TweetFollow Us on Twitter

August 91 - Macintosh Common Lisp and CLOS

Macintosh Common Lisp and CLOS

Jeffrey W. Stulin

This article is the first in a series of three on Macintosh Common Lisp (MCL) and Common Lisp Object System (CLOS).

MCL is worth learning about, even for those of you who don't think you'll use it-because it's likely that there will eventually be Macintosh object programming environments and operating systems to come that are based upon technology strongly influenced by Lisp.

This first article introduces the MCL series, and presents a basic Lisp tutorial. The second article will discuss the MCL environment and tools, and introduce CLOS. The third article will present an MCL version of the author's MacApp sample program Game Of Life, and discuss how developing Life in MCL was different than developing it in MacApp and Pascal.

Macintosh Common Lisp 2.0b1 (MCL) offers a refreshingly different approach to software prototyping and development. In this series of three articles, I'll describe the feel of development using MCL, and explore how MCL development can lead to a lower "cost of innovation" than development using MPW and MacApp.

AN author's dilemma

The classic approach of showing a language is to compare its syntax and features with those already known by the reader. Alas, Lisp has almost no syntax. Even if it did, that approach would be a dismal failure. What makes Lisp interesting is its "feel of development," which has no equivalent in Pascal or C++.

Do you remember first learning about object programming? How many times did you have to hear about classes, instances, and inheritance before the concepts behind the words finally took root? Do you truly understand them, or are there still things for you to learn?

Lisp concepts are even more different than the concepts of object programming. A new vocabulary filled with subtle connotations must be mastered. This can't be done by reading a formal specification of the language. (Not to mention that the current definition of Lisp is contained in a 1000 page book with a 10-point typeface.)

So my dilemma is this: do I take the safe route and compare Lisp syntax to that of Pascal, or do I live dangerously, and try to present the "feel" of Lisp instead of Lisp itself?

Since "feel" is subjective, I would risk accusations of language bigotry and unprofessionalism. Perhaps even have my articles rejected. How embarrassing. Oh, well. Life is short.

This first article is philosophical. It introduces the series, presents the concept of "cost of innovation," explains (without yet proving) that Lisp provides a much lower cost of innovation than MPW and MacApp, presents a basic Lisp tutorial, and concludes with a guide and bibliography on how to learn Lisp.

The second article in the series will be more concrete. It will present additional Lisp concepts, discuss the MCL development environment and tools (editor, debuggers, etc.), and present CLOS, the Common Lisp Object System.

The third article will pull everything together. It will present the sample program Game Of Life and discuss how developing Life in MCL was different than in Pascal and MacApp. Both the development process and the quality of the final programs will be considered, and source code for both versions will be included on the FrameWorks Disk..

What is Lisp?

Lisp is the second oldest programming language still in use. It was developed by John McCarthy at MIT in the 1950's. Lisp was originally designed for problems in calculus, logic, game playing, and artificial intelligence.

Lisp rapidly evolved into incompatible dialects reflecting the needs of several organizations; for example, MacLISP at MIT, ZetaLisp for Lisp machines, and FranzLisp for Unix.

In 1984, a new dialect, Common Lisp, sought to create a portable, unified language on which further extensions could be built. Common Lisp was well received and is now working its way toward being an ANSI standard.

Many approaches to object programming have been implemented in Lisp. There has been much cross-fertilization between Lisp and SmallTalk. A standard object programming extension to Common Lisp, called Common Lisp Object System (CLOS), which includes many ideas from these earlier approaches, has recently been accepted as part of the forthcoming ANSI standard. CLOS is based on classes, multiple inheritance, generic functions, and methods. It will eventually include a meta-object protocol. CLOS's flexibility has to be seen to be believed.

Not everyone was happy with the standardization of Lisp. In particular, the fans of Scheme, a Lisp dialect oriented toward teaching, objected to several decisions incorporated in the standard. So it can be expected that other Lisp dialects will continue to be popular.

