TweetFollow Us on Twitter

September 96 - Adding Speech Recognition to an Application Framework

Adding Speech Recognition to an Application Framework

Tim Monroe

It's easy to add speech recognition capabilities to an application built with an object-oriented framework, with minimal disruption to your existing code. To illustrate the process, this article shows one way to add basic speech recognition capabilities to an application built with PowerPlant, Metrowerks' popular C++-based application framework. You can use the same strategy with other application frameworks as well.

Speech recognition capabilities, such as those provided by Apple's Speech Recognition Manager, promise to revolutionize the way people use computers. The reason for this is simple: it's often a lot easier to say what you want done than to actually do it, even in the "user-friendly" environment provided by the Macintosh graphical user interface. So the time you spend making your application speakable is time very well spent. Happily, if you've built your application with a framework such as PowerPlant or MacApp, you can add basic speech recognition capabilities quickly and easily.

To show how to add speech recognition to an application built with a framework, we'll modify the PowerPlant DocDemo sample provided with the CodeWarrior 8 release to add speech support for the File menu commands. Of course, there's nothing special about DocDemo: you should be able to drop the code we provide into any PowerPlant application. Moreover, although this code is specific to PowerPlant, you should be able to use similar techniques with other application frameworks as well.

Before reading this article, you should be familiar with the basic operations of the Speech Recognition Manager and with the PowerPlant application framework. For an overview of the Speech Recognition Manager, see the article "The Speech Recognition Manager Revealed" in this issue of develop. As mentioned in that article, you'll find everything you need to use the Speech Recognition Manager -- including detailed documentation (written by yours truly) -- on this issue's CD and on Apple's speech technology Web site. For basic information about PowerPlant, see The PowerPlant Book or other Metrowerks documentation.

THE BASIC STRATEGY

We want to add speech support for the File menu commands in the DocDemo application. This isn't the highest or best use of speech recognition capabilities (see "Speakable Menus?"), but it makes a simple example for us to focus on. In a nutshell, we'll define a custom C++ class and create a single instance of that class to handle all the required speech recognition processing (such as installing a language model and responding to recognition results sent to it via Apple events). Here are the steps we'll follow:
  • Add a few lines of code to the main application source code file, CDocDemoApp.cp. In part, this code creates a single instance of our

  • custom class CDocSpeech.

  • Design a set of language models that describe the words and phrases we

  • want to listen for.

  • Add resources containing string representations of those words and

  • phrases to the application's resource file.

  • Write Apple event handlers for the two speech recognition events.
The following sections explain these steps in detail, though not strictly in this order. All the code provided here is also included on this issue's CD.


    SPEAKABLE MENUS?

    While it's fairly easy to make your application's menus speakable, this isn't necessarily the best use of speech recognition technology and it's definitely not what Apple's speech engineers would like to see you focus your attention on. Most File and Edit menu commands are just too short to be easily distinguished by the recognizer ("quit" sounds a lot like "cut," for example).

    In addition, since menus can't be seen without pulling them down, novice users probably won't know which menu commands are available until they click in the menu bar; at that point, they may as well just use the menu.

    However, there is some value in knowing how to make menus speakable. For one thing, the techniques used in this article can easily be extended to handle more complex utterances that have nothing to do with menus. Also, there is real value in making tool palettes -- which are really just graphical menus that happen to float on the desktop -- speakable; for an example, see the demo program PlacMac on this issue's CD.

    So the moral is: make your menus speakable if you think there is value for the user, but don't just make your menus speakable. Do something creative and compelling with speech recognition.


HOOKING UP WITH THE MAIN APPLICATION

All the speech recognition processing for our PowerPlant-based application will be handled by a single custom object of type CDocSpeech. The main application code needs only to create (and later delete) that custom object. We'll start by adding

these lines of code to the beginning of the main application source code file, CDocDemoApp.cp:

#include "CDocSpeech.h"
extern CDocSpeech     *gDocSpeechObj;
Boolean               gHasSpeechRecog;
The external reference is to an instance of the CDocSpeech class, and the Boolean global variable indicates whether the Speech Recognition Manager is available in the current operating environment. To set that variable and create our custom object, we add the code in Listing 1 to the constructor CDocDemoApp::CDocDemoApp.



