TweetFollow Us on Twitter

June 96 - 64-Bit Integer Math on 680x0 Machines

64-Bit Integer Math on 680x0 Machines

DALE SEMCHISHEN

When an application has to perform integer arithmetic with numbers larger than 32 bits on both the PowerPC and 680x0 platforms, you could use the floating-point types of the SANE and PowerPC Numerics libraries. But if all you really need is a larger integer, a better choice is to use the existing 64-bit math routines available on the PowerPC platform and write an equivalent library for the 680x0 Macintosh. This article presents just such a library.

Developers of PowerPC applications that need 64-bit math can simply call the various "wide" Toolbox routines. These routines perform addition, subtraction, multiplication, division, square root, and a few other operations. On the 680x0-based Macintosh, some of these same routines are available in QuickDraw GX. But if you can't assume your customers have QuickDraw GX installed, you need a library that supports 64-bit math.

The Wide library presented in this article works on both platforms and has exactly the same interface and types as the wide routines in the Toolbox on PowerPC machines. The library also provides some new routines such as 32-bit to 64-bit add and subtract and a 64-bit-to-string conversion function. The library is included on this issue's CD, along with its source code.

All the routines use the 64-bit data type defined in the header file Types.h, which is the standard type used for signed 64-bit integers on both the PowerPC and 680x0 Macintosh:

struct wide {
   Sint32   hi;   /* upper 32 bits (signed) */
   Uint32   lo;   /* lower 32 bits (unsigned) */
};
typedef struct wide wide, *WidePtr;

THE WIDE ROUTINES

Before plunging into the Wide library, let's see what 64-bit math routines I'll be talking about. First, I'll introduce those that are available on PowerPC machines, then those you'll find on a 680x0 Macintosh with QuickDraw GX, and finally the routines in the Wide library.

POWERPC TOOLBOX

In the header file FixMath.h, the routines listed in Table 1 are defined for 64-bit math on the PowerPC platform.

680X0 QUICKDRAW GX

On 680x0 machines that have QuickDraw GX installed, all the wide routines for the PowerPC platform listed in Table 1 are available, with the exception of WideBitShift. The QuickDraw GX header file GXTypes.h defines the wide routine types and function prototypes in exactly the same way that the header file FixMath.h does for PowerPC machines.

In addition, QuickDraw GX on 680x0 machines has a routine that the PowerPC platform doesn't have: WideScale. This function returns the bit number of the highest-order nonzero bit in a 64-bit number. The Wide library implements this function on the PowerPC platform.

THE WIDE 64-BIT LIBRARY

The Wide 64-bit integer math library on this issue's CD provides all the wide routines that are available on PowerPC machines and on 680x0 machines with QuickDraw GX, plus a few extras. The extra routines, which are available on both the PowerPC and 680x0 platforms, are listed in Table 2.

WideAssign32, WideAdd32, WideSubtract32. These routines are self-explanatory.

WideToDecStr. This routine converts a signed 64-bit integer to the SANE string type decimal, which is also defined by the PowerPC Numerics library. This string structure is a good intermediate format for final conversion to a string format of your choosing.

Since WideToDecStr calls the SANE library to generate the string, SANE must be linked with your 680x0 application. The SANE library is included with all the major development systems.

To convert the string returned by WideToDecStr to a Pascal string, call the SANE routine dec2str.

    If you want to generate a localized number, take a look at the article "International Number Formatting" in develop Issue 16. You could call the LocalizeNumberString function from that article after converting the output of WideToDecStr to a Pascal string, or you could modify LocalizeNumberString to accept the output of WideToDecStr.*
p> WideInit. The library is self-initializing; the first time you call any wide routine, WideInit is also called. If the execution speed of your first runtime call to a wide routine is important, you have the option of calling WideInit during your application's startup to avoid that overhead.

The purpose of WideInit is to determine what processor is being used, or emulated; it calls Gestalt to make this determination. If your Macintosh has a 68020-68040 CPU (68020, 68030, or 68040), the library will use the 64-bit multiply and divide instructions available on that processor; otherwise, the library will have to call software subroutines for those operations. On 68000 machines, such as the Macintosh Plus and SE, the processor's multiply instruction is limited to 32 bits and the library has no choice but to use the slower algorithmic approach for multiplication and division.