A few years ago, Apple acquired Coral Software, whose flagship product was a version of Lisp based on the 1984 Common Lisp standard. This was before CLOS, so Coral developed their own object programming standard, Object Lisp, with a Macintosh Class library built on top.

Apple has renamed the product Macintosh Common Lisp (MCL), replaced Object Lisp with CLOS, brought it up to the latest almost-ANSI standard, improved the class library, and released it in beta form, MCL 2.0b1. These articles are based on MCL 2.0b1.

Why Macintosh Common Lisp?

MCL offers a powerful environment for software development:
  • A complete implementation of Lisp as defined in [Steele 1990], including almost 1000 functions, macros and special forms.
  • CLOS, a uniquely flexible object programming paradigm.
  • A user interface class library.
  • The full set of Lisp data types, including linked lists, arrays, structures, objects and hash tables.
  • FRED, a Lisp-sensitive text editor.
  • Extensive debugging facilities, including single stepping, tracing, interactive break points, and extensive object inspection.

Most important, however, is the Lisp approach to software development. I will now explore two aspects of programming that show, by contrast, the Lisp approach. This is a theoretical exploration; specific examples demonstrating these points will be presented later.

The design approach

In university, computer science students are taught (or at least they used to be) that the correct way to develop a software project is from the top down. In top-down design, one starts with a description of the program and then breaks that into more manageable subproblems until each subproblem piece can be easily coded. Traditional languages encourage top-down development.

This approach assumes that while designing the top level we can ignore nasty realities about the bottom levels; that is, that the chosen abstractions will protect the program design from messy details.

Consider this painful counter-example from my past. In graduate school, I took a software engineering course. Its final project required us to develop a certain program. Computer facilities consisted of an IBM computer with punched card input and PL/C, a teaching version of PL/1.

My project required a stack of punched cards almost a foot high. I started debugging at 10 a.m. the day before it was due. At 11 a.m., I had finished debugging individual program components and was ready to put it all together. I figured on being done by lunch. Ten frustrating hours later, I finally traced a program bug down to the fact that PL/C did not handle subroutine parameter passing the same way as PL/1. My entire design required this missing feature. I had to throw away my foot of cards, redesign, retype, and re-debug the program; I was not happy.

Low level details can doom designs; so, in reality, programs must be developed both from the top down and the bottom up. Top down to allow for consistency and clarity of design, and bottom up to test that things work as expected in terms of both functionality and performance.

Bottom-up development is a "bits and pieces" approach; you want to exercise a certain program part quickly and in isolation from the rest of the program. Also, bottom up is where a lot of innovation comes from. It is low level "tinkering" with the toolbox and Macintosh hardware that's exciting, and that inspires me to explore new ways of doing things.

Neither Pascal nor C++ makes "bits and pieces" development easy. Pascal and C++ programs are centered around a "main" block or function which imposes a hierarchical ordering. It's difficult to test a program feature in isolation.

Assume you are in the late stages of developing a substantial C++ and MacApp program and you have a brainstorm, possibly a better way to represent program data. How can you experiment with this idea?

There are two choices. One is to incorporate your new idea in the current program. Since the program is hierarchical, you must rip out the old code, develop a fairly complete implementation of the new code, and hook it up. Even in a well designed modular system this could take considerable effort, just to test an idea that might not fly.

The second choice is to create a separate program to test out the idea. Setting up a new program is costly under both MPW and Think. Additionally, the new data representation may require part of the original program code to test. The code must be incorporated piecemeal in the new program, a confusing and time consuming operation.

A Lisp program has no conventionally imposed hierarchical ordering. There is no "main" function. A new data representation could easily be prototyped and tested in the current program environment without bothering the working code. If successful, it can be easily integrated. If not, it can be just as easily discarded. Thus there is no penalty for exploring new ideas.

Turn-around time

Consider another contrived example. Assume you are developing a large program. Part of this program displays a window with a square drawn in it. For some reason, you want to know what it would look like with a circle instead. (I chose this example because it explores the "cost" of a trivial experiment.)