Listing 1. Creating a custom speech recognition object
// Determine whether the Speech Recognition Manager is available;
// if it's available, create a custom speech recognition object.
long      theVersion;
OSErr      theErr;

gHasSpeechRecog = false;
theErr = ::Gestalt(gestaltSpeechRecognitionVersion, &theVersion);
// Version must be at least 1.5.0 to support API used here.
if (!theErr)
   if (theVersion >= 0x00000150) {
      gHasSpeechRecog = true;
      gDocSpeechObj = new CDocSpeech();
   }
We'll also need to delete gDocSpeechObj when our application quits. We do this by adding the following code to the destructor CDocDemoApp::~CDocDemoApp:
// Shut down speech recognition, if it's running.
if (gHasSpeechRecog)
   delete gDocSpeechObj;

Those are all the modifications we need to make to our existing source code! The rest of the speech processing is handled by the custom speech recognition object created by our main application code.

DEFINING A SPEECH RECOGNITION CLASS

The header file CDocSpeech.h, shown in Listing 2, defines a number of constants specifying the 'STR#' resources (and indices within those resources) that contain the names of the language models we want to create and the actual words or phrases we want to listen for. We'll use these constants later, when we create the various language models.



Listing 2. Specifying 'STR#' resources and declaring CDocSpeech
#include "SpeechRecognition.h"

// Language model names
const ResIDT   rSTR_LMNames      = 400;   // ID of STR# resource
const short    kStr_GApplLM      = 1;     // Indices within resource
const short    kStr_GUnivLM      = 2;
const short    kStr_GDocuLM      = 3;
const short    kStr_UFileLM      = 4;
const short    kStr_DFileLM      = 5;

// Universal file command phrases
const ResIDT   kSTR_UFileCmds      = 500;  // ID of STR# resource
const short      kStr_New          = 1;    // Indices within resource
const short      kStr_Open         = 2;
const short      kStr_PageSetup    = 3;
const short      kStr_Quit         = 4;
// Document file command phrases
const ResIDT   kSTR_DFileCmds      = 501;  // ID of STR# resource
const short      kStr_Close        = 1;    // Indices within resource
const short      kStr_Save         = 2;
const short      kStr_SaveAs       = 3;
const short      kStr_Revert       = 4;
const short      kStr_Print        = 5;
const short      kStr_PrintOne     = 6;

// Apple menu command phrases
const ResIDT   kSTR_UApplCmds      = 503;  // ID of STR# resource
const short      kStr_About        = 1;    // Indices within resource

#define kEnableObj               true
#define kDisableObj              false

class CDocSpeech {
public:
                         CDocSpeech();
   virtual               ~CDocSpeech();
   static pascal OSErr   HandleSpeechBegunAppleEvent (AppleEvent 
                           *theAEevt, AppleEvent *reply, long refcon);
   static pascal OSErr   HandleSpeechDoneAppleEvent (AppleEvent
                           *theAEevt, AppleEvent *reply, long refcon);
private:
   OSErr                  MakeLanguageModels (void);
};


CDocSpeech.h also contains the declaration of the custom CDocSpeech class. CDocSpeech is extremely simple: it contains a constructor, a destructor, and two Apple event handlers. It also defines a private method, MakeLanguageModels, that creates the language models used by DocDemo. MakeLanguageModels is called by the constructor when an instance of the CDocSpeech class is created.

All the remaining code is found in the file CDocSpeech.cp. Listing 3 shows the beginning of that file, which declares all the global variables and function prototypes.



Listing 3. Declaring global variables and function prototypes
#include "CDocSpeech.h"

// Global variables
SRRecognitionSystem     gSystem;
SRRecognizer            gRecognizer;
SRLanguageModel         gGApplLM, gGDocuLM;
SRPhrase                gRevert;
CDocSpeech              *gDocSpeechObj = nil;

// Function prototypes
void SetLanguageObjectState (SRLanguageObject inObj, Boolean isEnabled);


The constructor method, shown in Listing 4, performs all the necessary startup associated with speech recognition. Much of this code should already be familiar to you from the article "The Speech Recognition Manager Revealed."



