TweetFollow Us on Twitter

September 96 - Balance of Power: Stalking the Wild Defect

Balance of Power: Stalking the Wild Defect

Dave Evans

Once again I found myself bleary eyed and fighting sleep, yet I continued to search for understanding. Having already struck down two possible causes for my enigma, I was now searching for new clues. I stubbornly refused to rest until I had flushed out the software defect.

My journey had begun modestly enough as I chanced upon a capricious crash in my software. I wondered which assumption or logic was at fault. Armed with only my low-level debugger, I began a hunt that would consume me into the dead of night. On this adventure through the dark Mac OS interior, I crossed rivers of mode switches, hopped islands of cross-TOC glue, and set snares in a jungle of native PowerPC code.

In this column I'll walk you through one facet of that relentless pursuit, pointing out the key landmarks I used to navigate and demonstrating the tools I used to survive. This should help guide you through your own future explorations of the innards of PowerPC code.

ON THE HUNT

Programming for a Power Macintosh may appear similar to your efforts on a 680x0-based Macintosh, but on close inspection you'll find PowerPC code far more interesting to debug. The relatively simple landscape of a 680x0 world gives way to confusing and insidious terrain on a Power Macintosh. Routine descriptors, dual assembly languages, and native glue are obstacles that impede your progress.

My subject was a crash that occurred when PowerPC applications called MaxApplZone. I was certain the problem was in my recent system software changes, but I needed to see what happened right before the crash to understand it. I started by setting a breakpoint when an application called MaxApplZone. (Later I'll describe a good technique for setting these breakpoints.) Then I traced through the system routine and looked for anything startling.

One application executed the following code just before calling MaxApplZone:

 0093B260   mflr       r0
 0093B264   stw        r31,-0x0004(SP)
 0093B268   stw        r30,-0x0008(SP) 
 0093B26C   stw        r29,-0x000C(SP)
 0093B270   stw        r0,0x0008(SP)
 0093B274   stwu       SP,-0x0050(SP)
 0093B278   lwz        r30,-0x3940(RTOC)
 0093B27C   bl         MaxApplZone
The preamble to MaxApplZone saves registers R29 to R31 on the stack, creates a stack frame, and loads a local variable into R30 from the application's TOC globals before calling the routine. If we trace through this and then step into the bl (branch and link) instruction to MaxApplZone, we find the following:
 0094CBFC   lwz        r12,-0x7E60(RTOC)
 0094CC00   stw        RTOC,0x0014(SP)
 0094CC04   lwz        r0,0x0000(r12)
 0094CC08   lwz        RTOC,0x0004(r12)
 0094CC0C   mtctr      r0
 0094CC10   bctr
This code is standard cross-TOC glue. The caller of a routine has the responsibility to set the TOC register (RTOC) correctly for it. Routines imported from other code fragments will have a different TOC value than the application. The PowerPC Code Fragment Manager supplies the correct TOC value and the address of the imported routine in a pair of long words called a transition vector, or TVector. In this case, the TVector is stored as global data at the application's TOC value minus $7E60 bytes. This glue code loads the TVector's address in R12 and then uses that to load the address of the routine in R0 and the new TOC value. It uses the counter register and the bctr (branch to counter register) instruction to jump to the correct address, so the return address in the link register will not be changed.

After tracing through this glue code, we find ourselves in a different kind of glue. The MaxApplZone TVector points to a routine in the InterfaceLib code fragment, as listed below. On this computer, you can guess that the code fragment is in ROM because the address of the routine is very high, $40A0E30C in this case. Since the routine is in ROM, you can't effectively set a breakpoint at its beginning.

MaxApplZone
 +00000 40A0E30C   mflr    r0
 +00004 40A0E310   stwu    SP,-0x0040(SP)
 +00008 40A0E314   stw     r0,0x0048(SP)
 +0000C 40A0E318   lis     r0,0x0001
 +00010 40A0E31C   subic   r5,r0,0x5F9D
 +00014 40A0E320   lwz     r3,MaxApplZone(r0)
 +00018 40A0E324   li      r4,0x3802
 +0001C 40A0E328   bl      CallOSTrapUniversalProc
 +00020 40A0E32C   lwz     RTOC,0x0014(SP)
 +00024 40A0E330   lwz     r12,0x0048(SP)
 +00028 40A0E334   addic   SP,SP,0x0040
 +0002C 40A0E338   mtlr    r12
 +00030 40A0E33C   blr
You might expect the real MaxApplZone routine to do much more than what appears in this routine. In fact, this routine is simply glue for the 680x0 A-trap table: it gets the address of MaxApplZone from that trap table (don't try this yourself without GetOSTrapAddress, kids) and then uses the CallOSTrapUniversalProc routine to call the address.