SOURCE CODE ON A PLATTER

The library can be compiled on the 680x0 and PowerPC platforms using either the Metrowerks CodeWarrior or Symantec C development system. The library tests which development system is compiling it and, if it's not CodeWarrior or Symantec, the preprocessor displays an error message saying the library needs to be ported to your environment. This is necessary because there's some inline assembly language in the source file, as discussed later in this section, and different C compilers handle assembly language differently.

While the interface routines to our 64-bit library are the same on the PowerPC and 680x0 machines, when you compile the library a different subset of routines is linked in, depending on your environment:

  • If you build the library for a 680x0 machine without QuickDraw GX headers, all the Wide library routines are defined.

  • If you build the library for a 680x0 machine and include the QuickDraw GX header file GXTypes.h or GXMath.h before the Wide library's Wide.h header file, the extra routines and the WideBitShift routine are defined. The other wide routines are already available via the QuickDraw GX traps.

  • When you compile for the PowerPC platform, only the five extra routines (WideAssign32, WideAdd32, WideSubtract32, WideToDecStr, and WideInit) are defined in the library. All the other wide routines already exist in the PowerPC Toolbox. Additionally, if GXTypes.h or GXMath.h isn't included, WideScale is defined.
Table 3 summarizes where the wide routines can be found on the different platforms.

Note that the Wide library decides at compile time which routines to use. When QuickDraw GX header files are not included, the Wide library routines are called. If your application needs to make a runtime decision about whether to use QuickDraw GX, you'll need to make some changes to the library. One solution is to rename the Wide library routines and remove the conditional compilation tests for QuickDraw GX from the source. Then at run time you can decide which version to call -- the QuickDraw GX routines if they're available, or the internal Wide library routinesif not.

UNIVERSAL HEADERS

The Wide library was compiled with version 2.1 of Apple's universal headers. The latest headers are available on this issue's CD. You should make sure you have a recent version of these headers, because the library uses the constant GENERATING68K. If the header file ConditionalMacros.h doesn't contain this constant, your version of the universal headers is too old.

680X0 ASSEMBLY LANGUAGE

Some of the routines in the library are written in assembly language to take advantage of the 64-bit multiply and divide instructions on 68020-68040 machines, because on these machines the C language will use only 32-bit multiply and divide instructions. On PowerPC machines, the Wide library doesn't need assembly language because the 64-bit multiply and divide routines are provided by the Toolbox.

The library's source file Wide.c contains both C and assembly language. It has been successfully compiled by Symantec C 7.0.4 and CodeWarrior 7. If you want to compile the library on any other development system, you may have to do a little work porting it. Most of the changes will be confined to the conditional compilation statements at the beginning of Wide.c where the differences in SANE types and inline assembly language are handled.

A CLOSER LOOK AT SOME WIDE ROUTINES

Now let's look at a couple of the more interesting routines in the Wide library to see how they work. See the source code on the CD for full implementations of all the routines.

WIDEMULTIPLY

WideMultiply (Listing 1) performs a 32-by-32-bit multiply and produces a 64-bit result. The first and second parameters are the two signed 32-bit integers to be multiplied together. The return value is a pointer to the 64-bit result that's also returned via the third parameter.

Listing 1. The multiply routine

wide *WideMultiply (
   long multiplicand,   /* in: first value to multiply */
   long multiplier,      /* in: second value to multiply */
   wide *target_ptr)      /* out: 64 bits to be assigned */
{
   /* Initialize Wide library if not already done. */
   if (!gWide_Initialized) WideInit();

   /* If the 64-bit multiply instruction is available... */
   if (gWide_64instr) {
      /* Execute the assembly-language instruction MULS.L */
      Wide_MulS64(multiplicand, multiplier, target_ptr);
   }
   else {
      /* Call the Toolbox to perform the multiply. */
      LongMul(multiplicand, multiplier, (Int64Bit *) target_ptr);
   }

   return (target_ptr);
}
WideMultiply first tests whether the library has been initialized yet; if not, it calls WideInit. Next the routine tests whether the 64-bit multiply instruction is available on the current CPU by examining the global variable gWide_64instr (which was set by the initialization routine WideInit). If the instruction is available, WideMultiply calls the assembly-language function Wide_MulS64 to take advantage of it (as described later); otherwise, WideMultiply calls the Toolbox routine LongMul to perform the multiplication, as would be the case on 68000 machines.