Listing 4. Starting up speech recognition
CDocSpeech::CDocSpeech()
{
   OSErr      theErr = noErr;
   
   // Open a recognition system.
   theErr = ::SROpenRecognitionSystem
                 (&gSystem, kSRDefaultRecognitionSystemID);
   
   // Set recognition system properties to user-selected feedback and
   // listening modes.
   if (!theErr) {
      short theModes = kSRHasFeedbackHasListenModes;
      theErr = ::SRSetProperty(gSystem, kSRFeedbackAndListeningModes,
                     &theModes, sizeof(theModes));
   }

   // Create a recognizer with default speech source.
   if (!theErr)
      theErr = ::SRNewRecognizer(gSystem, &gRecognizer,
                     kSRDefaultSpeechSource);

   // Set recognizer properties. We want to receive notifications
   // when recognition begins and ends.
   if (!theErr) {
      unsigned long theParam =
          kSRNotifyRecognitionBeginning | kSRNotifyRecognitionDone;
      theErr = ::SRSetProperty(gRecognizer, kSRNotificationParam,
                     &theParam, sizeof(theParam));
   }

   // Install Apple event handlers.
   if (!theErr) {
      theErr = ::AEInstallEventHandler
                  (kAESpeechSuite, kAESpeechDetected, 
                  NewAEEventHandlerProc(HandleSpeechBegunAppleEvent),
                  0, false);
      theErr = ::AEInstallEventHandler(kAESpeechSuite, kAESpeechDone, 
                  NewAEEventHandlerProc(HandleSpeechDoneAppleEvent),
                  0, false);
   }
   
   // Make our language models.
   if (!theErr)
      theErr = MakeLanguageModels();
   // Install initial language model and release our reference to it.
   if (!theErr) {
      theErr = ::SRSetLanguageModel(gRecognizer, gGApplLM);
      ::SRReleaseObject(gGApplLM);
   }

   // Have the recognizer start processing sound.
   if (!theErr)
      theErr = ::SRStartListening(gRecognizer);
}


Now we just need to write the MakeLanguageModels function called by the CDocSpeech constructor, and the two Apple event handlers.

CONSTRUCTING THE LANGUAGE MODELS

Probably the most time-consuming part of adding speech recognition to an application is defining the language models that describe the words and phrases you want to listen for. The process is straightforward, but it requires careful attention to the various states your application can be in. This is because you want the active language model to include only utterances that make sense at any given time. For instance, if no document window is open, it makes no sense to listen for the Close or Save command. Similarly, if a document isn't dirty (that is, if it hasn't changed since it was most recently saved), you probably don't want the user to be able to execute the Revert command.

This should remind you, of course, of the context-specific menu enabling and disabling that's a standard part of any good Macintosh application. For our demonstration application, we'll handle context sensitivity by creating a number of embedded language models that we'll enable or disable according to context.

The commands in the File menu fall into two main categories: those that can be issued at any time (such as New or Open) and those that apply to a specific document (such as Save or Close). Accordingly, we'll construct two language models, one for each type of command. Let's call the first variety universal file commands and the second variety document file commands. In addition, we want to make the About DocDemo command utterable. Here's a Backus-Naur Form (BNF) diagram of our top-level language model:

<Menu Commands> = 
    <Universal Commands> | <Document Commands>;
<Universal Commands> = 
    <Universal File Commands> | About DocDemo;
<Universal File Commands> = New | Open | Page Setup | Quit;
<Document Commands> = <Document File Commands>;
<Document File Commands> = 
    Close | Save | Save As | Revert | Print | Print One;
As you can see, the top-level language model Menu Commands consists of two embedded language models, one for commands that can be issued at any time and one for commands that require a document window to be open. Each of these embedded language models contains other language objects. The Universal Commands language model contains the phrase "About DocDemo" and the language model that contains the universal file commands. The Document Commands language model contains only the language model that contains the document file commands; you would

add other document-specific models here (for instance, document-specific editing commands). In all, we'll create five language models. (Note that the Page Setup command is in the universal file commands language model; that's because DocDemo allows you to choose that command even if no document window is open.)

Listing 5 shows the code defining the MakeLanguageModels function (error checking has been removed for the sake of readability). Apple provides a utility, SRLanguageModeler, that you can use to build and test language models described with BNF diagrams like that shown above. SRLanguageModeler can also save those language models into resources or files, from which your application can load the models at run time. Here, however, we build the language models on the fly to demonstrate the Speech Recognition Manager routines for doing so.



