TweetFollow Us on Twitter

September 96 - Balance of Power: Stalking the Wild Defect

Balance of Power: Stalking the Wild Defect

Dave Evans

Once again I found myself bleary eyed and fighting sleep, yet I continued to search for understanding. Having already struck down two possible causes for my enigma, I was now searching for new clues. I stubbornly refused to rest until I had flushed out the software defect.

My journey had begun modestly enough as I chanced upon a capricious crash in my software. I wondered which assumption or logic was at fault. Armed with only my low-level debugger, I began a hunt that would consume me into the dead of night. On this adventure through the dark Mac OS interior, I crossed rivers of mode switches, hopped islands of cross-TOC glue, and set snares in a jungle of native PowerPC code.

In this column I'll walk you through one facet of that relentless pursuit, pointing out the key landmarks I used to navigate and demonstrating the tools I used to survive. This should help guide you through your own future explorations of the innards of PowerPC code.

ON THE HUNT

Programming for a Power Macintosh may appear similar to your efforts on a 680x0-based Macintosh, but on close inspection you'll find PowerPC code far more interesting to debug. The relatively simple landscape of a 680x0 world gives way to confusing and insidious terrain on a Power Macintosh. Routine descriptors, dual assembly languages, and native glue are obstacles that impede your progress.

My subject was a crash that occurred when PowerPC applications called MaxApplZone. I was certain the problem was in my recent system software changes, but I needed to see what happened right before the crash to understand it. I started by setting a breakpoint when an application called MaxApplZone. (Later I'll describe a good technique for setting these breakpoints.) Then I traced through the system routine and looked for anything startling.

One application executed the following code just before calling MaxApplZone:

 0093B260   mflr       r0
 0093B264   stw        r31,-0x0004(SP)
 0093B268   stw        r30,-0x0008(SP) 
 0093B26C   stw        r29,-0x000C(SP)
 0093B270   stw        r0,0x0008(SP)
 0093B274   stwu       SP,-0x0050(SP)
 0093B278   lwz        r30,-0x3940(RTOC)
 0093B27C   bl         MaxApplZone
The preamble to MaxApplZone saves registers R29 to R31 on the stack, creates a stack frame, and loads a local variable into R30 from the application's TOC globals before calling the routine. If we trace through this and then step into the bl (branch and link) instruction to MaxApplZone, we find the following:
 0094CBFC   lwz        r12,-0x7E60(RTOC)
 0094CC00   stw        RTOC,0x0014(SP)
 0094CC04   lwz        r0,0x0000(r12)
 0094CC08   lwz        RTOC,0x0004(r12)
 0094CC0C   mtctr      r0
 0094CC10   bctr
This code is standard cross-TOC glue. The caller of a routine has the responsibility to set the TOC register (RTOC) correctly for it. Routines imported from other code fragments will have a different TOC value than the application. The PowerPC Code Fragment Manager supplies the correct TOC value and the address of the imported routine in a pair of long words called a transition vector, or TVector. In this case, the TVector is stored as global data at the application's TOC value minus $7E60 bytes. This glue code loads the TVector's address in R12 and then uses that to load the address of the routine in R0 and the new TOC value. It uses the counter register and the bctr (branch to counter register) instruction to jump to the correct address, so the return address in the link register will not be changed.

After tracing through this glue code, we find ourselves in a different kind of glue. The MaxApplZone TVector points to a routine in the InterfaceLib code fragment, as listed below. On this computer, you can guess that the code fragment is in ROM because the address of the routine is very high, $40A0E30C in this case. Since the routine is in ROM, you can't effectively set a breakpoint at its beginning.

