TweetFollow Us on Twitter

March 93 - Camelot — Not Just Another Pretty Face

Camelot — Not Just Another Pretty Face

Juan Guillen

Camelot is an object oriented environment which has been built "from the ground up" by developers for developers. Camelot is designed from first principles rather than being based on other products, and it does more than making it easier to write graphical user interfaces.

The environment incorporates some significant new capabilities for the management of the complexity introduced by large system developments. One of these is an additional level of modularity which permits individual components to be created independently, then combined with other components to create a complete system (see Figure 1). The use of object repositories to store both objects and instance specific methods provides an additional degree of encapsulation, and its open architecture guarantees full interoperability with existing systems.

Camelot is supported by a comprehensive visual development environment. Nevertheless, as some of the concepts which we are going to discuss are best expressed syntactially, we begin with a background description of Camelot's Fire language.


The Fire language is a strongly typed, late binding language which has been designed to express fundamentally procedural logic in an object oriented context. Its data types can be characterized as follows:
  • Object, which references a Fire object.
  • Standard Types, which include integer, float and string.
  • Utility types, including pointer, which is used to store information useful to foreign systems, and variable, which assumes the data type of the value it contains.
  • Structured types other than object, including record, field and collection. A variable of type collection can contain any number of objects of any class, and can be sequential or keyed.

Variables are accessed either normally (one := two), hierarchically (one += two.three.four) or indirectly (one.two -= <<"th"+"ree">>.four.<<"fi"+"ve">>). In the indirect form, any expression which results in a string value can be placed between the <<>> bracketing. Fire implements an hierarchical variable name resolution scheme which searches for a variable first in the method, then in the object, etc. until it searches the global name space. These levels are method -> object -> connected object -> module -> global, and are discussed in greater detail below.

The code fragment below illustrates a several Fire principles.

01 #include "DCCDefinitions.D"
02  #ifndef DCC
03      # define DCC 5
04  #endif

05  method open( arg integer ) returning string
06  {
07      name string : initial value "DNX";
08      element object.dcc(ne);
09       if ( arg:assigned )
10      {
11           name := elements[ DCC, arg ].name;
12      }
13      if ( name:length >= 17 )
14      {
15          [ New(element) ConnectionAddFirstTo( self ) ];
16      }
17      return ( name );
18  }

Lines 01 to 04 show that Fire incorporates a full preprocessor which allows the usual #include, #define, #if(n)def etc. directives.

Line 05 is the standard Fire method definition line, in this case for a method called open with an argument called arg of type integer. The method returns a string value. All Fire methods run in the context of an object of a minimum class, i.e. the class in which the method is defined (the "method class") or one which inherits from the method class.

Lines 07, 09 and 13 show that Fire variables have attributes -in this case, an initial value, an assignment status and a string length. Assignment status (:assigned) can be both read and set, and is particularly useful because it prevents the use of a variable before it has been assigned.

Line 08 shows that Fire variables of type object can have a minimum class as defined above which further qualifies their data type. In this case, the minimum class of the element variable is dcc in module ne.

Line 11 illustrates access to a two dimensional array called elements. Any Fire variable can be defined to be an array of any number of dimensions.

Fire has standard procedural flow of control constructs, as illustrated in the code fragment below: if-else, while, for each, for ( ), break, continue and return.

if ( boolean )
    while ( x < y ) {
        for each element in collection {
            for ( index := 0; : index < 10 : index += 1; ) {
                if ( condition( index ) ) {
                else {
                    if ( !otherCondition ) {
    }   }   }   }    }
    return ( x >= y );

Fire also has an expanded form of the case statement and a full set of both logical and arithmetic binary and unary operators, as well as the tertiary ?: construct found in C.

case ( complexCalculation() )
    = valueOne: {
        x *= ( y + 3 ) % 4;
    != valueTwo: {
        x = ( y & z ) | w;
    ~^ valueThree: {
        x /= ( w < 1 ) ? -w : w;
    > valueFour| x > y: {
    { }

Methods in Fire are always executed in the context of an object, which is called the method object. "Sending a message to an object" is synonymous with "executing a method in the context of an object." Some examples of method invocation are shown below:

01  close( x.y, 142 + 857, subvalue() + 3.89 );
02  close() : super;
03  [ otherObject close() ];
04  [ findObject( name ) close() : if defined ];
05  [ otherObject update(), display(), close() ];

Line 01 invokes the close method in the current object context, passing arguments x.y, 142 + 857, etc. Line 02 also invokes a close method in the current context, but the method it invokes is at a higher level of inheritance-the inherited close method.