On the IBM system described above, you would have to terminate the program, grab your deck of cards, find the card that drew the square, repunch the card, schedule time to use the graphics room, place the cards in the hopper, walk into the graphics room, and wait for your program to be run. Average turn around would be about 24 hours.

On a Macintosh with MPW, you would terminate the program, return to MPW, find the correct DrawContents method, change a line from FrameRect(r) to FrameOval(r), rebuild the application, rerun it, and view the result. Turn around would be five minutes or so.

In Think Pascal with MacApp, you would reset the program, find the proper method, make a similar change, rebuild, and rerun the application. Turn around would be a minute or two.

In MCL, you would click on the editor window, scroll to the ViewDrawContents method, change a line from (draw-rect r) to (draw-circle r), reevaluate only that one method, and immediately observe the new behavior in the same window that previously drew the square. Turn around time would be about ten seconds.

Think compilers achieve quick turn around by closely integrating the development tools, the development environment, and the running environment. This effectively blurs the distinction between developing and running a program.

MCL eliminates this distinction. Windows, objects, and functions created by the user even while your program is running are available immediately after creation. They run as first-class objects next to MCL's own. There is no time consuming context switching between development and execution.

Furthermore, MCL offers an incrementally compiled environment. After a function is written, it can be compiled and linked into your development environment instantaneously. No damned spinning beach ball to watch.

The cost of innovation

The cost of innovation is my term for the difficulty of trying out an idea. Trying out an idea requires a language to express the idea and a development environment to give it life. The language and the environment cannot be separated. Assume your choice for a project is either C++ on the above described IBM system, or Pascal and MacApp on a Macintosh. Wouldn't even the most rabid C++ fanatic choose Pascal in that case?

MCL wins in both language and environment areas (well… almost). It is a more expressive language than Pascal or C++. Its development tools are complete and very, very quick. It supports top down, bottom up, side to side, right to left or whatever type of design methodology your program requires. Other aspects of MCL further reducing the cost of innovation will be demonstrated later.

So why doesn't everybody program in Lisp?

Why not Macintosh Common Lisp?

Currently, it isn't practical to deliver applications in MCL. Major reasons include performance, memory requirements, and incompleteness of the MCL class library. These and other negative aspects of MCL will be discussed in subsequent articles.

Despite this, don't give up on MCL. It has immediate potential as a superior prototyping tool, it can teach us much about software development, and it points the way to the future of development systems. Furthermore, despite Lisp's reputation as a slowpoke, performance of delivered applications is almost acceptable. One more round of hardware improvements may clinch it.

On a purely subjective note, MCL is in many ways a far more enjoyable and productive environment than any other I have used in 20 years of software experience.

A Basic introduction to Macintosh Common Lisp

While it isn't the goal of these articles to teach Lisp, I will present basic Lisp concepts here so subsequent discussions and code fragments can be understood. What follows is a very brief and shallow Lisp tutorial. I plead for your patience, and promise that subsequent articles will make this lengthy introduction worthwhile.

All program code and user input are shown in a plain font. All Listener responses are shown in bold.

Lisp basics

After you start MCL, a special window called the Listener prompts for input with a question mark. The Listener reads what you type, evaluates it, and prints its result. This is known as the read-eval-print loop. Every evaluated expression in Lisp produces a value. The Listener reads symbolic expressions (s-expressions). An s-expression is either an atom or a list. Atoms are things such as numbers or symbols. The value of a number is the number itself. Thus:
? 123.45
123.45

Symbols may have values. If the symbol my-bike has the value "Huffy", then:

? my-bike
"Huffy"

A list is a finite sequence of s-expressions surrounded by parentheses. Here are some lists:

(* (+ 3 4) (- 5 6))
(1 2 3)
(the cat (in the) hat)

When you enter a list, the Listener assumes the first item in the list is a function name and that all following items are arguments to that function. This is prefix notation. Thus:

? (* (+ 3 4) (- 5 6))
-7

A form is an s-expression that is to be evaluated. In the previous example, we typed the form (* (+ 3 4) (- 5 6)) into the Listener. When evaluating a function form, Lisp applies the function to its evaluated arguments. In this case, the function is *, the multiplication operation. Its arguments are two forms, (+ 3 4) and (- 5 6). These are evaluated and the results are passed to *. (+ 3 4) evaluates to 7, (- 5 6) to -1. Thus * is called with arguments of 7 and -1 resulting in -7, which is what the Listener prints. Note that lists are recursively defined, and that evaluation is also recursive.

