TweetFollow Us on Twitter

Inline Code
Volume Number:1
Issue Number:9
Column Tag:Forth Forum

"Inline Code for MacForth"

By Jörg Langowski, Chemical Engineer, Fed. Rep. of Germany, MacTutor Editorial Board

Speeding up Forth with Inline Code

When you use your computer for applications that require a lot of data shuffling and calculations, work with large arrays and matrices and so on, you tend to become a little paranoid about speed. Although Forth code is very compact through its threaded structure, and word execution (i.e. subroutine calling) is reasonably well optimized in MacForth (see MacTutor V1 No2), I have always felt uncomfortable with the overhead that goes into the execution of a simple word like DROP, whose 'active part' consists of one 16-bit word of machine code.

Just as a reminder: when the Forth em executes the token for DROP in a definition, it calls a subroutine that looks like this:

DROP  ADDQ.L#4,A7
 JMP  (A4)

So it is a simple 4-byte increment of the stack pointer that does the DROP job. But, then the next token has to be fetched and executed by jumping to the NEXT routine, whose address is contained in A4, the base pointer. This makes for a several hundred precent overhead, as compared to the increment itself. This overhead is not so dramatic with other words, but it is still there: and all in all the Sieve benchmark needs 21 seconds to run in MacForth, compare this to 9 seconds in compiled C (Consulair).

How can we speed up the code? After all, we have complete control over what goes into the dictionary and could put the machine code that we need right in there, no need for time-expensive subroutine calling. This is what the Forth 2.0 assembler enables you to do. However, if you create a piece of code in Forth assembler, it tends to look much more cryptic than 'normal' assembler, which after all is readable with adequate documentation.

It would be much nicer if we had a means to create the assembly code that corresponds to a DROP by writing a similar word, such as %DROP: something like a macro. No need to worry about which registers to use, and you could use 'almost normal' Forth code for writing your routine.

It shouldn't be that difficult to persuade the Forth system to execute machine code that is embedded in a definition. Every Forth word starts with at least one executable piece of machine code, trap calls for Forth-defined words such as colon definitions and 'real' 68000 code for machine code definitions. However, this gives you either machine code or Forth, not both. Our goal is to define words that allow switching between 68000 and Forth code within one definition. Similar words do exist in the Forth 2.0 assembler, but it lacks a set of macros that allow you to write inline Forth code instead of assembly code. Furthermore, you cannot define control structures that easily.

Assume we have Forth code that looks like this:

 ...
 <token 1>
 <token 2>
 <token X>
 <machine instruction 1>
 <machine instruction 2>
 ...

etc. This sequence of instruction will get executed just fine if <token X> is a word that transfers execution to the word just following. We'll call this word >CODE and define it as follows:

: >CODE 
    here 2+ make.token w, [compile] [ ;
    immediate

This word, which is executed during compilation, takes the next free address in the dictionary, adds 2 (this is where execution of the machine code is to start) and compiles this address as a token into the dictionary. Since a token just tells the Forth interpreter 'jump to the address that I refer to', machine code execution will start at the address following >CODE.

This is what happens at execution time. At compilation time, the words following >CODE in the input stream are executed, not compiled (this is what the [COMPILE] [ does). Therefore, if the words following >CODE are macros that stuff assembly code into the dictionary, you have your inline code right there.

We'll get to those macros in a minute. First, what remains is the problem how to get out of the machine code. You might recall that all machine-level Forth definitions finish with a

 JMP  (A4)

and the NEXT routine, pointed to by A4, gets the next token from the Forth code. The pointer to the next token is in register A3. Unfortunately, after we executed >CODE, A3 remained unchanged and still points to the word following the >CODE token. Which is 68000 code and certainly nothing that the interpreter will swallow. Therefore we have to reset A3 before we jump back into the Forth interpreter. This is what the word >FORTH does:

: >FORTH 47fa0004 , 4ed4 w, [compile] ] ;

 LEA  4(PC),A3
 JMP  (A4)

Remember, when >FORTH appears in the input stream, we are still in execution mode, from the preceding >CODE (unless we mixed things up). So >FORTH gets executed when used in a definition; it assembles code that loads A3 with the address following the JMP, then executes the JMP. Then the mode is switched back to regular Forth compilation again.