Line 03 invokes the close method in the context of otherObject. In fact, it invokes the close method defined by otherObject or by its progenitors. Line 04 shows that the object context can itself be any expression which returns an object reference, and the if defined clause means that, if the close method is not defined, processing continues without error.

The construct shown in line 05 is a convenience; the update, display and close methods are all invoked in the context of otherObject. All return values except that of the last method invoked, in this case close, are discarded.

In addition to these syntactic constructs, the entire Camelot environment has been designed to support the object oriented paradigm, especially the principle of encapsulation.

Asynchronous Methods

Any Fire method, regardless of the language in which it is written, may be invoked asynchronously. This is illustrated in the code segment below, which invokes the update method in the context of the object referenced by the window method. update is invoked asynchronously, to start after delay seconds and to be executed repeatedly every repeat ticks.


startUpdate( delay integer, repeat integer, arg float ) {
    [   window()
        update( arg ) : asynchronous
        , after delay seconds 0 ticks
        , every 0 seconds repeat ticks  ]


Fire objects can be dynamically connected to other objects at run time, and can have many objects connected to them in turn (see Figure 2). This mechanism is useful for two reasons: first, the identities of connected objects in either direction can be determined and connected objects can be sequenced; and second, the connected objects are used for variable name space resolution. This means that, in the example below, the class C object at the lower right has access to variables W, X, Y, Z, ß and Ø directly, and any method executing in the context of this object would be able to refer to all of these variables, including W and X, as if they were defined in the object itself.

Instance Specific Methods

One of the difficulties encountered by other object oriented environments is the proliferation of classes. This happens for two reasons: the need to have all classes inherit from a common progenitor and the need to create a new class ("subclass") whenever even a small degree of specialization is required for a particular object. Fire's solution to the former is the introduction of modules, which are discussed in other sections below. The need to subclass for single instance specializations is addressed by instance specific methods, which allow specialization without the associated administrative overhead.

To understand instance specific methods we must start with an explanation of Fire's normal method dispatch mechanism (see Figure 3). Although this mechanism is optimized, it operates completely in accordance with the theory illustrated in the diagram below. All Fire objects reference a dispatch table which contains a list of methods in the order in which they were defined. The diagram illustrates an object of class C which inherits from class B which inherits from class A. The object in question has six methods defined: from the bottom up, Z, Y, super Y, X, super X and W. Let us assume that the object in this example receives a message Y. Its dispatch table is searched from the bottom up and the method defined by class C is executed.

Figure 4 shows instance specific methods Y, Z and Ø which have been added to the object in question. References to these methods are appended at the bottom of the dispatch table for the object, and when it receives a message Y it invokes the instance specific method, which is the first one found when searching the table from the bottom up. The first super invocation resolves to the method Y which was defined by class C, and the next to the method Y which was defined by class B.

Instance specific methods are a convenient way of implementing specific functionality which is only required by a single instance of an object. A good example of their use is in specifying the action of a button object on a panel, which in all probability is an action unique to that object. Of course, if the object is duplicated (e.g., to create a new copy of the window) so is the reference to its instance specific methods.

Object Repositories

The usefulness of instance specific methods is greatly increased when they are used in conjunction with Camelot's object repositories. When a Camelot object is placed in an object repository, all of the objects which it explicitly references are stored with it. This includes objects which it references directly or through collections, and those which reference the object through Fire's connection mechanism. Since Camelot's object repositories are implemented in host operating system files, they can be as large or as small as necessary, making it possible, for example, to place all of the objects which make up a window into a repository.

Camelot's object repositories are stored in both binary and machine independent forms, which means that any repository can be copied to any machine which Camelot supports. Camelot recognizes that the repository comes from a different machine and recreates its binary form, providing immediate portability.