Most of the routines in InterfaceLib are actually just like this glue routine for the trap table. Because the routines go through the trap table, PowerPC applications will be affected by patches to the trap table; if they were to bind directly with the system code fragments, patches would be bypassed.

To continue with our tracing, we must step up to and then into CallOSTrapUniversalProc. This takes us to more cross-TOC glue:

 40A06D10   lwz        r12,0x0008(RTOC)
 40A06D14   stw        RTOC,0x0014(SP)
 40A06D18   lwz        r0,0x0000(r12)
 40A06D1C   lwz        RTOC,0x0004(r12)
 40A06D20   mtctr      r0
 40A06D24   bctr
Since CallOSTrapUniversalProc is part of the Mixed Mode Manager, it's implemented in the MixedMode code fragment. This cross-TOC glue finds the TVector for that routine and calls through to it. When we step through this and over the last bctr instruction, we're magically transferred not to the Mixed Mode Manager but instead to 680x0 code. Wow! MacsBug knew we were calling a universal procedure pointer, so it spared us the trace through the mode switch and took us directly to the location of the universal procedure pointer, in this case the following 680x0 code:
 0031B160   MOVE.L     ApplLimit,D0
 0031B164   MOVE.L     HeapEnd,D1
 0031B168   SUB.L      D1,D0
 0031B16A   MOVEQ      #$14,D1
 0031B16C   CMP.L      D0,D1
 0031B16E   BLE.S      *+$000A
 0031B170   MOVEQ      #$00,D0
 0031B172   MOVE.W     D0,MemErr 
 0031B176   RTS
 0031B178   JMP        $00167FCC
From my experience tracing through the system, I'd guess that this 680x0 code is a patch on top of the real MaxApplZone, because it compares two numbers and in one of only two cases jumps to an absolute address. The absolute address was probably set when this code was installed as a patch, and it points to either the real MaxApplZone routine or another patch.

The patch appears to check whether the value of the ApplLimit low-memory global is within 20 bytes of the value of HeapEnd. If so, it simply returns noErr in the low-memory global MemErr without calling through to the real MaxApplZone. This patch is probably part of the system software, designed to fix a bug in the ROM without having to replace the entire real MaxApplZone routine.

Now if we trace through this patch and visit the absolute address $167FCC from the patch, we find the following:

No procedure name
 00167FCC  *_MixedModeMagic
 00167FCE   BTST       D3,D0
 00167FD0   ORI.B      #$00,D0
 00167FD4   ORI.B      #$00,D0
 00167FD8   ORI.B      #$3002,D0
 00167FDC   ORI.B      #$04,D1
 00167FE0   ORI.B      #$8274,D7
 00167FE4   ORI.B      #$00,D0
 00167FE8   ORI.B      #$00,D0
 00167FEC   ORI.B      #$A036,D0
Aha! This ugly disassembly is actually a routine descriptor in disguise. The _MixedModeMagic trap invokes the Mixed Mode Manager from 680x0 code, and it always appears at the beginning of a routine descriptor. Since this trap is at the beginning of each routine descriptor, you can simply construct a routine descriptor and then jump to it in 680x0 code. The drd dcmd in MacsBug will let you see this routine descriptor in a meaningful way. When I typed drd pc in this case, I saw the contents of Listing 1.