MaxApplZone
 +00000 40A0E30C   mflr    r0
 +00004 40A0E310   stwu    SP,-0x0040(SP)
 +00008 40A0E314   stw     r0,0x0048(SP)
 +0000C 40A0E318   lis     r0,0x0001
 +00010 40A0E31C   subic   r5,r0,0x5F9D
 +00014 40A0E320   lwz     r3,MaxApplZone(r0)
 +00018 40A0E324   li      r4,0x3802
 +0001C 40A0E328   bl      CallOSTrapUniversalProc
 +00020 40A0E32C   lwz     RTOC,0x0014(SP)
 +00024 40A0E330   lwz     r12,0x0048(SP)
 +00028 40A0E334   addic   SP,SP,0x0040
 +0002C 40A0E338   mtlr    r12
 +00030 40A0E33C   blr
You might expect the real MaxApplZone routine to do much more than what appears in this routine. In fact, this routine is simply glue for the 680x0 A-trap table: it gets the address of MaxApplZone from that trap table (don't try this yourself without GetOSTrapAddress, kids) and then uses the CallOSTrapUniversalProc routine to call the address.

Most of the routines in InterfaceLib are actually just like this glue routine for the trap table. Because the routines go through the trap table, PowerPC applications will be affected by patches to the trap table; if they were to bind directly with the system code fragments, patches would be bypassed.

To continue with our tracing, we must step up to and then into CallOSTrapUniversalProc. This takes us to more cross-TOC glue:

 40A06D10   lwz        r12,0x0008(RTOC)
 40A06D14   stw        RTOC,0x0014(SP)
 40A06D18   lwz        r0,0x0000(r12)
 40A06D1C   lwz        RTOC,0x0004(r12)
 40A06D20   mtctr      r0
 40A06D24   bctr
Since CallOSTrapUniversalProc is part of the Mixed Mode Manager, it's implemented in the MixedMode code fragment. This cross-TOC glue finds the TVector for that routine and calls through to it. When we step through this and over the last bctr instruction, we're magically transferred not to the Mixed Mode Manager but instead to 680x0 code. Wow! MacsBug knew we were calling a universal procedure pointer, so it spared us the trace through the mode switch and took us directly to the location of the universal procedure pointer, in this case the following 680x0 code:
 0031B160   MOVE.L     ApplLimit,D0
 0031B164   MOVE.L     HeapEnd,D1
 0031B168   SUB.L      D1,D0
 0031B16A   MOVEQ      #$14,D1
 0031B16C   CMP.L      D0,D1
 0031B16E   BLE.S      *+$000A
 0031B170   MOVEQ      #$00,D0
 0031B172   MOVE.W     D0,MemErr 
 0031B176   RTS
 0031B178   JMP        $00167FCC
From my experience tracing through the system, I'd guess that this 680x0 code is a patch on top of the real MaxApplZone, because it compares two numbers and in one of only two cases jumps to an absolute address. The absolute address was probably set when this code was installed as a patch, and it points to either the real MaxApplZone routine or another patch.

The patch appears to check whether the value of the ApplLimit low-memory global is within 20 bytes of the value of HeapEnd. If so, it simply returns noErr in the low-memory global MemErr without calling through to the real MaxApplZone. This patch is probably part of the system software, designed to fix a bug in the ROM without having to replace the entire real MaxApplZone routine.

Now if we trace through this patch and visit the absolute address $167FCC from the patch, we find the following:

No procedure name
 00167FCC  *_MixedModeMagic
 00167FCE   BTST       D3,D0
 00167FD0   ORI.B      #$00,D0
 00167FD4   ORI.B      #$00,D0
 00167FD8   ORI.B      #$3002,D0
 00167FDC   ORI.B      #$04,D1
 00167FE0   ORI.B      #$8274,D7
 00167FE4   ORI.B      #$00,D0
 00167FE8   ORI.B      #$00,D0
 00167FEC   ORI.B      #$A036,D0
Aha! This ugly disassembly is actually a routine descriptor in disguise. The _MixedModeMagic trap invokes the Mixed Mode Manager from 680x0 code, and it always appears at the beginning of a routine descriptor. Since this trap is at the beginning of each routine descriptor, you can simply construct a routine descriptor and then jump to it in 680x0 code. The drd dcmd in MacsBug will let you see this routine descriptor in a meaningful way. When I typed drd pc in this case, I saw the contents of Listing 1.