This combination of object repositories and instance specific methods makes it possible to introduce new functionality without increasing the size of the environment as a whole. It also extends the benefits of encapsulation to a higher level by allowing the developer to ignore encapsulated functionality which does not pertain to the problem at hand. In addition, it makes distribution of new functionality a straightforward matter of copying a file from one system to another.


Object oriented development efforts are often characterized by rapid progress in the early stages, followed by increasing difficulties and, in the end, the inability to implement required functionality. This pattern is due primarily to the inheritance mechanism, which in any substantial development results in a multilayered tree which is difficult to understand and even more difficult to modify.

To circumvent this difficulty Camelot implements modules, which are higher level encapsulations of functionality. Camelot module definitions organize separate classes and methods into a self-contained unit with a well defined interface and a single objective, in much the same way that classes themselves organize data definitions and their associated methods. This means that a portion of a system can be developed and modified with a greater degree of independence.

External Code

Camelot provides a simple mechanism for declaring that functions stored in DLLs or code resources are to be treated as methods for a specified class. Although this is not strictly speaking an encapsulation feature, it does make external code appear to be defined specifically for a Camelot class. The object oriented model is maintained as far as possible in that the resultant methods are defined for their associated class and all subclasses, and can be overridden by subclasses as necessary. In addition, functions from one DLL can be associated with several different classes, and a single class can have functions from several different DLLs.

Garbage Collection

Camelot's developers maintain that encapsulation is impossible without garbage collection. In a system that is not garbage collected and in which object A refers to object B, it is necessary for object A to know when it can tell object B to destroy itself. This functionality can not be implemented by object B, even with reference counts, which suffer from isolated mutual references or "disconnected loops." It is therefore necessary for the developer writing object A to have knowledge of the system's overall architecture, which limits the size and complexity of systems which can be created to those which can be understood by a team of programmers.


One way of describing such a graphical environment is used is to provide a practical example of its use. Our task will be to implement a simple panel which will convert between miles and kilometers (this example is shown and explained in Figures 5-12).

We should note here that Camelot's philosophy is to use native mode controls (buttons, check boxes, etc.) whenever possible, although the user always has the option of using a control defined by Camelot. This means that, at the user's discretion, all buttons can look the same-or that a button can look like a Macintosh button on Macintosh computers, a Windows™ button under Windows, etc. This is an option settable both as a user preference and on a control by control basis.


Community Search:
MacTech Search:

Software Updates via MacUpdate

Skateboard Party 3 ft. Greg Lutzka (Gam...
Skateboard Party 3 ft. Greg Lutzka 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Skateboard Party is back! This third edition of the popular sports franchise features professional skater... | Read more »
Cubious (Games)
Cubious 1.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0 (iTunes) Description: Cubious – How smart are you? How high is your IQube? Solve the impossible puzzles to find out, and help a lost little cube find his... | Read more »
Goat Simulator Waste of Space (Games)
Goat Simulator Waste of Space 1.1 Device: iOS Universal Category: Games Price: $4.99, Version: 1.1 (iTunes) Description: ** IMPORTANT - SUPPORTED DEVICESiPhone 4S, iPad 2, iPod Touch 5 or better.** | Read more »
Wildfulness - Unwind in nature and calm...
Wildfulness - Unwind in nature and calm your mind with nature sounds and illustrations 1.0 Device: iOS Universal Category: Healthcare & Fitness Price: $1.99, Version: 1.0 (iTunes) Description: Spending time in nature helps you to... | Read more »
Dr. Panda Racers (Education)
Dr. Panda Racers 1.0 Device: iOS Universal Category: Education Price: $2.99, Version: 1.0 (iTunes) Description: STEP ON THE GAS, RACE AND WIN!Fasten your seat belts and get ready to race! Speed your way to the finish line while doing... | Read more »
ROMANCING SAGA 2 1.0.0 Device: iOS Universal Category: Games Price: $17.99, Version: 1.0.0 (iTunes) Description: Romancing SaGa 2, originally released only in Japan in 1993, has been completely remastered and now receives its first... | Read more »
WRIO Keyboard (Utilities)
WRIO Keyboard 1.0 Device: iOS iPhone Category: Utilities Price: $2.99, Version: 1.0 (iTunes) Description: 40% OFF DURING LIMITED INTRODUCTORY OFFER | Read more »
Hatoful Boyfriend (Games)
Hatoful Boyfriend 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: The hit PC game that everybirdie loves has now migrated to your mobile device! Now you are free to explore the wonders of St... | Read more »
Warp Shift (Games)
Warp Shift 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: [ CHECK YOUR HARDWARE: Warp Shift does NOT run on iPhone 4, iPad 1 and iPod touch 4G or older devices! It requires at least iOS8... | Read more »
Lifeline: Whiteout (Games)
Lifeline: Whiteout 1.0.2 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0.2 (iTunes) Description: Alone in a frozen wasteland with no memory of how he got there, a lost adventurer’s only hope is his last line of... | Read more »