Listing 1. Displaying a routine descriptor

drd: 00167fcc
  MixedModeMagic: 0xAAFE, version: #7, 
    flags: 0x00 (NotIndexable) 
  LoadLoc: 0x00000000, reserved2: 0x00000000,
    SelectorInfo: 0x00 (No Selector) 
  Routine Count (zero-based): 0x0000 (#0)
  ---- Routine Record 0x0000 (#0) at 0x00167fd8 ----
       ProcInfo: 0x00003002,
         Reserved1: 0x00000000, ISA: #1 (PowerPC) 
       Record Flags: 0x0004 (Absolute, IsPrepared, NativeISA,
         PassSelector, IsNotDefault) 
       ProcPtr: 0x00078274, offset: 0x00000000,
         selector: 0x00000000 


    Notice the number of fields displayed in Listing 1. For simple routine descriptors like this one, you'll only need to look at the ProcPtr entry on the last line of the display. More complicated routine descriptors have an array of routines, and you'll need to look for a passed selector to determine which one is actually used.
The last line of the listing shows a ProcPtr value of $00078274. This is the address of the TVector for MaxApplZone in the MemoryMgr code fragment. Since the TVector structure has the routine address as its first element, dereferencing that address once will produce the address of the actual routine. Typing ilp @78274 to dereference the TVector and disassemble PowerPC code showed me this:
__MaxApplZone
 +00000 000CA1A8   mflr       r0
 +00004 000CA1AC   stwu       SP,-0x0040(SP)
 +00008 000CA1B0   stw        r0,0x0048(SP)
 +0000C 000CA1B4   bl         __HSetStateQ+0073C
 +00010 000CA1B8   crmove     cr7_SO,cr7_SO
 +00014 000CA1BC   extsh      r4,r3
 +00018 000CA1C0   li         r3,0x0000
 +0001C 000CA1C4   bl         SetEmulatorRegister
 +00020 000CA1C8   lwz        RTOC,0x0014(SP)
 +00024 000CA1CC   lwz        r12,0x0048(SP)
 +00028 000CA1D0   addic      SP,SP,0x0040
 +0002C 000CA1D4   mtlr       r12
 +00030 000CA1D8   blr 
This is the MaxApplZone routine in the Memory Manager. It appears to call more substantial subroutines when it branches to __HSetStateQ+0073C, but this is the actual routine.


WALKING BACK OUT

We've braved routine descriptors, glue, and patches to make it this far. I won't dive further into the Memory Manager for this illustration, but let's try an instructive walk back out from the MaxApplZone routine.

After tracing through this routine, we step over the blr instruction to branch back to the link register address. To our surprise we not only switch back to 680x0 emulation mode but we appear to be lost in darkness. The following 680x0 F-line instruction will be executed next:

No procedure name
 0162D0A0   DC.W       $FE02
We switched back to 680x0 emulation mode because we're returning from the 680x0 patch call to a routine descriptor. Typing ip to disassemble at the current location shows what appears to be garbage, however:
No procedure name
 0162D08C   NEGX.L     D7
 0162D08E   EOR.W      D3,(A0)+
 0162D090   BCHG       D0,-(A2)
 0162D092   DC.W       $D0F0
 0162D094   DC.W       $FFFF
 0162D096   ORI.B      #$00,D4
 0162D09A   DC.W       $FFFF
 0162D09C   ORI.B      #$A063,D0
 0162D0A0  *DC.W       $FE02
 0162D08C   NEGX.L     D7
 0162D08E   EOR.W      D3,(A0)+
 0162D090   BCHG       D0,-(A2)
 0162D092   DC.W       $D0F0
 0162D0A2   ORI.B      #$9C,D0
 0162D0A6   BCLR       D0,D3
 0162D0A8   BCHG       D0,-(A2)
 0162D0AA   ADD.B      D0,(A0)
Here's the secret: The $FE02 F-line instruction is very much like the _MixedModeMagic trap in that it can signal the transition from emulated 680x0 code to PowerPC code. Just as with the routine descriptor that we saw earlier, executing the $FE02 instruction will in this case cause us to switch back to PowerPC native mode and will bring us to a completely different address.

Truly perceptive readers might have noticed that the program counter at the $FE02 instruction is actually on the stack. Listing 2 shows a memory dump of the first 48 bytes of the stack at this time. Notice that the word at the beginning of the third line (at $162D0A0) is the $FE02 instruction we're about to execute.