WIDESQUAREROOT

The WideSquareRoot function (Listing 2) takes a 64-bit unsigned number as input and returns a 32-bit unsigned result. All possible results can be expressed in 32 bits, so overflow isn't possible.

Listing 2. The square root routine

unsigned long WideSquareRoot (
   const wide *source_ptr) /* in: value to take the square root of */
{
   wide            work_integer;
   Extended_80      extended_80_number;

   /* Initialize Wide library if not already done. */
   if (!gWide_Initialized) WideInit();

   /* Convert "wide" number to "extended" format. */
   Wide_ToExtended(&extended_80_number, source_ptr);

   /* If compiling with CodeWarrior, the parameter to sqrt is a
      pointer instead of a value, as defined in PowerPC Numerics. */
#ifdef __MWERKS__
   Sqrt(&extended_80_number);
#else
   extended_80_number = sqrt(extended_80_number);
#endif

   /* Convert "extended" format to "wide" number. */
   Wide_FromExtended(&work_integer, &extended_80_number);
   
   /* OK to ignore work_integer.hi as it's always 0. */
   return (work_integer.lo);
}
For this routine I decided to let the SANE library do the work of generating the square root. The routine converts the 64-bit input number to an 80-bit floating-point number and then calls the SANE library function sqrt to calculate the square root. Finally, WideSquareRoot converts the resulting 80-bit floating-point number back to a 64-bit integer and returns the low-order half of the result.

When a 64-bit integer is converted to an 80-bit floating-point number, no loss in precision occurs. An 80-bit floating-point number is made up of three parts -- the sign (1 bit), the exponent (15 bits), and the fractional part (64 bits). As you can see, a 64-bit integer exactly fits in the fractional part.

Two differences between the CodeWarrior and Symantec development systems that show up in the Wide library's WideSquareRoot function are the 80-bit floating-point types and the parameters of the SANE library's square root function. Under CodeWarrior, the Wide library internal type Extended_80 is defined as the type extended80, and Sqrt returns the result to the same location as the input number. Under Symantec C, Extended_80 is defined as the type extended, and sqrt returns the result as a function return value.

INTERNAL ASSEMBLY-LANGUAGE ROUTINES

The Wide library uses internal assembly-language routines to execute 64-bit multiply and divide instructions on machines that support those instructions. In case you're interested, here are the details.

Symantec and CodeWarrior handle the asm keyword differently, so I used some preprocessor commands (#defines) to handle the differences between the two development systems. Near the beginning of the Wide.c source file there are four #defines that differ depending on which development system you're using, as shown in Table 4.

WIDE_MULS64

Wide_MulS64 (Listing 3) is an internal assembly-language routine that WideMultiply calls to execute the 64-bit multiply instruction on the 68020-68040 CPUs. It starts with ASM_FUNC_HEAD, as mentioned in Table 4. The three definitions at the start of the function (MULTIPLICAND, MULTIPLIER, and OUT_PTR) are the byte offsets to the parameters. Although in Symantec C it's possible to refer to function parameters by name via A6, this isn't possible in CodeWarrior. I had to give up accessing the parameters by name and use #defines instead.

Listing 3. 64-bit multiply instruction

ASM_FUNC_HEAD static void Wide_MulS64 (
   long multiplicand,   /* in: first value to multiply */
   long multiplier,     /* in: second value to multiply */
   wide *out_ptr)       /* out: 64 bits to be assigned */
{
#define MULTIPLICAND     8
#define MULTIPLIER      12
#define OUT_PTR         16

ASM_BEGIN
      MOVE.L   MULTIPLICAND(A6),D0     //
      DC.W      0x4C2E,0x0C01,0x000C   // MULS.L multiplier(A6),D1-D0
      MOVE.L   OUT_PTR(A6),A0          //
      MOVE.L    D0,WIDE_LO(A0)         //
      MOVE.L   D1,WIDE_HI(A0)          //
ASM_END
ASM_FUNC_TAIL
}
To execute the 64-bit multiply instruction I had to define it with a DC.W directive that generates the desired object code. This was necessary because the Symantec C inline assembler supports only the 32-bit multiply instruction and won't recognize the 64-bit assembly opcode.