Listing 1. Displaying a routine descriptor

drd: 00167fcc
  MixedModeMagic: 0xAAFE, version: #7, 
    flags: 0x00 (NotIndexable) 
  LoadLoc: 0x00000000, reserved2: 0x00000000,
    SelectorInfo: 0x00 (No Selector) 
  Routine Count (zero-based): 0x0000 (#0)
  ---- Routine Record 0x0000 (#0) at 0x00167fd8 ----
       ProcInfo: 0x00003002,
         Reserved1: 0x00000000, ISA: #1 (PowerPC) 
       Record Flags: 0x0004 (Absolute, IsPrepared, NativeISA,
         PassSelector, IsNotDefault) 
       ProcPtr: 0x00078274, offset: 0x00000000,
         selector: 0x00000000 


    Notice the number of fields displayed in Listing 1. For simple routine descriptors like this one, you'll only need to look at the ProcPtr entry on the last line of the display. More complicated routine descriptors have an array of routines, and you'll need to look for a passed selector to determine which one is actually used.
The last line of the listing shows a ProcPtr value of $00078274. This is the address of the TVector for MaxApplZone in the MemoryMgr code fragment. Since the TVector structure has the routine address as its first element, dereferencing that address once will produce the address of the actual routine. Typing ilp @78274 to dereference the TVector and disassemble PowerPC code showed me this:
__MaxApplZone
 +00000 000CA1A8   mflr       r0
 +00004 000CA1AC   stwu       SP,-0x0040(SP)
 +00008 000CA1B0   stw        r0,0x0048(SP)
 +0000C 000CA1B4   bl         __HSetStateQ+0073C
 +00010 000CA1B8   crmove     cr7_SO,cr7_SO
 +00014 000CA1BC   extsh      r4,r3
 +00018 000CA1C0   li         r3,0x0000
 +0001C 000CA1C4   bl         SetEmulatorRegister
 +00020 000CA1C8   lwz        RTOC,0x0014(SP)
 +00024 000CA1CC   lwz        r12,0x0048(SP)
 +00028 000CA1D0   addic      SP,SP,0x0040
 +0002C 000CA1D4   mtlr       r12
 +00030 000CA1D8   blr 
This is the MaxApplZone routine in the Memory Manager. It appears to call more substantial subroutines when it branches to __HSetStateQ+0073C, but this is the actual routine.


WALKING BACK OUT

We've braved routine descriptors, glue, and patches to make it this far. I won't dive further into the Memory Manager for this illustration, but let's try an instructive walk back out from the MaxApplZone routine.

After tracing through this routine, we step over the blr instruction to branch back to the link register address. To our surprise we not only switch back to 680x0 emulation mode but we appear to be lost in darkness. The following 680x0 F-line instruction will be executed next:

No procedure name
 0162D0A0   DC.W       $FE02
We switched back to 680x0 emulation mode because we're returning from the 680x0 patch call to a routine descriptor. Typing ip to disassemble at the current location shows what appears to be garbage, however:
No procedure name
 0162D08C   NEGX.L     D7
 0162D08E   EOR.W      D3,(A0)+
 0162D090   BCHG       D0,-(A2)
 0162D092   DC.W       $D0F0
 0162D094   DC.W       $FFFF
 0162D096   ORI.B      #$00,D4
 0162D09A   DC.W       $FFFF
 0162D09C   ORI.B      #$A063,D0
 0162D0A0  *DC.W       $FE02
 0162D08C   NEGX.L     D7
 0162D08E   EOR.W      D3,(A0)+
 0162D090   BCHG       D0,-(A2)
 0162D092   DC.W       $D0F0
 0162D0A2   ORI.B      #$9C,D0
 0162D0A6   BCLR       D0,D3
 0162D0A8   BCHG       D0,-(A2)
 0162D0AA   ADD.B      D0,(A0)
Here's the secret: The $FE02 F-line instruction is very much like the _MixedModeMagic trap in that it can signal the transition from emulated 680x0 code to PowerPC code. Just as with the routine descriptor that we saw earlier, executing the $FE02 instruction will in this case cause us to switch back to PowerPC native mode and will bring us to a completely different address.

Truly perceptive readers might have noticed that the program counter at the $FE02 instruction is actually on the stack. Listing 2 shows a memory dump of the first 48 bytes of the stack at this time. Notice that the word at the beginning of the third line (at $162D0A0) is the $FE02 instruction we're about to execute.