You can give a value to a symbol via the setf macro.

? (setf my-bike "Ross")
"Ross"

The value of the setf macro is the value of the symbol being defined. In this case, we are defining my-bike to be "Ross".

? my-bike
"Ross"

When the first element of a list form is a function name, the listener evaluates its arguments before application. The two other types of list forms, macros and special forms, work differently.

We need special forms because we don't always want arguments evaluated. Assume we have a Lisp function, in-fix, that could evaluate an infix expression:

? (in-fix ((3 + 4) * (5 - 6)))
> Error: Car of ((3 + 4) * (5 - 6)) is not a function name or 
                                                  lambda-expression.
> While executing: 
CCL::CHEAP-EVAL-IN-ENVIRONMENT
> Type Command-. to abort.
See the Restarts… menu item for further choices.
1 > 

The problem is that Lisp will attempt to evaluate ((3 + 4) * (5 - 6)) before passing it to in-fix. Since Lisp assumes the first element of a form being evaluated is a function, and the first element of this list is another list, (3 + 4), Lisp signals an error.

What we want is to pass ((3 + 4) * (5 - 6)) unevaluated to in-fix. Lisp provides a special form, quote, which returns its unevaluated argument. This would work (after we develop in-fix, of course):

? (in-fix (quote ((3 + 4) * (5 - 6))))
-7

It's common to want to avoid evaluating an argument, so Lisp provides a shorthand notation for quote-a single quote character before a form:

? (in-fix '((3 + 4) * (5 - 6)))
-7

There are about 30 special forms. No more can be added. However, you can write Lisp macros that provide control over the evaluation of arguments. Macros are beyond the scope of these articles.

A list form can be either a macro, a special form, or a function call. The developer must memorize which is which. Understanding the distinctions between these list forms and the how and why of Lisp's evaluation rule is a difficult task for the beginner.

Lists

Lisp stands for List Processing. The most basic data structure in Lisp is the list. Lisp code is also constructed from lists. This fact is one of Lisp's most annoying and most powerful aspects. Beginning Lispers may consume many bottles of aspirin before Lisp's list notation becomes comfortable. But it eventually does.

The cons function (constructor) puts lists together:

? (cons 'a '(b c))
(a b c)

In this example, we added the atom a to the list (b c). Note the use of quote to delay evaluation. The result is the list (a b c).

You can also take lists apart. The car function returns the first element of a list; the cdr function returns the rest of the list (for historical reasons, some of Lisp's function names are distressingly non-mnemonic):

? (car '(a b c))
a
? (cdr '(a b c))
(b c)
? (cons (car '(a b c)) (cdr '(a b c)))
(a b c)

Note how cons, car and cdr are related. I'll cover Lisp's extensive list handling forms as needed.

User -defined functions

The defun macro allows us to define new functions. Its simplified form is:
(defun function-name (list of parameters)
forms to be evaluated)

This function computes the average of three numbers:

(defun average-three (one two three)
(/ (+ one two three) 3))

A Lisp function body is a series of forms that are evaluated sequentially. The value of the function is the result of the last form. In this example, the body consists of one form (/ (+ one two three) 3) that adds the parameters together and divides by three.

First, we must tell Lisp about average-three by typing it in to the Listener:

? (defun average-three (one two three)
(/ (+ one two three) 3))
AVERAGE-THREE
? (average-three 7 8 9)
8
? 

Note that the value of a defun is the name of the function; a side effect is the association of the function with its name. In this case, we are more interested in defun's side effect than its value. After Lisp knows about average-three, it can be called like any pre-defined Lisp function.