WIDE_DIVIDEU

If the 64-bit divide instruction isn't available, the library calls the internal assembly-language routine Wide_DivideU (Listing 4) to perform the division using an algorithm. The algorithm is basically a binary version of the paper and pencil method of doing long division that all of us learned in school. It's a loop that executes once for each bit in the size of the divisor, which is 32 in our case. The Wide_DivideU subroutine actually handles only unsigned division, but the library function that calls it will take care of converting the input parameters to positive values and, if required, converting the result to a negative value.

Listing 4. 64-bit unsigned division algorithm

ASM_FUNC_HEAD static void Wide_DivideU (
   wide *dividend_ptr,      /* in/out: 64 bits to be divided */
   long divisor,            /* in: value to divide by */
   long *remainder_ptr)     /* out: the remainder of the division */
{
#define DIVIDEND_PTR      8
#define DIVISOR         12
#define REMAINDER_PTR   16

ASM_BEGIN
      MOVEM.L  D2-D7,-(SP)           // save work registers
      CLR.L    D0                    //
      CLR.L    D1                // D0-D1 is the quotient accumulator
      MOVE.L   DIVIDEND_PTR(A6),A0   //
      MOVE.L   WIDE_HI(A0),D2        //
      MOVE.L   WIDE_LO(A0),D3        // D2-D3 = remainder accumulator
      CLR.L    D4                    //
      MOVE.L   D2,D5                 // D5 = copy of dividend.hi
      MOVE.L   DIVISOR(A6),D6        // D6 = copy of divisor

      MOVEQ.L  #31,D7                // FOR number of bits in divisor
@divloop:
      LSL.L    #1,D0             // shift quotient.hi accum left once
      LSL.L    #1,D1             // shift quotient.lo accum left once
      LSL.L    #1,D4                 //
      LSL.L    #1,D3                 //
      ROXL.L   #1,D2             // shift remainder accum left once
      SUB.L    D6,D2                 // remainder -= divisor
      BCS      @div50                // If CS, remainder is negative
      BSET     #0,D1                 // quotient.lo |= 1
      BRA.S    @div77                //
@div50:
      ADD.L    D6,D2                 // remainder += divisor
@div77:
      BTST     D7,D5                 //
      BEQ      @div90            // If EQ, bit not set in dividend.hi
      BSET     #0,D4                  //
@div90:
      CMP.L    D6,D4                  //
      BCS      @div99                 // If CS, divisor < D4
      SUB.L    D6,D4                  // D4 -= divisor
      BSET     #0,D0                  // quotient.hi |= 1
@div99:
      DBF      D7,@divloop            // loop until D7 == -1
      MOVE.L   DIVIDEND_PTR(A6),A0    // output the remainder
      MOVE.L   D0,WIDE_HI(A0)         //
      MOVE.L   D1,WIDE_LO(A0)         //
      MOVE.L   REMAINDER_PTR(A6),A0   // output the remainder
      MOVE.L   D2,(A0)                //
      MOVEM.L  (SP)+,D2-D7            // restore work registers
ASM_END
ASM_FUNC_TAIL
}
The top of the assembly-language loop starts at the @divloop label. For each loop, the algorithm shifts the quotient and the remainder left one bit position before trying to subtract the divisor from the remainder. If the subtraction can be done, the least-significant bit in quotient.lo is set; otherwise, the subtraction is undone by the add instruction near the @div50 label. Then, if the divisor is greater than the loop bits that are accumulating in register D4, the least-significant bit in quotient.hi is set.

Notice that the first assembly-language statement in Wide_DivideU is a MOVEM.L instruction that saves on the stack all the registers that the division loop uses; the last instruction is a MOVEM.L instruction that restores these registers. Fortunately, this subroutine can place all its working variables in registers and avoid the stack for its loop, thus improving performance.

WORLDS APART

There you have it. Now 64-bit integer math can be handled with the same API on both the 680x0 and PowerPC platforms. Having the same function-level interface on these two very different processors makes life a lot easier for application programmers. Don't you wish all libraries had the same interface regardless of the CPU or system software version?