Listing 2. The stack upon return to PowerPC code

Displaying memory from sp
 0162D080  DDDD DDDD DDDD DDDD 7FFF 7FFF 4087 B758
                               -+**********@á
 0162D090  0162 D0F0 FFFF 0004 0000 FFFF 0000 A063
                               [[Sigma]]X*b-***********
 0162D0A0  FE02 0000 009C 0183 0162 D110 0000 3802
                               +c*****ú*É*b--***

As we trace over that $FE02 instruction, we find ourselves back inside the InterfaceLib glue routine for MaxApplZone. Tracing through those last instructions finally takes us back to the application code where we started, as shown here:

MaxApplZone
 +00020 40A0E32C   lwz        RTOC,0x0014(SP)
 +00024 40A0E330   lwz        r12,0x0048(SP)
 +00028 40A0E334   addic      SP,SP,0x0040
 +0002C 40A0E338   mtlr       r12
 +00030 40A0E33C   blr
No procedure name
 0093B280   lwz        RTOC,0x0014(SP)
 0093B284   li         r31,0x0001
Notice that when we returned to a previous code fragment, we immediately restored the TOC register to a value saved on the stack. Not only is the caller responsible for setting the TOC register before calling a routine, it's also responsible for restoring this register when the call returns.

This concludes our romp through the wilderness of the modern PowerPC environment. We traced from an application's code fragment, through the InterfaceLib fragment and then a patch in the trap table, to a routine descriptor for the real MaxApplZone routine, and ultimately back again.


CATCHING POWERPC CALLS

Earlier I glossed over how to set a breakpoint and catch an application as it calls MaxApplZone. Now I'll describe a good trick for doing this. The MacsBug debugger doesn't implement 680x0 A-trap break commands for PowerPC code yet. But you can easily mimic the A-trap break feature in PowerPC code, using the FindSym, PlayMem, and PPCJump MacsBug macros. You can use those macros if you install the file "PowerPC dcmds" (which you'll find on this issue's CD) into your MacsBug Preferences folder.

Say, as an example, that you'd like to catch all PowerPC code that calls the Toolbox routine ReleaseResource. PowerPC code fragments access this routine by importing its entry point from the InterfaceLib code fragment. Typing FindSym ReleaseResource on my Power Macintosh 8100 produces the following:

findsym: "ReleaseResource"
 "ReleaseResource" #1796 TVec 0001acc0
 (40a15978,0001ea14) in "InterfaceLib"
    FindSym is case sensitive. When looking for an entry in InterfaceLib, for example, you must spell the routine name exactly and capitalize letters perfectly; typing "releaseresource" rather than "ReleaseResource" will not work.*
This tells us a few things. ReleaseResource's TVector is located at the address $0001ACC0. That vector contains the address for the routine at $40A15978 and the InterfaceLib's TOC value, which is $0001EA14. FindSym will return TVector addresses for each application or fragment bound to the routine. In System 7 these will usually all be the same TVector.

If I need to catch callers to ReleaseResource, I could then simply type brp 40a15978 to set a PowerPC breakpoint at the beginning of the InterfaceLib code. On the Power Macintosh 8100, however, this address is in ROM. Setting breakpoints in ROM is more difficult for MacsBug, which returns this message:

Warning: This requires stepping through each instruction
Your Macintosh might become unusable if MacsBug is forced to single-step through all the code. Because MacsBug can set a breakpoint in RAM with less difficulty, we'll now use the PlayMem and PPCJump macros to set an equivalent breakpoint in RAM.

PlayMem is a MacsBug variable that points to 512 bytes of scratch memory in RAM. The PPCJump macro expands to a set of PowerPC instructions for jumping to an absolute address. So the command

sl PlayMem PPCJump 40a15978
writes the following instructions to MacsBug's scratch memory:
lis    r0,40a1         | 3C0040A1
ori    r0,r0,5978      | 60005978
mtctr  r0              | 7C0903A6
bctr                   | 4E800420
Now I'll replace the value of the TVector with our new code in scratch space, by typing sl 0001acc0 PlayMem. PowerPC code bound with InterfaceLib will now call my new code instead of ReleaseResource, but my code will then correctly pass control to ReleaseResource. Finally, typing brp PlayMem will set the PowerPC breakpoint we want.