Listing 2. The stack upon return to PowerPC code

Displaying memory from sp
 0162D080  DDDD DDDD DDDD DDDD 7FFF 7FFF 4087 B758
                               -+**********@á
 0162D090  0162 D0F0 FFFF 0004 0000 FFFF 0000 A063
                               [[Sigma]]X*b-***********
 0162D0A0  FE02 0000 009C 0183 0162 D110 0000 3802
                               +c*****ú*É*b--***

As we trace over that $FE02 instruction, we find ourselves back inside the InterfaceLib glue routine for MaxApplZone. Tracing through those last instructions finally takes us back to the application code where we started, as shown here:

MaxApplZone
 +00020 40A0E32C   lwz        RTOC,0x0014(SP)
 +00024 40A0E330   lwz        r12,0x0048(SP)
 +00028 40A0E334   addic      SP,SP,0x0040
 +0002C 40A0E338   mtlr       r12
 +00030 40A0E33C   blr
No procedure name
 0093B280   lwz        RTOC,0x0014(SP)
 0093B284   li         r31,0x0001
Notice that when we returned to a previous code fragment, we immediately restored the TOC register to a value saved on the stack. Not only is the caller responsible for setting the TOC register before calling a routine, it's also responsible for restoring this register when the call returns.

This concludes our romp through the wilderness of the modern PowerPC environment. We traced from an application's code fragment, through the InterfaceLib fragment and then a patch in the trap table, to a routine descriptor for the real MaxApplZone routine, and ultimately back again.


CATCHING POWERPC CALLS

Earlier I glossed over how to set a breakpoint and catch an application as it calls MaxApplZone. Now I'll describe a good trick for doing this. The MacsBug debugger doesn't implement 680x0 A-trap break commands for PowerPC code yet. But you can easily mimic the A-trap break feature in PowerPC code, using the FindSym, PlayMem, and PPCJump MacsBug macros. You can use those macros if you install the file "PowerPC dcmds" (which you'll find on this issue's CD) into your MacsBug Preferences folder.

Say, as an example, that you'd like to catch all PowerPC code that calls the Toolbox routine ReleaseResource. PowerPC code fragments access this routine by importing its entry point from the InterfaceLib code fragment. Typing FindSym ReleaseResource on my Power Macintosh 8100 produces the following:

findsym: "ReleaseResource"
 "ReleaseResource" #1796 TVec 0001acc0
 (40a15978,0001ea14) in "InterfaceLib"
    FindSym is case sensitive. When looking for an entry in InterfaceLib, for example, you must spell the routine name exactly and capitalize letters perfectly; typing "releaseresource" rather than "ReleaseResource" will not work.*
This tells us a few things. ReleaseResource's TVector is located at the address $0001ACC0. That vector contains the address for the routine at $40A15978 and the InterfaceLib's TOC value, which is $0001EA14. FindSym will return TVector addresses for each application or fragment bound to the routine. In System 7 these will usually all be the same TVector.

If I need to catch callers to ReleaseResource, I could then simply type brp 40a15978 to set a PowerPC breakpoint at the beginning of the InterfaceLib code. On the Power Macintosh 8100, however, this address is in ROM. Setting breakpoints in ROM is more difficult for MacsBug, which returns this message:

Warning: This requires stepping through each instruction
Your Macintosh might become unusable if MacsBug is forced to single-step through all the code. Because MacsBug can set a breakpoint in RAM with less difficulty, we'll now use the PlayMem and PPCJump macros to set an equivalent breakpoint in RAM.

PlayMem is a MacsBug variable that points to 512 bytes of scratch memory in RAM. The PPCJump macro expands to a set of PowerPC instructions for jumping to an absolute address. So the command

sl PlayMem PPCJump 40a15978
writes the following instructions to MacsBug's scratch memory:
lis    r0,40a1         | 3C0040A1
ori    r0,r0,5978      | 60005978
mtctr  r0              | 7C0903A6
bctr                   | 4E800420
Now I'll replace the value of the TVector with our new code in scratch space, by typing sl 0001acc0 PlayMem. PowerPC code bound with InterfaceLib will now call my new code instead of ReleaseResource, but my code will then correctly pass control to ReleaseResource. Finally, typing brp PlayMem will set the PowerPC breakpoint we want.

When PowerPC code tries to call the ReleaseResource trap via InterfaceLib, execution will stop at my breakpoint in PlayMem. At that point, typing ipp lr will list PowerPC instructions around the address in the link register, quickly showing me which code was calling the trap.


AFTER THE HUNT

Although I seriously doubt I would find enjoyment in hunting live animals, I've found the hunt for software defects truly rewarding. Some problems are a definite challenge, and I often learn something new about the Mac OS with each riddle solved. I hope that knowing the details of my pursuit will help you in your own future quests.