DALE SEMCHISHEN (Dale_Semchishen@mindlink.net) lives in Vancouver, British Columbia, with his wife Josephine. He works for Glenayre Technologies as a paging software developer (they make the control systems that send messages to your belt beeper). Recently, he had to accept the fact that the world is changing when his retired father started talking about his Internet provider.*

Thanks to our technical reviewers Dave Evans, Quinn "The Eskimo!", and Dave Radcliffe. Special thanks to Dave Johnson for software testing.*

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Printopia 2.1.14 - Share Mac printers wi...
Run Printopia on your Mac to share its printers to any capable iPhone, iPad or iPod Touch. Printopia will also add virtual printers, allowing you to save print-outs to your Mac and send to apps.... Read more
Google Drive 1.24 - File backup and shar...
Google Drive is a place where you can create, share, collaborate, and keep all of your stuff. Whether you're working with a friend on a joint research project, planning a wedding with your fiancé, or... Read more
Chromium 45.0.2454.85 - Fast and stable...
Chromium is an open-source browser project that aims to build a safer, faster, and more stable way for all Internet users to experience the web. Version 45.0.2454.85: Note: Does not contain the "... Read more
OmniFocus 2.2.5 - GTD task manager with...
OmniFocus helps you manage your tasks the way that you want, freeing you to focus your attention on the things that matter to you most. Capturing tasks and ideas is always a keyboard shortcut away in... Read more
iFFmpeg 5.7.1 - Convert multimedia files...
iFFmpeg is a graphical front-end for FFmpeg, a command-line tool used to convert multimedia files between formats. The command line instructions can be very hard to master/understand, so iFFmpeg does... Read more
VOX 2.6 - Music player that supports man...
VOX is a beautiful music player that supports many filetypes. The beauty is in its simplicity, yet behind the minimal exterior lies a powerful music player with a ton of features and support for all... Read more
Box Sync 4.0.6567 - Online synchronizati...
Box Sync gives you a hard-drive in the Cloud for online storage. Note: You must first sign up to use Box. What if the files you need are on your laptop -- but you're on the road with your iPhone? No... Read more
Carbon Copy Cloner 4.1.4 - Easy-to-use b...
Carbon Copy Cloner backups are better than ordinary backups. Suppose the unthinkable happens while you're under deadline to finish a project: your Mac is unresponsive and all you hear is an ominous,... Read more
OmniGraffle Pro 6.3.1 - Create diagrams,...
OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use... Read more
Monosnap 3.1.2 - Versatile screenshot ut...
Monosnap lets you capture screenshots, share files, and record video and .gifs! Capture: Capture full screen, just part of the screen, or a selected window Make your crop area pixel perfect with... Read more

Goat Simulator MMO Simulator (Games)
Goat Simulator MMO Simulator 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: ** IMPORTANT - SUPPORTED DEVICESiPhone 4S, iPad 2, iPod Touch 5 or better.** Coffee Stain Studios brings next-gen... | Read more »
Worms™ 4 (Games)
Worms™ 4 1.02 Device: iOS Universal Category: Games Price: $4.99, Version: 1.02 (iTunes) Description: The latest instalment in the worldwide mega hit franchise! Coming soon to iPhone, iPad and iPod touch. When the guys and girls at... | Read more »
The Deer God (Games)
The Deer God 1.0 Device: iOS Universal Category: Games Price: $6.99, Version: 1.0 (iTunes) Description: 30% off launch sale!!! “It can be a struggle, but it's all worth it when you're shooting fire out your antlers.” Kotaku “The... | Read more »
AppSpy's Patreon campaign kicks off
Occasionally you'll see us use AppSpy's videos here on 148Apps to support an article we've written. That's because we're part of Steel Media, and AppSpy is Steel's video arm, so we're all part of one happy family. [Read more] | Read more »
We're Sorry to Report that Moonrise...
Moonrise is a very promising-looking, Pokemon-esque monster collecting and battling game that we were really looking forward to reviewing, but unfortunately it looks like that's never going to happen. [Read more] | Read more »
The Latest Update for The Sims FreePlay...
Commerce has gotten a little more active with the newest update for The Sims FreePlay, making Sunset Mall more of a hangout than ever before. [Read more] | Read more »
This Week at 148Apps: August 24-28, 2015
The Apps of August With 148Apps How do you know what apps are worth your time and money? Just look to the review team at 148Apps. We sort through the chaos and find the apps you're looking for. The ones we love become Editor’s Choice, standing out... | Read more »
NASCAR in Real Racing 3? Sure, Why Not?
I have to give Firemonkeys credit - it's very cool of them to add NASCAR to Real Racing 3 via an update rather than making a separate game for it. But that's a different discussion for another time; for now let's sit back and enjoy driving in... | Read more »
The nuyu is an Inexpensive Activity Moni...
Today, Health o Meter nuyu has announced a series of health and fitness-related products, including the aforementioned activity monitor along with a wireless scale. All at a decent pricepoint, no less. [Read more] | Read more »
The Makers of Overkill are Trying Someth...
Craneballs, the studio responsible for the Overkill series, is taking a little break from all that violence (a little break) to bring us Cube Worm - a 3D take on one of the most classic PC/calculator games in existence. [Read more] | Read more »