Between >CODE and >FORTH we can now place our macros that generate inline machine code corresponding to Forth primitives. The code for any of the primitives is found very easily by disassembling from the original Forth system. Of course, you may define your own code, use different registers than the MacForth definitions do or optimize the code. For instance, the built-in multiplication routine is a prime candidate for removing overhead. The routine *, which calls the multiplication primitive, M*, always does a 32- by 32-bit multiply and then drops the upper 32 bits of the double precision product. Some sloppiness on the part of Creative Solutions, I presume. Of course, a direct 16- by 16-bit multiply would be much faster.

I have written the macros in hex code, so that they'll work without the assembler, in case you are using Forth 1.1. The machine code is given as a comment in the program text.

Literals

The %LIT and %WLIT macros serve as a means to put constants and addresses on the stack. They compile a long move, resp. word move instruction with the number on the stack at compilation time compiled as the data word(s) following the instruction. So the way to put the address of a variable on the stack in inline code is just to write: <variable> %LIT.

Control Structures

The goal was to speed up the Sieve benchmark (as an example). Of course, the code would be far from optimal if we still had to use the Forth control structures; they should be coded inline, too. This means we have to keep track of addresses that we want to branch to.

The program below provides two examples, %IF...%THEN...%ELSE and %DO...%LOOP. The other control structures are not included, since they weren't necessary for this particular example. But after reading through, you should be able to write your own code for that.

%IF compiles a branch which is taken when the number on top of stack is zero. This branch has a zero displacement when first compiled. At the same time, the dictionary address is pushed on the compilation time stack (HERE). When %THEN is encountered, the branch displacement is calculated and put into the correct address. Same holds for %ELSE, only that another unconditional branch is compiled that is taken at the end of the %IF part. This branch is resolved at the %THEN.

The code compiled by %DO takes the initial and final values from the stack and puts them on the return stack. During compilation, HERE is put on the stack as a reference for the backward branch taken by %LOOP. %LOOP compiles code that increments the loop counter by one and tests it against the limit; if it is still below the limit, the backward branch is taken (calculated at compilation time). %+LOOP behaves just like %LOOP, only that the increment is the number on top of stack. Note that there is one difference between %+LOOP and the usual Forth +LOOP: while the latter works with positive and negative loop increments, ours works only with positive. I did this in the interest of speed.

The Sieve Benchmark

With all these macros available we can now recode the Sieve of Erastothenes prime number benchmark into inline machine code. The changes that have to be made to the Forth code are only minor ones. At the point where the inline code is supposed to start, we insert >CODE; all Forth words thereafter are inline macros. They are distinguished from the regular Forth words by the preceding percent sign. When the inline part ends, we write >FORTH to jump back into interpreter mode.

The resulting code works (!!) and executes in 9.7 seconds, as compared to 21 seconds for the Forth code.

Inline compiler definitions ( 060585 jl )

(c) June 1985 MacTutor by J. Langowski

This code is meant as an example for speeding up time-critical Forth code through the insertion of inline machine code. The words defined here are by no means a complete Forth compiler. No attempt was made to use the same words as standard Forth and do context switching; I felt that this would have been a) more complicated and b) actually confusing, because you tend to lose track of when you are in inline mode and when in interpreted Forth mode. Therefore, all inline words are compiled into the standard Forth vocabulary and have the names of the corresponding Forth words preceded by a '%'. The only control structures are %IF...%ELSE...%THEN and %DO...%LOOP/%+LOOP, where the %+LOOP works only for positive increments. You are encouraged to build other control structures, using the same principles.