Listing 5. Creating the language models
OSErr CDocSpeech::MakeLanguageModels (void)
{
   OSErr             theErr = noErr;
   Str255            theStr;
   SRLanguageModel   myGUnivLM, myUFileLM, myDFileLM;
   
   // Make the language models (which are initially empty).
   ::GetIndString(theStr, rSTR_LMNames, kStr_GApplLM);
   ::SRNewLanguageModel(gSystem, &gGApplLM, &theStr[1], theStr[0]);
   ::GetIndString(theStr, rSTR_LMNames, kStr_GUnivLM);
   ::SRNewLanguageModel(gSystem, &myGUnivLM, &theStr[1], theStr[0]);
   ::GetIndString(theStr, rSTR_LMNames, kStr_UFileLM);
   ::SRNewLanguageModel(gSystem, &myUFileLM, &theStr[1], theStr[0]);
   ::GetIndString(theStr, rSTR_LMNames, kStr_GDocuLM);
   ::SRNewLanguageModel(gSystem, &gGDocuLM, &theStr[1], theStr[0]);
   ::GetIndString(theStr, rSTR_LMNames, kStr_DFileLM);
   ::SRNewLanguageModel(gSystem, &myDFileLM, &theStr[1], theStr[0]);

   // Make any other language objects we'll need.
   ::GetIndString(theStr, kSTR_DFileCmds, kStr_Revert);   
   ::SRNewPhrase(gSystem, &gRevert, &theStr[1], theStr[0]);
   
   // ****<Universal File Commands>****
   ::GetIndString(theStr, kSTR_UFileCmds, kStr_New);
   ::SRAddText(myUFileLM, &theStr[1], theStr[0], cmd_New);
   ::GetIndString(theStr, kSTR_UFileCmds, kStr_Open);
   ::SRAddText(myUFileLM, &theStr[1], theStr[0], cmd_Open);
   ::GetIndString(theStr, kSTR_UFileCmds, kStr_PageSetup);
   ::SRAddText(myUFileLM, &theStr[1], theStr[0], cmd_PageSetup);
   ::GetIndString(theStr, kSTR_UFileCmds, kStr_Quit);
   ::SRAddText(myUFileLM, &theStr[1], theStr[0], cmd_Quit);
   
   // ****<Document File Commands>****
   ::GetIndString(theStr, kSTR_DFileCmds, kStr_Close);
   ::SRAddText(myDFileLM, &theStr[1], theStr[0], cmd_Close);
   ::GetIndString(theStr, kSTR_DFileCmds, kStr_Save);
   ::SRAddText(myDFileLM, &theStr[1], theStr[0], cmd_Save);
   ::GetIndString(theStr, kSTR_DFileCmds, kStr_SaveAs);
   ::SRAddText(myDFileLM, &theStr[1], theStr[0], cmd_SaveAs);
   unsigned long theRefCon = cmd_Revert;
   ::SRSetProperty(gRevert, kSRRefCon, &theRefCon,
         sizeof(theRefCon));
   ::SRAddLanguageObject(myDFileLM, gRevert);
   ::GetIndString(theStr, kSTR_DFileCmds, kStr_Print);
   ::SRAddText(myDFileLM, &theStr[1], theStr[0], cmd_Print);
   ::GetIndString(theStr, kSTR_DFileCmds, kStr_PrintOne);
   ::SRAddText(myDFileLM, &theStr[1], theStr[0], cmd_PrintOne);
   
   // ****<Document Commands>****
   ::SRAddLanguageObject(gGDocuLM, myDFileLM);
   
   // ****<Universal Commands>****
   ::SRAddLanguageObject(myGUnivLM, myUFileLM);
   ::GetIndString(theStr, kSTR_UApplCmds, kStr_About);
   ::SRAddText(myGUnivLM, &theStr[1], theStr[0], cmd_About);

   // ****<Menu Commands>****
   ::SRAddLanguageObject(gGApplLM, myGUnivLM);
   ::SRAddLanguageObject(gGApplLM, gGDocuLM);

   // Release any embedded language models we won't need later.
   ::SRReleaseObject(myDFileLM);
   ::SRReleaseObject(myUFileLM);
   ::SRReleaseObject(myGUnivLM);

   return theErr;
}


MakeLanguageModels begins by calling SRNewLanguageModel five times to create the five new, empty language models. (As indicated earlier, the names of the language models are read from the application's resource fork.) Then MakeLanguageModels creates a language object for the single word revert, as follows:
::GetIndString(theStr, kSTR_DFileCmds, kStr_Revert);   
::SRNewPhrase(gSystem, &gRevert, &theStr[1], theStr[0]);
We treat the Revert command specially because we want to listen for it only when an open document has a file associated with it (and, of course, when the document is dirty). Even when the Document Commands language model is active, the Revert command might need to be disabled.