When PowerPC code tries to call the ReleaseResource trap via InterfaceLib, execution will stop at my breakpoint in PlayMem. At that point, typing ipp lr will list PowerPC instructions around the address in the link register, quickly showing me which code was calling the trap.


AFTER THE HUNT

Although I seriously doubt I would find enjoyment in hunting live animals, I've found the hunt for software defects truly rewarding. Some problems are a definite challenge, and I often learn something new about the Mac OS with each riddle solved. I hope that knowing the details of my pursuit will help you in your own future quests.

DAVE EVANS and fellow Apple engineer Rus Maxham took another adventure by motorcycle this summer. This time they journeyed to Utah and skirted the Great Salt Lake. Turning north, they discovered the beautiful and unspoiled vistas of Idaho. Cottonwood flower petals rained on them as they crossed into Washington. Hectares of wheat farms and the blustery Columbia River guided them to Oregon. One cracked tailpipe and two quarts of oil later, they finally arrived home in California.

Thanks to Nitin Ganatra, Pete Gontier, Jim Luther, and Alex Rangel for reviewing this column.

 
AAPL
$102.50
Apple Inc.
+0.25
MSFT
$45.43
Microsoft Corpora
+0.55
GOOG
$571.60
Google Inc.
+2.40

MacTech Search:
Community Search:

Software Updates via MacUpdate

Path Finder 6.5.5 - Powerful, award-winn...
Path Finder is a file browser that combines the familiar Finder interface with the powerful utilities and innovative features. Just a small selection of the Path Finder 6 feature set: Dual pane... Read more
QuarkXPress 10.2.1 - Desktop publishing...
With QuarkXPress, you can communicate in all the ways you need to -- and always look professional -- in print and digital media, all in a single tool. Features include: Easy to Use -- QuarkXPress is... Read more
Skype 6.19.0.450 - Voice-over-internet p...
Skype allows you to talk to friends, family and co-workers across the Internet without the inconvenience of long distance telephone charges. Using peer-to-peer data transmission technology, Skype... Read more
VueScan 9.4.41 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
Cloud 3.0.0 - File sharing from your men...
Cloud is simple file sharing for the Mac. Drag a file from your Mac to the CloudApp icon in the menubar and we take care of the rest. A link to the file will automatically be copied to your clipboard... Read more
LibreOffice 4.3.1.2 - Free Open Source o...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
SlingPlayer Plugin 3.3.20.505 - Browser...
SlingPlayer is the screen interface software that works hand-in-hand with the hardware inside the Slingbox to make your TV viewing experience just like that at home. It features an array of... Read more
Get Lyrical 3.8 - Auto-magically adds ly...
Get Lyrical auto-magically add lyrics to songs in iTunes. You can choose either a selection of tracks, or the current track. Or turn on "Active Tagging" to get lyrics for songs as you play them.... Read more
Viber 4.2.2 - Send messages and make cal...
Viber lets you send free messages and make free calls to other Viber users, on any device and network, in any country! Viber syncs your contacts, messages and call history with your mobile device,... Read more
Cocktail 7.6 - General maintenance and o...
Cocktail is a general purpose utility for OS X that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more