( inline assembly macros)  ( 060285 jl )
hex
: >code here 2+ make.token w, [compile] [ ;  
immediate

: >forth 47fa0004 , 4ed4 w, [compile] ] ;
{LEA  4(PC),A3 }
{JMP  (A4)} 
: %swap 202f0004 , 2f570004 , 2e80 w, ;
{MOVE.L 4(A7),D0 }
{MOVE.L (A7),4(A7) }
{MOVE.L D0,(A7)  }
 
: %drop 588f w, ; { ADDQ.L  #4,A7  }
: %dup 2f17 w, ;  { MOVE.L  (A7),-(A7) }
: %over 2f2f0004 , ; { MOVE.L 4(A7),-(A7) }

: %+! 205f201f , d190 w, ;
{MOVE.L (A7)+,A0 }
{MOVE.L (A7)+,D0 }
{ADD.L  D0,(A0)  }

: %rot 202f0008 , 2f6f0004 , 0008 w,
       2f570004 , 2e80 w, ;
{MOVE.L 8(A7),D0 }
{MOVE.L 4(A7),8(A7)}
{MOVE.L (A7),4(A7) }
{MOVE.L D0,(A7)  }

: %+ 201fd197 , ;  
{MOVE.L (A7)+,D0 }
{ADD.L  D0,(A7)  }
  
: %- 201f9197 , ;
{MOVE.L (A7),D0  }
{SUB.L  D0,(A7)  }

: %i 2f16 w, ;     { MOVE.L   (A6),-(A7) }
: %j 2f2e0008 , ;  { MOVE.L  8(A6),-(A7) }
: %k 2f2e0010 , ;  { MOVE.L 16(A6),-(A7) }
{ %k is a word that does not exist in 
  MacForth, but is very useful to extract 
  a loop index one level further down    }

: %i+ 2017d096 , 2e80 w, ;
{MOVE.L (A7),D0  }
{ADD.L  (A6),D0  }
{MOVE.L D0,(A7)  }

: %c@ 42802057 , 10102e80 , ;
{CLR.L  D0}
{MOVE.L (A7),A0  }
{MOVE.B (A0),D0  }
{MOVE.L D0,(A7)  }
  
: %w@ 20574257 , 3f500002 , ;
{MOVE.L (A7),A0  }
{CLR.W  (A7)}
{MOVE (A0),2(A7) }

: %@ 20572e90 , ;
{MOVE.L (A7),A0  }
{MOVE.L (A0),(A7)}
  
: %c! 205f201f , 1080 w, ;
{MOVE.L (A7)+,A0 }
{MOVE.L (A7)+,D0 }
{MOVE.B D0,(A0)  }

: %w! 205f201f , 3080 w, ;
{MOVE.L (A7)+,A0 }
{MOVE.L (A7)+,D0 }
{MOVE D0,(A0)  }
   
: %! 205f209f , ;
{MOVE.L (A7)+,A0 }
{MOVE.L (A7)+,(A0) }

: %>r 2d1f w, ;  { MOVE.L  (A7)+,-(A6)  }  
: %r> 2f1e w, ;  { MOVE.L  (A6)+,-(A7)  }

: %ic!  201f2056 , 1080 w, ;
{MOVE.L (A7)+,D0 }
{MOVE.L (A6),A0  }
{MOVE.B D0,(A0)  }

: %lit 2f3c w, , ;
{MOVE.L #xxxx,-(A7)}
{ where xxxx is compiled from the stack 
  into the next four bytes }
  
: %wlit 3f3c w, w, ;
{MOVE #xxxx,-(A7)}
{ and compile top of stack into next word }