DAVE EVANS and fellow Apple engineer Rus Maxham took another adventure by motorcycle this summer. This time they journeyed to Utah and skirted the Great Salt Lake. Turning north, they discovered the beautiful and unspoiled vistas of Idaho. Cottonwood flower petals rained on them as they crossed into Washington. Hectares of wheat farms and the blustery Columbia River guided them to Oregon. One cracked tailpipe and two quarts of oil later, they finally arrived home in California.

Thanks to Nitin Ganatra, Pete Gontier, Jim Luther, and Alex Rangel for reviewing this column.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

RapidWeaver 6.0.8 - Create template-base...
RapidWeaver is a next-generation Web design application to help you easily create professional-looking Web sites in minutes. No knowledge of complex code is required, RapidWeaver will take care of... Read more
Artlantis Studio 5.1.2.7 - 3D rendering...
Artlantis Studio is a unique and ideal tool for performing very high resolution rendering easily and in real time. The new FastRadiosity engine now lets you compute images in radiosity-even in... Read more
MacUpdate Desktop 6.0.5 - Search and ins...
MacUpdate Desktop 6 brings seamless 1-click installs and version updates to your Mac. With a free MacUpdate account and MacUpdate Desktop 6, Mac users can now install almost any Mac app on macupdate.... Read more
BitTorrent Sync 2.0.82 - Sync files secu...
BitTorrent Sync allows you to sync unlimited files between your own devices, or share a folder with friends and family to automatically sync anything. File transfers are encrypted. Your information... Read more
Google Drive 1.20 - File backup and shar...
Google Drive is a place where you can create, share, collaborate, and keep all of your stuff. Whether you're working with a friend on a joint research project, planning a wedding with your fiancé, or... Read more
Simon 4.0.3 - Monitor changes and crashe...
Simon monitors websites and alerts you of crashes and changes. Select pages to monitor, choose your alert options, and customize your settings. Simon does the rest. Keep a watchful eye on your... Read more
Vitamin-R 2.23 - Personal productivity t...
Vitamin-R creates the optimal conditions for your brain to work at its best by structuring your work into short bursts of distraction-free, highly focused activity alternating with opportunities for... Read more
iDefrag 5.0.0 - Disk defragmentation and...
iDefrag helps defragment and optimize your disk for improved performance. Features include: Supports HFS and HFS+ (Mac OS Extended). Supports case sensitive and journaled filesystems. Supports... Read more
PCalc 4.2 - Full-featured scientific cal...
PCalc is a full-featured, scriptable scientific calculator with support for hexadecimal, octal, and binary calculations, as well as an RPN mode, programmable functions, and an extensive set of unit... Read more
FileZilla 3.10.2 - Fast and reliable FTP...
FileZilla (ported from Windows) is a fast and reliable FTP client and server with lots of useful features and an intuitive interface. Version 3.10.2: Note: Now requires a 64-bit Intel processor.... Read more