Latest Forum Discussions

See All

Rhonna Designs Magic (Photography)
Rhonna Designs Magic 1.0 Device: iOS Universal Category: Photography Price: $1.99, Version: 1.0 (iTunes) Description: Want to sprinkle *magic* on your photos? With RD Magic, you can add colors, filters, light leaks, bokeh, edges,... | Read more »
This Week at 148Apps: August 25-29, 2014
Shiny Happy App Reviews   | Read more »
Qube Kingdom – Tips, Tricks, Strategies,...
Qube Kingdom is a tower defense game from DeNA. You rally your troops – magicians, archers, knights, barbarians, and others – and fight against an evil menace looking to dominate your kingdom of tiny squares. Planning a war isn’t easy, so here are a... | Read more »
Qube Kingdom Review
Qube Kingdom Review By Nadia Oxford on August 29th, 2014 Our Rating: :: KIND OF A SQUARE KINGDOMUniversal App - Designed for iPhone and iPad Qube Kingdom has cute visuals, but it’s a pretty basic tower defense game at heart.   | Read more »
Fire in the Hole Review
Fire in the Hole Review By Rob Thomas on August 29th, 2014 Our Rating: :: WALK THE PLANKUniversal App - Designed for iPhone and iPad Seafoam’s Fire in the Hole looks like a bright, 8-bit throwback, but there’s not enough booty to... | Read more »
Alien Creeps TD is Now Available Worldwi...
Alien Creeps TD is Now Available Worldwide Posted by Ellis Spice on August 29th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Dodo Master Review
Dodo Master Review By Jordan Minor on August 29th, 2014 Our Rating: :: NEST EGGiPad Only App - Designed for the iPad Dodo Master is tough but fair, and that’s what makes it a joy to play.   | Read more »
Motorsport Manager Review
Motorsport Manager Review By Lee Hamlet on August 29th, 2014 Our Rating: :: MARVELOUS MANAGEMENTUniversal App - Designed for iPhone and iPad Despite its depth and sense of tactical freedom, Motorsport Manager is one of the most... | Read more »
Motorsport Manager – Beginner Tips, Tric...
The world of Motorsport management can be an unforgiving and merciless one, so to help with some of the stress that comes with running a successful race team, here are a few hints and tips to leave your opponents in the dust. | Read more »
CalPal Update Brings the App to 2.0, Add...
CalPal Update Brings the App to 2.0, Adds Lots of New Stuff Posted by Ellis Spice on August 29th, 2014 [ permalink ] | Read more »

Price Scanner via MacPrices.net

Apple now offering refurbished 21-inch 1.4GHz...
The Apple Store is now offering Apple Certified Refurbished 21″ 1.4GHz iMacs for $929 including free shipping plus Apple’s standard one-year warranty. Their price is $170 off the cost of new models,... Read more
Save $50 on the 2.5GHz Mac mini, on sale for...
B&H Photo has the 2.5GHz Mac mini on sale for $549.99 including free shipping. That’s $50 off MSRP, and B&H will also include a free copy of Parallels Desktop software. NY sales tax only. Read more
Save up to $300 on an iMac with Apple refurbi...
The Apple Store has Apple Certified Refurbished iMacs available for up to $300 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free. These are the best prices on... Read more
The Rise of Phablets
Carlisle & Gallagher Consulting Group, a businesses and technology consulting firm focused solely on the financial services industry, has released an infographic depicting the convergence of... Read more
Bad Driver Database App Allows Good Drivers t...
Bad Driver Database 1.4 by Facile Group is a new iOS and Android app that lets users instantly input and see how many times a careless, reckless or just plain stupid driver has been added to the... Read more
Eddy – Cloud Music Player for iPhone/iPad Fre...
Ukraine based CapableBits announces the release of Eddy, its tiny, but smart and powerful cloud music player for iPhone and iPad that allows users to stream or download music directly from cloud... Read more
A&D Medical Launches Its WellnessConnecte...
For consumers and the healthcare providers and loved ones who care for them, A&D Medical, a leader in connected health and biometric measurement devices and services, has launched its... Read more
Anand Lal Shimpi Retires From AnandTech
Anand Lal Shimpi, whose AnandTech Website is famous for its meticulously detailed and thoroughgoing reviews and analysis, is packing it in. Lal Shimpi, who founded the tech site at age 14 in 1997,... Read more
2.5GHz Mac mini, Apple refurbished, in stock...
The Apple Store has Apple Certified Refurbished 2.5GHz Mac minis available for $509, $90 off MSRP. Apple’s one-year warranty is included, and shipping is free. Read more
13-inch 2.5GHz MacBook Pro on sale for $999,...
B&H Photo has the 13″ 2.5GHz MacBook Pro on sale for $999.99 including free shipping plus NY sales tax only. Their price is $100 off MSRP. Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Senior Event Manager, *Apple* Retail Market...
…This senior level position is responsible for leading and imagining the Apple Retail Team's global event strategy. Delivering an overarching brand story; in-store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.