TweetFollow Us on Twitter

June 96 - 64-Bit Integer Math on 680x0 Machines

64-Bit Integer Math on 680x0 Machines


When an application has to perform integer arithmetic with numbers larger than 32 bits on both the PowerPC and 680x0 platforms, you could use the floating-point types of the SANE and PowerPC Numerics libraries. But if all you really need is a larger integer, a better choice is to use the existing 64-bit math routines available on the PowerPC platform and write an equivalent library for the 680x0 Macintosh. This article presents just such a library.

Developers of PowerPC applications that need 64-bit math can simply call the various "wide" Toolbox routines. These routines perform addition, subtraction, multiplication, division, square root, and a few other operations. On the 680x0-based Macintosh, some of these same routines are available in QuickDraw GX. But if you can't assume your customers have QuickDraw GX installed, you need a library that supports 64-bit math.

The Wide library presented in this article works on both platforms and has exactly the same interface and types as the wide routines in the Toolbox on PowerPC machines. The library also provides some new routines such as 32-bit to 64-bit add and subtract and a 64-bit-to-string conversion function. The library is included on this issue's CD, along with its source code.

All the routines use the 64-bit data type defined in the header file Types.h, which is the standard type used for signed 64-bit integers on both the PowerPC and 680x0 Macintosh:

struct wide {
   Sint32   hi;   /* upper 32 bits (signed) */
   Uint32   lo;   /* lower 32 bits (unsigned) */
typedef struct wide wide, *WidePtr;


Before plunging into the Wide library, let's see what 64-bit math routines I'll be talking about. First, I'll introduce those that are available on PowerPC machines, then those you'll find on a 680x0 Macintosh with QuickDraw GX, and finally the routines in the Wide library.


In the header file FixMath.h, the routines listed in Table 1 are defined for 64-bit math on the PowerPC platform.


On 680x0 machines that have QuickDraw GX installed, all the wide routines for the PowerPC platform listed in Table 1 are available, with the exception of WideBitShift. The QuickDraw GX header file GXTypes.h defines the wide routine types and function prototypes in exactly the same way that the header file FixMath.h does for PowerPC machines.

In addition, QuickDraw GX on 680x0 machines has a routine that the PowerPC platform doesn't have: WideScale. This function returns the bit number of the highest-order nonzero bit in a 64-bit number. The Wide library implements this function on the PowerPC platform.


The Wide 64-bit integer math library on this issue's CD provides all the wide routines that are available on PowerPC machines and on 680x0 machines with QuickDraw GX, plus a few extras. The extra routines, which are available on both the PowerPC and 680x0 platforms, are listed in Table 2.

WideAssign32, WideAdd32, WideSubtract32. These routines are self-explanatory.

WideToDecStr. This routine converts a signed 64-bit integer to the SANE string type decimal, which is also defined by the PowerPC Numerics library. This string structure is a good intermediate format for final conversion to a string format of your choosing.

Since WideToDecStr calls the SANE library to generate the string, SANE must be linked with your 680x0 application. The SANE library is included with all the major development systems.

To convert the string returned by WideToDecStr to a Pascal string, call the SANE routine dec2str.

    If you want to generate a localized number, take a look at the article "International Number Formatting" in develop Issue 16. You could call the LocalizeNumberString function from that article after converting the output of WideToDecStr to a Pascal string, or you could modify LocalizeNumberString to accept the output of WideToDecStr.*
p> WideInit. The library is self-initializing; the first time you call any wide routine, WideInit is also called. If the execution speed of your first runtime call to a wide routine is important, you have the option of calling WideInit during your application's startup to avoid that overhead.

The purpose of WideInit is to determine what processor is being used, or emulated; it calls Gestalt to make this determination. If your Macintosh has a 68020-68040 CPU (68020, 68030, or 68040), the library will use the 64-bit multiply and divide instructions available on that processor; otherwise, the library will have to call software subroutines for those operations. On 68000 machines, such as the Macintosh Plus and SE, the processor's multiply instruction is limited to 32 bits and the library has no choice but to use the slower algorithmic approach for multiplication and division.


The library can be compiled on the 680x0 and PowerPC platforms using either the Metrowerks CodeWarrior or Symantec C development system. The library tests which development system is compiling it and, if it's not CodeWarrior or Symantec, the preprocessor displays an error message saying the library needs to be ported to your environment. This is necessary because there's some inline assembly language in the source file, as discussed later in this section, and different C compilers handle assembly language differently.