: %< 4280bf8f , 6c025380 , 2f00 w, ;
{CLR.L  DO}
{CMPM.L (A7)+,(A7)+}
{BGE  M1}
{SUBQ.L #1,D0  }
{ M1  MOVE.LD0,-(A7) }

: %> 4280bf8f , 6f025380 , 2f00 w, ;
{CLR.L  DO}
{CMPM.L (A7)+,(A7)+}
{BLE  M1}
{SUBQ.L #1,D0  }
{ M1  MOVE.LD0,-(A7) }

: %= 4280bf8f , 66025380 , 2f00 w, ;
{CLR.L  DO}
{CMPM.L (A7)+,(A7)+}
{BNE  M1}
{SUBQ.L #1,D0  }
{ M1  MOVE.LD0,-(A7) }

: %0= 42804a97 , 66025380 , 2e80 w, ;
{CLR.L  D0}
{TST.L  (A7)}
{BNE  M1}
{SUBQ.L #1,D0  }
{ M1  MOVE.LD0,-(A7) }

: %0< 42804a97 , 6a025380 , 2e80 w, ;
{CLR.L  D0}
{TST.L  (A7)}
{BPL  M1}
{SUBQ.L #1,D0  }
{ M1  MOVE.LD0,-(A7) }

: %0> 42804a97 , 6f025380 , 2e80 w, ;
{CLR.L  D0}
{TST.L  (A7)}
{BLE  M1}
{SUBQ.L #1,D0  }
{ M1  MOVE.LD0,-(A7) }

: %and 201fc197 , ;
{MOVE.L (A7)+,D0 }
{AND.L  D0,(A7)  }
  
: %or 201f8197 , ;
{MOVE.L (A7)+,D0 }
{OR.L D0,(A7)  }

: %if 4a9f6700 , here 0 w, ;
{TST.L  (A7)+  }
{BEQ  xxxx}
{ xxxx is a 16 bit displacement that is 
  resolved by %THEN   }

: %then here over - swap w! ;
: %else 6000 w, here 0 w, swap %then ;
{BRA  xxxx}
{ resolves preceding %IF and leaves new
  empty unconditional branch to be filled
  by %THEN     }

: %do 2d2f0004 , 2d1f588f , here ;
{MOVE.L 4(A7),-(A6)}
{MOVE.L (A7)+,-(A6)}
{ADDQ.L #4,A7  }
{ leaves HERE on the stack for back branch
  by %LOOP or %+LOOP      }

: %loop 5296204e , b1886e00 , 
                 here - w, ddfc w, 8 , ;
{ADDQ.L #1,(A6)  }
{MOVE.L A6,A0  }
{CMPM.L (A0)+,(A0)+}
{BGT  xxxx}
{ADDA.L #8,A6  }
{ the last instruction cleans up the return
  stack. Branch resolved in this word     }

: %+loop 201fd196 , 204e w, b1886e00 , 
                 here - w, ddfc w, 8 , ;
{MOVE.L (A7)+,D0 }
{ADD.L  D0,(A6)  }
{MOVE.L A6,A0  }
{CMPM.L (A0)+,(A0)+}
{BGT  xxxx}
{ADDA.L #8,A6  }

decimal

( Eratosthenes Sieve Benchmark,
             inline code) ( 060285 jl )
 8192 constant size  
 create flags  size allot
: primes   flags  size 01 fill 
  >code 0 %lit size %lit 0 %lit
    %do  flags %lit %i+ %c@
       %if 3 %lit %i+ %i+ %dup %i+ 
             size %lit %<
         %if size %lit flags %lit %+ 
           %over %i+ flags %lit %+
           %do 0 %lit %ic! %dup %+loop
         %then %drop 1 %lit %+
       %then
    %loop >forth . ." primes  "  ;
 : 10times    
   1 sysbeep 10 0 do  primes cr loop
   1 sysbeep ;

( Eratosthenes Sieve Benchmark,
                standard version)
 8192 constant size       
 create flags  size allot
: primes flags size 01 fill 
  0  size 0  
    do  flags  i+ c@
      if  3 i+ i+ dup i+  size <  
         if  size flags +  over i+  flags +
             do  0 ic!  dup  +loop
         then  drop 1+  
       then
    loop  . ." primes  "  ;
 : 10times    
   1 sysbeep 10 0 do  primes cr loop  
   1 sysbeep ;
 
AAPL
$95.74
Apple Inc.
+0.14
MSFT
$43.02
Microsoft Corpora
-0.14
GOOG
$568.18
Google Inc.
-3.42

MacTech Search:
Community Search:

Software Updates via MacUpdate

Adobe Lightroom 5.6 - Import, develop, a...
Adobe Lightroom software helps you bring out the best in your photographs, whether you're perfecting one image, searching for ten, processing hundreds, or organizing thousands. Create incredible... Read more
OneNote 15.2 - Free digital notebook fro...
OneNote is your very own digital notebook. With OneNote, you can capture that flash of genius, that moment of inspiration, or that list of errands that’s too important to forget. Whether you’re at... Read more
iStat Menus 4.22 - Monitor your system r...
iStat Menus lets you monitor your system right from the menubar. Included are 8 menu extras that let you monitor every aspect of your system. Some features: CPU -- Monitor cpu usage. 7 display... Read more
Ember 1.8 - Versatile digital scrapbook....
Ember (formerly LittleSnapper) is your digital scrapbook of things that inspire you: websites, photos, apps or other things. Just drag in images that you want to keep, organize them into relevant... Read more
OmniPlan 2.3.6 - Robust project manageme...
With OmniPlan, you can create logical, manageable project plans with Gantt charts, schedules, summaries, milestones, and critical paths. Break down the tasks needed to make your project a success,... Read more
Command-C 1.1.1 - Clipboard sharing tool...
Command-C is a revolutionary app which makes easy to share your clipboard between iOS and OS X using your local WiFi network, even if the app is not currently opened. Copy anything (text, pictures,... Read more
Knock 1.1.7 - Unlock your Mac by knockin...
Knock is a faster, safer way to sign in. You keep your iPhone with you all the time. Now you can use it as a password. You never have to open the app -- just knock on your phone twice, even when it's... Read more
Mellel 3.3.6 - Powerful word processor w...
Mellel is the leading word processor for OS X and has been widely considered the industry standard since its inception. Mellel focuses on writers and scholars for technical writing and multilingual... Read more
LibreOffice 4.3.0.4 - Free Open Source o...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
Freeway Pro 7.0 - Drag-and-drop Web desi...
Freeway Pro lets you build websites with speed and precision... without writing a line of code! With it's user-oriented drag-and-drop interface, Freeway Pro helps you piece together the website of... Read more

Latest Forum Discussions

See All

Dead Trigger 2 Slaughter Master Tourname...
Dead Trigger 2 Slaughter Master Tournament Set to Reward for Masterful Murdering Posted by Ellis Spice on August 1st, 2014 [ | Read more »
Soccer Physics Review
Soccer Physics Review By Andrew Fisher on August 1st, 2014 Our Rating: :: HE FLAILS, HE SCORES!!!Universal App - Designed for iPhone and iPad Soccer Physics is as entertaining as it is absurd.   | Read more »
Train Your Own Dragon in DreamWorks’ Fir...
Train Your Own Dragon in DreamWorks’ First Story App – Dreamworks Press: Dragons Posted by Jessica Fisher on August 1st, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Dream Revenant Review
Dream Revenant Review By Lee Hamlet on August 1st, 2014 Our Rating: :: WATCH OUT FOR BED BUGSUniversal App - Designed for iPhone and iPad Dream Revenant takes players on a journey through a man’s subconscious. And though it’s full... | Read more »
Dawn of the Immortals Review
Dawn of the Immortals Review By Jennifer Allen on July 31st, 2014 Our Rating: :: RESPECTABLE EXPLORATIONUniversal App - Designed for iPhone and iPad Dawn of the Immortals might not re-invent the wheel, but it does tweak it a little... | Read more »
80 Days Review
80 Days Review By Jennifer Allen on July 31st, 2014 Our Rating: :: EPIC ADVENTUREUniversal App - Designed for iPhone and iPad A fantastic and fascinating re-envisioning of the classic novel by Jules Verne, 80 Days is a delightful... | Read more »
Battleheart Legacy Guide
The world of Battleheart Legacy is fun and deep; full of wizards, warriors, and witches. Here are some tips and tactics to help you get the most enjoyment out of this great game. | Read more »
Puzzle Roo Review
Puzzle Roo Review By Jennifer Allen on July 31st, 2014 Our Rating: :: PUZZLE-BASED TWISTUniversal App - Designed for iPhone and iPad A different take on the usual block dropping puzzle game, Puzzle Roo is quite pleasant.   | Read more »
Super Crossfire Re-Release Super Crossfi...
Super Crossfire Re-Release Super Crossfighter Coming Soon, Other Radiangames Titles Go 50% Off Posted by Ellis Spice on July 31st, 2014 [ | Read more »
Hexiled Review
Hexiled Review By Rob Thomas on July 31st, 2014 Our Rating: :: HEX SELLSUniversal App - Designed for iPhone and iPad In space, no one can hear you… spell? Hexiled is a neat concept for a word scramble puzzle, but it doesn’t go too... | Read more »