Next, MakeLanguageModels builds the two language models Universal File Commands and Document File Commands. In both cases, it simply adds the relevant words or phrases, read from resources, to the language model, like this:

::GetIndString(theStr, kSTR_UFileCmds, kStr_New);
::SRAddText(myUFileLM, &theStr[1], theStr[0], cmd_New);
SRAddText sets the reference constant property of the specified language object to the value passed in its fourth parameter. In this example, the reference constant for the New command is set to the value cmd_New, which is a constant defined by PowerPlant. As you'll see later, we'll use that value to get PowerPlant to react appropriately to the user's utterances. If you don't use SRAddText, you need to explicitly set an object's reference constant property, as is done for the Revert command:
unsigned long theRefCon = cmd_Revert;
::SRSetProperty(gRevert, kSRRefCon, &theRefCon, sizeof(theRefCon));
::SRAddLanguageObject(myDFileLM, gRevert);
Once the two main language models have been created, the hierarchy displayed in the BNF diagram is established by a series of calls to SRAddLanguageObject.

ENABLING AND DISABLING THE LANGUAGE MODELS

When a user begins speaking, your application is notified via a speech-detected

Apple event. In general, your speech-detected event handler should determine what state your application is in and set the active language model accordingly. As we've mentioned, we'll use this opportunity to enable or disable embedded language models (or even single words) to limit the recognizable utterances to those that make sense at the time. Listing 6 shows our speech-detected Apple event handler.



Listing 6. Handling speech-detected Apple events
pascal OSErr CDocSpeech::HandleSpeechDetectedAppleEvent 
            (AppleEvent *theAEevt, AppleEvent *reply, long refcon)
{
#pragma unused(reply, refcon)
   long            actualSize;
   DescType        actualType;
   OSErr           theErr = 0, recStatus = 0;
   SRRecognizer    theRec;
   LWindow         *theWindow;
            
   // Get status and recognizer.
   theErr = ::AEGetParamPtr(theAEevt, keySRSpeechStatus, 
              typeShortInteger, &actualType, (Ptr)&recStatus,
              sizeof(recStatus), &actualSize);
   if (!theErr && !recStatus)
      theErr = ::AEGetParamPtr(theAEevt, keySRRecognizer,
                  typeSRRecognizer, &actualType, (Ptr)&theRec,
                  sizeof(theRec), &actualSize);
   if (theErr)
      if (!theRec)
         return theErr;
   
   // Figure out what state we're in; then enable or disable the
   // appropriate language models.
   theWindow = UDesktop::FetchTopRegular(); // Look for a doc window.
   if (theWindow != nil) {                  // There is a doc window.
      SetLanguageObjectState(gGDocuLM, kEnableObj);
      
      // Turn off "Revert" if there's no file or it isn't dirty.
      Boolean      isEnabled, outUsesMark;
      Char16      outMark;
      Str255      outName;
         
      LCommander::GetTarget()->FindCommandStatus
          (cmd_Revert, isEnabled, outUsesMark, outMark, outName);
      SetLanguageObjectState(gRevert, isEnabled);
   } else                                  // There is no doc window.
      SetLanguageObjectState(gGDocuLM, kDisableObj);

   // Now tell the recognizer to continue.
   theErr = ::SRContinueRecognition(theRec);
   return theErr;
}


The event handler, HandleSpeechDetectedAppleEvent, calls the PowerPlant utility function UDesktop::FetchTopRegular to get the top document window. If there's an open document window, HandleSpeechDetectedAppleEvent calls the application-defined function SetLanguageObjectState to enable the Document Commands language model. Otherwise, if no document window is open, the event handler calls SetLanguageObjectState to disable that language model. Listing 7 shows the simple function SetLanguageObjectState.



Listing 7. Enabling or disabling a language object
void SetLanguageObjectState (SRLanguageObject inObj,
    Boolean isEnabled)
{
   Boolean      theState = isEnabled;

   ::SRSetProperty(inObj, kSREnabled, &theState, sizeof(theState));
}


Notice that if a document window is open, we need to determine whether to enable the Revert command. HandleSpeechDetectedAppleEvent cleverly calls the document window's FindCommandStatus function to determine this.

Instead of disabling the Revert command when it isn't relevant, we could just let the recognizer keep listening for it but ignore it when the frontmost document, if any, isn't dirty or has no file. This alternate strategy has some advantages. In particular, if the user says "revert" but we aren't listening for that command, the recognizer might think the user has uttered some other command (like "quit" or "print"). These misfires are much less likely to occur if the recognizer is listening for "revert" in addition to the other document file commands.

