienced Senior Project Manager to lead key Quality program initiatives across the Online Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.