Lisp is a naturally recursive language. We can easily write a function to return the number of elements of a list:

? (defun list-size (some-list)
  (if (null some-list)
    0
    (+ 1 (list-size (cdr some-list)))))
LIST-SIZE
? (list-size '(this is a short list))
5
? (list-size '(this list (has a sub) list))
4

A predicate is a function that returns true or false. The null predicate returns true when given an empty list. The if special form has this structure:

(if (test-form)
(then-clause)
(else-clause))
In this example, test-form is evaluated. If true, the then-clause is evaluated and its result becomes the result of the if. Else, the (optional) else-clause is evaluated and its result is used.

The function list-size can be described as follows: if some-list is empty, then return a zero, else return one plus the value of list-size applied to the rest of some-list. Thus list-size recursively traces through the list counting elements as it goes.

Note that list-size only counts elements in its top level; count-all-elements transverses all elements of the list:

(defun count-all-elements (some-list)
  (if (null some-list) 
    0
    (if (atom some-list)
      1
      (+ (count-all-elements (car some-list))
         (count-all-elements (cdr some-list)))))) 

The atom predicate returns true if given an atom (as opposed to a list). This can be read as: if some-list is empty, then return 0; else if some-list is an atom, then return one; else return the sum of count-all-elements applied to the first element of some-list plus count-all-elements applied to the rest of some-list. A recursive divide and conquer approach.

? (count-all-elements '((this list) has (sub) lists))
5

and even:

? (count-all-elements 
'(defun count-all-elements (some-list)
    (if (null some-list) 
    0
    (if (atom some-list)
      1
      (+ (count-all-elements (car some-list))
         (count-all-elements (cdr some-list)))))))
18

In this example, we give count-all-elements a listing of itself to process. Because data and programs are both represented as lists, and Lisp has many functions to manipulate lists, Lisp programs can be self-modifying. A Lisp program can take and modify pieces of itself on the fly, changing functions and adding new ones as needed. In fact, as you'll see when we explore CLOS, this self-modification is completely natural in Lisp!

Learning lisp-a road map

To learn Lisp, you must have Lisp. MCL is available from APDA for $495. This includes the works: Lisp, development tools, class libraries, CLOS, etc. Unfortunately, no student version of this excellent product is currently available.

Other versions of Lisp are also available. One is MacScheme, offering the Scheme dialect of Lisp instead of Common Lisp, by Lightship Software. A student version of MacScheme is available from the MIT Press for $37.50, including manual. I hope to evaluate MacScheme shortly.

An excellent Common Lisp tutorial for programmers is The Common Lisp Companion by Timothy Kroschmann from Wiley. This book is well written, up-to-date, covers large parts of the language, and presents numerous exercises with solutions.

Another tutorial is Lisp 3rd Edition by Patrick Henry Winston and Berthold Klaus Paul Horn, available from Addison Wesley. This book is geared more toward nonprogrammers and has an Artificial intelligence slant. It is a companion to Artificial Intelligence 2nd edition, also by Patrick Henry Winston.

Lisp, more than other languages, has many different ways of doing the same thing. Deciding which Lisp tools to use in solving a problem is especially overwhelming for the beginner. Lisp Design and Style by Molly M. Miller and Eric Benson, available from Digital Press, is an excellent book for these issues. Both the Kroschmann and Winston books deal incompletely with CLOS. A thorough treatment is presented in Object Oriented Programming in Common Lisp by Sonya E. Keene, available from Addison Wesley. This is not an easy book to read. However, after learning enough Lisp and CLOS to understand what was being said, I found myself exclaiming "It can really do that?" after reading each page.

All of the books mentioned above present simplified subsets of Lisp. Even together, they are incomplete. Common Lisp The Language, second edition by Guy L. Steele Jr., available from Digital Press, is the current definition of Common Lisp. This book is required for serious Common Lisp development. It is not a tutorial and is difficult for the beginner to follow. It is, however, the most amazing, and often amusing, language definition I have ever read.