Price Scanner via MacPrices.net

Will You Buy An iPad Pro? – The ‘Book Mystiqu...
It looks like we may not have to wait much longer to see what finally materializes as a new, larger-panel iPad (Pro/Plus?) Usually reliable Apple product prognosticator KGI Securities analyst Ming-... Read more
eFileCabinet Announces SMB Document Managemen...
Electronic document management (EDM) eFileCabinet, Inc., a hosted solutions provider for small to medium businesses, has announced that its SecureDrawer and eFileCabinet Online services will be... Read more
WaterField Designs Unveils American-Made, All...
San Francisco’s WaterField Designs today unveiled their all-leather Cozmo 2.0 — an elegant attach laptop bag with carefully-designed features to suit any business environment. The Cozmo 2.0 is... Read more
Apple’s 2015 Back to School promotion: Free B...
Purchase a new Mac or iPad at The Apple Store for Education and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free,... Read more
128GB MacBook Airs on sale for $100 off MSRP,...
B&H Photo has 11″ & 13″ MacBook Airs with 128GB SSDs on sale for $100 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 11″ 1.6GHz/128GB MacBook Air: $799.99, $100 off MSRP... Read more
13-inch 2.5GHz MacBook Pro (refurbished) avai...
The Apple Store has Apple Certified Refurbished 13″ 2.5GHz MacBook Pros available for $829, or $270 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free: - 13″ 2.... Read more
27-inch 3.2GHz iMac on sale for $1679, save $...
B&H Photo has the 27″ 3.2GHz iMac on sale for $1679.99 including free shipping plus NY sales tax only. Their price is $120 off MSRP. Read more
Apple and Cisco Partner to Deliver Fast-Lane...
Apple and Cisco have announced a partnership to create a “fast lane” for iOS business users by optimizing Cisco networks for iOS devices and apps. The alliance integrates iPhone with Cisco enterprise... Read more
Apple offering refurbished 2015 13-inch Retin...
The Apple Store is offering Apple Certified Refurbished 2015 13″ Retina MacBook Pros for up to $270 (15%) off the cost of new models. An Apple one-year warranty is included with each model, and... Read more
Apple refurbished 2015 MacBook Airs available...
The Apple Store has Apple Certified Refurbished 2015 11″ and 13″ MacBook Airs (the latest models), available for up to $180 off the cost of new models. An Apple one-year warranty is included with... Read more

Jobs Board

*Apple* Desktop Analyst - KDS Staffing (Unit...
…field and consistent professional recruiting achievement. Job Description: Title: Apple Desktop AnalystPosition Type: Full-time PermanentLocation: White Plains, NYHot Read more
Simply Mac *Apple* Specialist- Repair Techn...
Simply Mac is the greatest premier retailer of Apple products expertise in North America. We're looking for dedicated individuals to provide personalized service and Read more
Simply Mac *Apple* Specialist- Service Repa...
Simply Mac is the greatest premier retailer of Apple products expertise in North America. We're looking for dedicated individuals to provide personalized service and Read more
*Apple* Desktop Analyst - KDS Staffing (Unit...
…field and consistent professional recruiting achievement. Job Description: Title: Apple Desktop AnalystPosition Type: Full-time PermanentLocation: White Plains, NYHot Read more
Simply Mac- *Apple* Specialist- Store Manag...
Simply Mac is the largest premier retailer for Apple products and solutions. We're looking for dedicated individuals with a passion to simplify and enhance the Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.