If you think that a user is apt to utter a particular command at an inappropriate time, it's probably better to ignore it than to disable it. On the other hand, we don't want to make the active language model too big, and one way to keep its size manageable is to enable or disable parts of it according to context. That's the strategy we've adopted for this article. Our sample application doesn't listen for the Revert command unless it's appropriate, to illustrate how to enable and disable language objects.

HANDLING RECOGNITION RESULTS

So far, we've defined our language models and set up the mechanism by which relevant parts of the language models are enabled or disabled according to context.

All that remains is to do the right thing when the recognizer recognizes an utterance. Our application is informed of successful recognitions via recognition-done Apple events. Listing 8 shows the DocDemo recognition-done event handler.



Listing 8. Handling recognition-done Apple events
pascal OSErr CDocSpeech::HandleRecognitionDoneAppleEvent 
              (AppleEvent *theAEevt, AppleEvent *reply, long refcon)
{
#pragma unused(reply, refcon)
   long                     actualSize;
   DescType                 actualType;
   OSErr                    theErr = 0, recStatus = 0;
   SRRecognitionResult      recResult = nil;
   Size                     theLen;
   SRPath                   thePath;
   SRSpeechObject           theItem;
   long                     theRefCon; // Reference constant of item
   // Get status.
   theErr = ::AEGetParamPtr(theAEevt, keySRSpeechStatus, 
               typeShortInteger, &actualType, (Ptr)&recStatus,
               sizeof(recStatus), &actualSize);

   // Get result.
   if (!theErr && !recStatus)
      theErr = ::AEGetParamPtr(theAEevt, keySRSpeechResult, 
                  typeSRSpeechResult, &actualType, (Ptr)&recResult,
                  sizeof(recResult), &actualSize);

   // Get command from result by reading the reference constant
   // of the relevant object.
   if (!theErr && !recStatus) {
      ::SRGetProperty(recResult, kSRPathFormat, &thePath, &theLen);
      theErr = ::SRGetIndexedItem(thePath, &theItem, 0);
      if (!theErr) {
         theLen = sizeof(theRefCon);
         ::SRGetProperty(theItem, kSRRefCon, &theRefCon, &theLen);
         ::SRReleaseObject(theItem);
      }
      // Release recognition result, since we're done with it.
      ::SRReleaseObject(recResult);
      ::SRReleaseObject(thePath);
   }
   // Send the reference constant up the chain of command.
   LCommander::GetTarget()->ObeyCommand((MessageT)theRefCon, nil);
   
   return theErr;
}


The interesting thing in this event handler is how utterly simple the important code is: all it does is extract the reference constant value of the recognized utterance and send that value up the PowerPlant chain of command. For example, if the recognized utterance is the word new, the reference constant is the value cmd_New, which is sent to a commander. In this case, the DocDemo application creates a new document. In effect, the CDocSpeech object does its work by calling code already in the DocDemo application.

THE LAST WORD

As you've seen, it's easy to add basic speech recognition for File menu commands to a PowerPlant application, largely because our custom speech object can simply issue the same commands that would be issued in response to a menu choice. You should now be able to add speech support for Edit menu commands and for any other menu commands supported by your application. Only one method remains to discuss, the destructor for the CDocSpeech class. The destructor simply stops recognizing utterances and closes down the recognition system opened by the constructor, as shown in Listing 9.



Listing 9. Shutting down speech recognition
CDocSpeech::~CDocSpeech()
{
   ::SRStopListening(gRecognizer);
   ::SRReleaseObject(gRecognizer);
   ::SRReleaseObject(gGDocuLM);
   ::SRReleaseObject(gRevert);
   ::SRCloseRecognitionSystem(gSystem);
}

'Nuff said.


    RELATED READING

    • "The Speech Recognition Manager Revealed" by Matt Pallakoff and Arlo Reeves, in this issue of develop.

    • "Speech Recognition Manager," on this issue's CD and on Apple's speech technology Web site, http://www.speech.apple.com.

    • The PowerPlant Book by Jim Trudeau, in Inside PowerPlant for CW8 (Metrowerks, 1995).