The Winter 1991 issue of Apple's technical Journal develop contained an article, The Power of Macintosh Common Lisp by Ruben Kleiman. This article is more readable with some prior knowledge of Common Lisp. It briefly covers the MCL tools, compares the MCL class library with MacApp, and details the development of an application that uses the MCL class library. Source code and detailed explanations are available on the accompanying CD.

A fascinating book that every software developer should own is Structure and Interpretation of Computer Programs by Harold Abelson and Jay Sussman, available from MIT Press. This book uses Scheme to teach basic concepts in programming and computer science.

Finally, a real kick is the Lisp 1.5 Programmer's Manual , also from the MIT Press. This is the (still in print!) users manual from Lisp 1.5, one of the earliest implementations of Lisp. It was originally published in 1962, and is now in its 15th printing. It offers historic insights into Lisp and the computer science of the early sixties. n

 
AAPL
$111.78
Apple Inc.
-0.87
MSFT
$47.66
Microsoft Corpora
+0.14
GOOG
$516.35
Google Inc.
+5.25

MacTech Search:
Community Search:

Software Updates via MacUpdate

calibre 2.13 - Complete e-library manage...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
Mellel 3.3.7 - Powerful word processor w...
Mellel is the leading word processor for OS X and has been widely considered the industry standard since its inception. Mellel focuses on writers and scholars for technical writing and multilingual... Read more
ScreenFlow 5.0.1 - Create screen recordi...
Save 10% with the exclusive MacUpdate coupon code: AFMacUpdate10 Buy now! ScreenFlow is powerful, easy-to-use screencasting software for the Mac. With ScreenFlow you can record the contents of your... Read more
Simon 4.0 - Monitor changes and crashes...
Simon monitors websites and alerts you of crashes and changes. Select pages to monitor, choose your alert options, and customize your settings. Simon does the rest. Keep a watchful eye on your... Read more
BBEdit 11.0.2 - Powerful text and HTML e...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
ExpanDrive 4.2.1 - Access cloud storage...
ExpanDrive builds cloud storage in every application, acts just like a USB drive plugged into your Mac. With ExpanDrive, you can securely access any remote file server directly from the Finder or... Read more
Adobe After Effects CC 2014 13.2 - Creat...
After Effects CC 2014 is available as part of Adobe Creative Cloud for as little as $19.99/month (or $9.99/month if you're a previous After Effects customer). After Effects CS6 is still available... Read more
Evernote 6.0.5 - Create searchable notes...
Evernote allows you to easily capture information in any environment using whatever device or platform you find most convenient, and makes this information accessible and searchable at anytime, from... Read more
Command-C 1.1.7 - Clipboard sharing tool...
Command-C is a revolutionary app which makes easy to share your clipboard between iOS and OS X using your local WiFi network, even if the app is not currently opened. Copy anything (text, pictures,... Read more
Tidy Up 4.0.2 - Find duplicate files and...
Tidy Up is a complete duplicate finder and disk-tidiness utility. With Tidy Up you can search for duplicate files and packages by the owner application, content, type, creator, extension, time... Read more