Price Scanner via MacPrices.net

13-inch MacBook Airs on sale for $100 off MSR...
B&H Photo has the new 2014 13″ MacBook Airs on sale $100 off MSRP. Shipping is free, and B&H charges NY sales tax only. They also include free copies of Parallels Desktop and LoJack for... Read more
16GB iPad Air on sale for $399, save $100
Best Buy is offering the 16GB WiFi iPad Air for $399.99 on their online store for a limited time. Their price is $100 off MSRP. Choose free shipping or free store pickup (if available). Price is for... Read more
All Over For Tablets Or Just A Maturing, Evol...
CNN’s David Goldman weighs in on tablet sector doom and gloom, asking rhetorically: “Is this the beginning of the end for the tablet?” Answering that, he contends that hysteria and panic are... Read more
Letterspace 1.0.1 – New Free iOS Text Editor...
Bangkok, Thailand based independent developer Sittipon Simasanti has released Letterspace, a new text editor for iPhone, iPad, and iPod touch devices. Letterspace is a note taking app with an... Read more
Save up to $130 on an iPad mini with Apple re...
The Apple Store has Certified Refurbished 2nd generation iPad minis with Retina Displays available for up to $130 off the cost of new models, starting at $339. Apple’s one-year warranty is included... Read more
iPad Cannibalization Threat “Overblown”
Seeking Alpha’s Kevin Greenhalgh observes that while many commentators think Apple’s forthcoming 5.5-inch panel iPhone 6 will cannibalize iPad sales, in his estimation, these concerns are being... Read more
Primate Labs Releases July 2014 MacBook Pro P...
Primate Labs’ John Poole has posted Geekbench 3 results for most of the new MacBook Pro models that Apple released on Tuesday. Poole observes that overall performance improvements for the new MacBook... Read more
Apple Re-Releases Bugfixed MacBook Air EFI Fi...
Apple has posted a bugfixed version EFI Firmware Update 2.9 a for MacBook Air (Mid 2011) models. The update addresses an issue where systems may take longer to wake from sleep than expected, and... Read more
Save $50 on the 2.5GHz Mac mini, plus free sh...
B&H Photo has the 2.5GHz Mac mini on sale for $549.99 including free shipping. That’s $50 off MSRP, and B&H will also include a free copy of Parallels Desktop software. NY sales tax only. Read more
Save up to $140 on an iPad Air with Apple ref...
Apple is offering Certified Refurbished iPad Airs for up to $140 off MSRP. Apple’s one-year warranty is included with each model, and shipping is free. Stock tends to come and go with some of these... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Sr. Product Leader, *Apple* Store Apps - Ap...
**Job Summary** Imagine what you could do here. At Apple , great ideas have a way of becoming great products, services, and customer experiences very quickly. Bring Read more
Sr Software Lead Engineer, *Apple* Online S...
Sr Software Lead Engineer, Apple Online Store Publishing Systems Keywords: Company: Apple Job Code: E3PCAK8MgYYkw Location (City or ZIP): Santa Clara Status: Full Read more
Sr Software Lead Engineer, *Apple* Online S...
Sr Software Lead Engineer, Apple Online Store Publishing Systems Keywords: Company: Apple Job Code: E3PCAK8MgYYkw Location (City or ZIP): Santa Clara Status: Full Read more
*Apple* Solutions Consultant (ASC) - Apple (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.