TIM MONROE (monroe@apple.com) is a technical writer for Apple's Developer Relations group. He's written more Inside Macintosh books and chapters than he cares to remember and is currently working with the QuickDraw 3D and QuickTime VR teams, as well as the speech recognition team, to bring the excitement of interactive media to Macintosh applications everywhere. He's rumored to have an office in Cupertino but prefers to spend his time in his converted garage in Oakland living the quiet life of a telecommuting "cybermonk." That way, he's never too far from his wife, his kids, or his model train layout.*

Thanks to our technical reviewers Mike Dilts, Guillermo Ortiz, Matt Pallakoff, Arlo Reeves, and Brent Schorsch.*

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Apple Remote Desktop 3.8 - Remotely cont...
Apple Remote Desktop is the best way to manage the Mac computers on your network. Distribute software, provide real-time online help to end users, create detailed software and hardware reports, and... Read more
NeoOffice 2014.7 - Mac-tailored, OpenOff...
NeoOffice is a complete office suite for OS X. With NeoOffice, users can view, edit, and save OpenOffice documents, PDF files, and most Microsoft Word, Excel, and PowerPoint documents. NeoOffice 3.x... Read more
DesktopLyrics 2.6.6 - Displays current i...
DesktopLyrics is an application that displays the lyrics of the song currently playing in "iTunes" right on your desktop. The lyrics for the song have to be set in iTunes; DesktopLyrics does nothing... Read more
Ember 1.8.3 - Versatile digital scrapboo...
Ember (formerly LittleSnapper) is your digital scrapbook of things that inspire you: websites, photos, apps or other things. Just drag in images that you want to keep, organize them into relevant... Read more
Apple iTunes 12.1 - Manage your music, m...
Apple iTunes lets you organize and play digital music and video on your computer. It can automatically download new music, app, and book purchases across all your devices and computers. And it's a... Read more
LibreOffice 4.4.3 - Free, open-source of...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
FoldersSynchronizer 4.2.1 - Synchronize...
FoldersSynchronizer is a popular and useful utility that synchronizes and backs-up files, folders, disks and boot disks. On each session you can apply special options like Timers, Multiple Folders,... Read more
Simon 4.0.2 - Monitor changes and crashe...
Simon monitors websites and alerts you of crashes and changes. Select pages to monitor, choose your alert options, and customize your settings. Simon does the rest. Keep a watchful eye on your... Read more
Cocktail 8.1.2 - General maintenance and...
Cocktail is a general purpose utility for OS X that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
Cyberduck 4.6.4 - FTP and SFTP browser....
Cyberduck is a robust FTP/FTP-TLS/SFTP browser for the Mac whose lack of visual clutter and cleverly intuitive features make it easy to use. Support for external editors and system technologies such... Read more

Playworld Superheroes Review
Playworld Superheroes Review By Tre Lawrence on January 30th, 2015 Our Rating: :: HERO CRAFTINGUniversal App - Designed for iPhone and iPad It’s all about the imagination, fighting bad creatures — and looking good while doing so.   | Read more »
Join the SpongeBob Bubble Party in this...
Join the SpongeBob Bubble Party in this New Match 3 Bubble Poppin’ Frenzy Posted by Jessica Fisher on January 30th, 2015 [ permalink ] | Read more »
Handpick Review
Handpick Review By Jennifer Allen on January 30th, 2015 Our Rating: :: TANTALIZING SUGGESTIONSiPhone App - Designed for the iPhone, compatible with the iPad Handpick will make you hungry, as well as inspire you to cook something... | Read more »
Storm the Halls of Echo Base in First St...
Storm the Halls of Echo Base in First Star Wars: Galactic Defense Event Posted by Jessica Fisher on January 30th, 2015 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Contradiction Review
Contradiction Review By Tre Lawrence on January 30th, 2015 Our Rating: :: SPOT THE LIEiPad Only App - Designed for the iPad Contradiction is a live action point and click adventure that’s pretty engaging.   Developer: Tim Follin... | Read more »
Unlock Sunshine Girl in Ironkill with th...
Unlock Sunshine Girl in Ironkill with this special 148Apps code Posted by Rob Rich on January 29th, 2015 [ permalink ] Robo-fighter Ironkill has been out on iOS a | Read more »
Crossroad Zombies Review
Crossroad Zombies Review By Jordan Minor on January 29th, 2015 Our Rating: :: CROSSWALKING DEADiPad Only App - Designed for the iPad Crossroad Zombies is a rough draft of a cool genre mash-up.   | Read more »
Blood Brothers 2 – Tips, Cheats, and Str...
War is hell: Is it the kind of hell you want to check out? Read our Blood Brothers 2 review to find out! Blood Brothers 2, DeNA’s follow-up to the original Blood Brothers, is an intriguing card collecting / role-playing / strategy hybrid. There’s... | Read more »
Blood Brothers 2 Review
Blood Brothers 2 Review By Nadia Oxford on January 29th, 2015 Our Rating: :: AN AGGRAVATING RELATIVEUniversal App - Designed for iPhone and iPad Blood Brothers 2 is built on a simple, solid foundation, but its free-to-play system... | Read more »
I AM BREAD, the Toast of the Town, is Ro...
Have you ever dreamt of being deliciously gluten-y? Do you feel passionate about Rye and Wheat? The guys at Bossa Studios do and that is why they are bringing I AM BREAD to iOS soon. The loafy app will feature all the new content that is being... | Read more »