Latest Forum Discussions

See All

Make your own Tribez Figures (and More)...
Make your own Tribez Figures (and More) with Toyze Posted by Jessica Fisher on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
So Many Holiday iOS Sales Oh My Goodness...
The holiday season is in full-swing, which means a whole lot of iOS apps and games are going on sale. A bunch already have, in fact. Naturally this means we’re putting together a hand-picked list of the best discounts and sales we can find in order... | Read more »
It’s Bird vs. Bird in the New PvP Mode f...
It’s Bird vs. Bird in the New PvP Mode for Angry Birds Epic Posted by Jessica Fisher on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Telltale Games and Mojang Announce Minec...
Telltale Games and Mojang Announce Minecraft: Story Mode – A Telltale Games Series Posted by Jessica Fisher on December 19th, 2014 [ permalink ] | Read more »
WarChest and Splash Damage Annouce Their...
WarChest and Splash Damage Annouce Their New Game: Tempo Posted by Jessica Fisher on December 19th, 2014 [ permalink ] WarChest Ltd and Splash Damage Ltd are teaming up again to work | Read more »
BulkyPix Celebrates its 6th Anniversary...
BulkyPix Celebrates its 6th Anniversary with a Bunch of Free Games Posted by Jessica Fisher on December 19th, 2014 [ permalink ] BulkyPix has | Read more »
Indulge in Japanese cuisine in Cooking F...
Indulge in Japanese cuisine in Cooking Fever’s new sushi-themed update Posted by Simon Reed on December 19th, 2014 [ permalink ] Lithuanian developer Nordcurrent has yet again updated its restaurant simulat | Read more »
Badland Daydream Level Pack Arrives to C...
Badland Daydream Level Pack Arrives to Celebrate 20 Million Downloads Posted by Ellis Spice on December 19th, 2014 [ permalink ] | Read more »
Far Cry 4, Assassin’s Creed Unity, Desti...
Far Cry 4, Assassin’s Creed Unity, Destiny, and Beyond – AppSpy Takes a Look at AAA Companion Apps Posted by Rob Rich on December 19th, 2014 [ permalink ] These day | Read more »
A Bunch of Halfbrick Games Are Going Fre...
A Bunch of Halfbrick Games Are Going Free for the Holidays Posted by Ellis Spice on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »

Price Scanner via MacPrices.net

The Apple Store offering free next-day shippi...
The Apple Store is now offering free next-day shipping on all in stock items if ordered before 12/23/14 at 10:00am PT. Local store pickup is also available within an hour of ordering for any in stock... Read more
It’s 1992 Again At Sony Pictures, Except For...
Techcrunch’s John Biggs interviewed a Sony Pictures Entertainment (SPE) employee, who quite understandably wished to remain anonymous, regarding post-hack conditions in SPE’s L.A office, explaining “... Read more
Holiday sales this weekend: MacBook Pros for...
 B&H Photo has new MacBook Pros on sale for up to $300 off MSRP as part of their Holiday pricing. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1699... Read more
Holiday sales this weekend: MacBook Airs for...
B&H Photo has 2014 MacBook Airs on sale for up to $120 off MSRP, for a limited time, for the Thanksgiving/Christmas Holiday shopping season. Shipping is free, and B&H charges NY sales tax... Read more
Holiday sales this weekend: iMacs for up to $...
B&H Photo has 21″ and 27″ iMacs on sale for up to $200 off MSRP including free shipping plus NY sales tax only. B&H will also include a free copy of Parallels Desktop software: - 21″ 1.4GHz... Read more
Holiday sales this weekend: Mac minis availab...
B&H Photo has new 2014 Mac minis on sale for up to $80 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 1.4GHz Mac mini: $459 $40 off MSRP - 2.6GHz Mac mini: $629 $70 off MSRP... Read more
Holiday sales this weekend: Mac Pros for up t...
B&H Photo has Mac Pros on sale for up to $500 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2599, $400 off MSRP - 3.5GHz 6-core Mac Pro: $3499, $... Read more
Save up to $400 on MacBooks with Apple Certif...
The Apple Store has Apple Certified Refurbished 2014 MacBook Pros and MacBook Airs available for up to $400 off the cost of new models. An Apple one-year warranty is included with each model, and... Read more
Save up to $300 on Macs, $30 on iPads with Ap...
Purchase a new Mac or iPad at The Apple Store for Education and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free,... Read more
iOS and Android OS Targeted by Man-in-the-Mid...
Cloud services security provider Akamai Technologies, Inc. has released, through the company’s Prolexic Security Engineering & Research Team (PLXsert), a new cybersecurity threat advisory. The... Read more

Jobs Board

*Apple* Store Leader Program (US) - Apple, I...
…Summary Learn and grow as you explore the art of leadership at the Apple Store. You'll master our retail business inside and out through training, hands-on experience, Read more
Project Manager, *Apple* Financial Services...
**Job Summary** Apple Financial Services (AFS) offers consumers, businesses and educational institutions ways to finance Apple purchases. We work with national and Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.