Warner Bros. Interactive Entertainment A...
Warner Bros. has some exciting games coming down the pipe! | Read more »
GDC 2015 – Star Trek Timelines will Prob...
GDC 2015 – Star Trek Timelines will Probably Make Your Inner Trekkie Squeal With Glee Posted by Rob Rich on March 4th, 2015 [ permalink ] Any popular fictional universe has its fair share of fan fiction – where belo | Read more »
Protect Yourself from an Onslaught of Ca...
Surprise Attack Games has announced a Cat-astrophic new physics puzzler called Fort Meow! In the game, a young girl named Nia finds her grandfather’s journal which triggers an all mighty feline attack! Why do the cats want the journal? Who knows,... | Read more »
GDC 2015 – Jelly Reef will be Game Oven’...
GDC 2015 – Jelly Reef will be Game Oven’s Last Hurrah, and it Seems like a Good Note to Go Out on Posted by Rob Rich on March 4th, 2015 [ permalink ] It’s sad knowing that Game Oven ( | Read more »
daWindci Deluxe Review
daWindci Deluxe Review By Campbell Bird on March 4th, 2015 Our Rating: :: BLUSTERY PUZZLESUniversal App - Designed for iPhone and iPad This updated puzzle game offers some creative gameplay and new mechanics, but still suffers from... | Read more »
Dungeon Hunter 5 Coming on March 12
Gameloft has excitedly announced that Dungeon Hunter 5 is on its way! Once again, you will adventure across the land of Valenthia exploring dungeons and fighting monsters. The game will have a new asynchronous multiplayer mode called Strongholds... | Read more »
GDC 2015 – The Sandbox 2 is Coming, and...
GDC 2015 – The Sandbox 2 is Coming, and Now it has Textures! | Read more »
Warner Bros. Interactive Announces Mort...
Mortal Kombat X, by Warner Bros. and NetherRealm Studios, will be a a free-to-play fighting/card-battle Mortal Kombat game. The game promises card collecting, multiplayer team combat, classic characters such as Scorpion, Sub-Zero and Raiden, and the... | Read more »
GDC 2015 – Piloteer is Whitaker Trebella...
GDC 2015 – Piloteer is Whitaker Trebella’s Latest Project, and it’s Definitely Something DIfferent Posted by Rob Rich on March 3rd, 2015 [ permalink ] You know | Read more »
PangoLand Review
PangoLand Review By Amy Solomon on March 3rd, 2015 Our Rating: :: COME VISIT PANGO AND FRIENDSUniversal App - Designed for iPhone and iPad PangoLand is an open-ended world full of familiar characters, bright colors and interactive... | Read more »

Price Scanner via MacPrices.net

iPad: A More Positive Outlook – The ‘Book Mys...
It’s good to hear someone saying positive things about the iPad. I’ve been trying to bend my mind around how Apple’s tablet could have gone from zero to bestselling personal computing device on the... Read more
Mac Pros on sale for up to $279 off MSRP
Amazon has Mac Pros in stock and on sale for up to $279 off MSRP. Shipping is free: - 4-Core Mac Pro: $2725.87, $273 off MSRP (9%) - 6-Core Mac Pro: $3719.99, $279 off MSRP (7%) Read more
Sale! 13-inch Retina MacBook Pros for up to $...
B&H Photo has 13″ Retina MacBook Pros on sale for up to $205 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.6GHz/128GB Retina MacBook Pro: $1219.99 save $80 - 13″ 2.... Read more
Another Tranche Of IBM MobileFirst For iOS Ap...
IBM has announced the next expansion phase for  its IBM MobileFirst for iOS portfolio, with a troika of new apps to address key priorities for the Banking and Financial Services, Airline and Retail... Read more
Sale! 15-inch Retina MacBook Pros for up to $...
B&H Photo has the new 2014 15″ Retina MacBook Pros on sale for up to $250 off MSRP for a limited time. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $... Read more
WaterField Designs Introduces the Minimalist...
With Apple Pay gaining popularity, Android Pay coming in May 2015, and loyalty cards and receipts that can be accessed from smartphones, San Francisco’s WaterField Designs observes that it may be... Read more
Sale! 15-inch 2.2GHz Retina MacBook Pro for $...
 Best Buy has the 15″ 2.2GHz Retina MacBook Pro on sale for $1774.99 $1799.99, or $225 off MSRP. Choose free home shipping or free local store pickup (if available). Price valid for online orders... Read more
13-inch 2.5GHz MacBook Pro (refurbished) avai...
The Apple Store has Apple Certified Refurbished 13″ 2.5GHz MacBook Pros available for $170 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.5GHz... Read more
13-inch 2.5GHz MacBook Pro on sale for $100 o...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $999.99 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more
27-inch 3.5GHz 5K iMac in stock today and on...
 B&H Photo has the 27″ 3.5GHz 5K iMac in stock today and on sale for $2299 including free shipping plus NY sales tax only. Their price is $200 off MSRP, and it’s the lowest price available for... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
Position Opening at *Apple* - Apple (United...
…Summary** As a Specialist, you help create the energy and excitement around Apple products, providing the right solutions and getting products into customers' hands. You Read more
Position Opening at *Apple* - Apple (United...
**Job Summary** The Apple Store is a retail environment like no other - uniquely focused on delivering amazing customer experiences. As an Expert, you introduce people Read more
*Apple* Solutions Consultant - Retail Sales...
**Job Summary** As an Apple Solutions Consultant (ASC) you are the link between our customers and our products. Your role is to drive the Apple business in a retail Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.