Price Scanner via MacPrices.net

Intel Aims to Transform Workplace With 5th-Ge...
Intel Corporation today announced the availability of its 5th generation Intel Core vPro processor family that provides cutting-edge features to enable a new and rapidly shifting workplace. To meet... Read more
iOS App Sharalike Introduces New Instant Smar...
Sharalike slideshow and photo management software for iOS, is making it easier than ever to create shareable meaningful moments with its new instant SmartShow technology. Staying organized is a goal... Read more
Apple Becomes World’s Largest Smartphone Vend...
According to the latest research data from Strategy Analytics, as global smartphone shipments grew 31 percent annually to reach a record 380 million units in the fourth quarter of 2014. Apple became... Read more
Cut the Cord: OtterBox Resurgence Power Case...
Dead batteries and broken phones are two of the biggest issues for smartphone users today. Otterbox addresses both with the new Resurgence Power Case for Apple iPhone 6, promising to make those panic... Read more
13-inch Retina MacBook Pros on sale for up to...
B&H Photo has 13″ Retina MacBook Pros on sale for $200 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.6GHz/128GB Retina MacBook Pro: $1199.99 save $100 - 13″ 2.6GHz/... Read more
15-inch 2.5GHz Retina MacBook Pro on sale for...
 B&H Photo has the 15″ 2.5GHz Retina MacBook Pro on sale for $2319.99 including free shipping plus NY sales tax only. Their price is $180 off MSRP, and it’s the lowest price available for this... Read more
Back in stock: Refurbished iPod nanos for $99...
The Apple Store has Apple Certified Refurbished 16GB iPod nanos available for $99 including free shipping and Apple’s standard one-year warranty. That’s $50 off the cost of new nanos. Most colors are... Read more
Apple lowers price on refurbished 256GB MacBo...
The Apple Store has lowered prices on Apple Certified Refurbished 2014 MacBook Airs with 256GB SSDs, now available for up to $200 off the cost of new models. An Apple one-year warranty is included... Read more
New Good Management Suite Simplifies Enterpri...
Good Technology has announced the availability of the Good Management Suite, a comprehensive cross-platform solution for organizations getting started with mobile business initiatives. Built on the... Read more
15-inch 2.0GHz Retina MacBook Pro (refurbishe...
The Apple Store has Apple Certified Refurbished previous-generation 15″ 2.0GHz Retina MacBook Pros available for $1489 including free shipping plus Apple’s standard one-year warranty. Their price is... Read more

Jobs Board

At-Home Chat Specialist- *Apple* Online Stor...
**Job Summary** At Apple , we believe in hard work, a fun environment, and the kind of creativity and innovation that only comes about when talented people from diverse Read more
Sr. Mac Expert- *Apple* Online Store - Apple...
**Job Summary** The World Wide Apple Online Store (AOS) Sales and Service team is looking for motivated, outgoing, and tech savvy individuals who want to offer Apple Read more
*Apple* Solutions Consultant- Retail Sales (...
**Job Summary** The ASC is an Apple employee who serves as an Apple brand ambassador and influencer in a Reseller's store. The ASC's role is to grow Apple Read more
Event Director, *Apple* Retail Marketing -...
…This senior level position is responsible for leading and imagining the Apple Retail Team's global engagement strategy and team. Delivering an overarching brand Read more
At-Home Chat Specialist- *Apple* Online Stor...
**Job Summary** At Apple , we believe in hard work, a fun environment, and the kind of creativity and innovation that only comes about when talented people from diverse Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.