Price Scanner via

Goal Zero and OtterBox Partner to Expand iPh...
Goal Zero, specialists in portable power, have announced a partnership with OtterBox, brand smartphone case protection, to offer the Slide and Slide Plus Batteries as modules compatible with the new... Read more
15-inch Retina MacBook Pros on sale for up to...
B&H Photo has 15″ Retina MacBook Pros on sale for up to $210 off MSRP. Shipping is free, and B&H charges NY tax only: - 15″ 2.2GHz Retina MacBook Pro: $1799 $200 off MSRP - 15″ 2.5GHz Retina... Read more
Clearance 2015 13-inch MacBook Airs available...
B&H Photo has clearance 2015 13″ MacBook Airs available for $250 off original MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 1.6GHz/4GB/128GB MacBook Air (MJVE2LL/A): $799... Read more
Apple refurbished Apple TVs available for up...
Apple has Certified Refurbished 32GB and 64GB Apple TVs available for up to $30 off the cost of new models. Apple’s standard one-year warranty is included with each model, and shipping is free: -... Read more
21-inch iMacs on sale for up to $120 off MSRP
B&H Photo has 21″ iMacs on sale for up to $120 off MSRP including free shipping plus NY sales tax only: - 21″ 3.1GHz iMac 4K: $1379.99 $120 off MSRP - 21″ 2.8GHz iMac: $1189 $110 off MSRP - 21″ 1... Read more
Kanex Introduces GoPower USB-C Rechargeable B...
Kanex has announced its GoPower USB-C portable battery for the USB-C MacBook, featuring the new industry standard connector and cable used for connectivity and power. Providing users with a new... Read more
Convertible and Detachable Devices Winning Ov...
According to the latest figures published by International Data Corporation (IDC), Western European shipments of ultraslim convertibles and detachables posted positive growth (44.7%) to account for... Read more
New MacBook Pros And Will MacBook Air Be Upgr...
With my mid-2013 13-inch MacBook Air closing on its third anniversary come November, I’m in system upgrade mode. Actually the Haswell CPU equipped Air is still doing a fine job, but my good wife is... Read more
Apple’s Education discount saves up to $300 o...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free, and... Read more
13-inch 2.5GHz MacBook Pro on sale for $999,...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $999 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more

Jobs Board

Editor, *Apple* News - APPLE (United States...
Job Summary The Apple News team is looking for a passionate and knowledgeable editor with experience covering entertainment/pop culture and experience running social Read more
*Apple* Nissan Service Technicians - Apple A...
Apple Automotive is one of the fastest growing dealer...and it shows. Consider making the switch to the Apple Automotive Group today! At Apple Automotive , Read more
ISCS *Apple* ID Site Support Engineer - APP...
…position, we are looking for an individual who has experience supporting customers with Apple ID issues and enjoys this area of support. This person should be Read more
Automotive Sales Consultant - Apple Ford Linc...
…you. The best candidates are smart, technologically savvy and are customer focused. Apple Ford Lincoln Apple Valley is different, because: $30,000 annual salary Read more
*Apple* Support Technician II - Worldventure...
…global, fast growing member based travel company, is currently sourcing for an Apple Support Technician II to be based in our Plano headquarters. WorldVentures is Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.