While the interface routines to our 64-bit library are the same on the PowerPC and 680x0 machines, when you compile the library a different subset of routines is linked in, depending on your environment:

  • If you build the library for a 680x0 machine without QuickDraw GX headers, all the Wide library routines are defined.

  • If you build the library for a 680x0 machine and include the QuickDraw GX header file GXTypes.h or GXMath.h before the Wide library's Wide.h header file, the extra routines and the WideBitShift routine are defined. The other wide routines are already available via the QuickDraw GX traps.

  • When you compile for the PowerPC platform, only the five extra routines (WideAssign32, WideAdd32, WideSubtract32, WideToDecStr, and WideInit) are defined in the library. All the other wide routines already exist in the PowerPC Toolbox. Additionally, if GXTypes.h or GXMath.h isn't included, WideScale is defined.
Table 3 summarizes where the wide routines can be found on the different platforms.

Note that the Wide library decides at compile time which routines to use. When QuickDraw GX header files are not included, the Wide library routines are called. If your application needs to make a runtime decision about whether to use QuickDraw GX, you'll need to make some changes to the library. One solution is to rename the Wide library routines and remove the conditional compilation tests for QuickDraw GX from the source. Then at run time you can decide which version to call -- the QuickDraw GX routines if they're available, or the internal Wide library routinesif not.


The Wide library was compiled with version 2.1 of Apple's universal headers. The latest headers are available on this issue's CD. You should make sure you have a recent version of these headers, because the library uses the constant GENERATING68K. If the header file ConditionalMacros.h doesn't contain this constant, your version of the universal headers is too old.


Some of the routines in the library are written in assembly language to take advantage of the 64-bit multiply and divide instructions on 68020-68040 machines, because on these machines the C language will use only 32-bit multiply and divide instructions. On PowerPC machines, the Wide library doesn't need assembly language because the 64-bit multiply and divide routines are provided by the Toolbox.

The library's source file Wide.c contains both C and assembly language. It has been successfully compiled by Symantec C 7.0.4 and CodeWarrior 7. If you want to compile the library on any other development system, you may have to do a little work porting it. Most of the changes will be confined to the conditional compilation statements at the beginning of Wide.c where the differences in SANE types and inline assembly language are handled.


Now let's look at a couple of the more interesting routines in the Wide library to see how they work. See the source code on the CD for full implementations of all the routines.


WideMultiply (Listing 1) performs a 32-by-32-bit multiply and produces a 64-bit result. The first and second parameters are the two signed 32-bit integers to be multiplied together. The return value is a pointer to the 64-bit result that's also returned via the third parameter.

Listing 1. The multiply routine

wide *WideMultiply (
   long multiplicand,   /* in: first value to multiply */
   long multiplier,      /* in: second value to multiply */
   wide *target_ptr)      /* out: 64 bits to be assigned */
   /* Initialize Wide library if not already done. */
   if (!gWide_Initialized) WideInit();

   /* If the 64-bit multiply instruction is available... */
   if (gWide_64instr) {
      /* Execute the assembly-language instruction MULS.L */
      Wide_MulS64(multiplicand, multiplier, target_ptr);
   else {
      /* Call the Toolbox to perform the multiply. */
      LongMul(multiplicand, multiplier, (Int64Bit *) target_ptr);

   return (target_ptr);
WideMultiply first tests whether the library has been initialized yet; if not, it calls WideInit. Next the routine tests whether the 64-bit multiply instruction is available on the current CPU by examining the global variable gWide_64instr (which was set by the initialization routine WideInit). If the instruction is available, WideMultiply calls the assembly-language function Wide_MulS64 to take advantage of it (as described later); otherwise, WideMultiply calls the Toolbox routine LongMul to perform the multiplication, as would be the case on 68000 machines.


The WideSquareRoot function (Listing 2) takes a 64-bit unsigned number as input and returns a 32-bit unsigned result. All possible results can be expressed in 32 bits, so overflow isn't possible.

Listing 2. The square root routine

unsigned long WideSquareRoot (
   const wide *source_ptr) /* in: value to take the square root of */
   wide            work_integer;
   Extended_80      extended_80_number;

   /* Initialize Wide library if not already done. */
   if (!gWide_Initialized) WideInit();

   /* Convert "wide" number to "extended" format. */
   Wide_ToExtended(&extended_80_number, source_ptr);

   /* If compiling with CodeWarrior, the parameter to sqrt is a
      pointer instead of a value, as defined in PowerPC Numerics. */
#ifdef __MWERKS__
   extended_80_number = sqrt(extended_80_number);

   /* Convert "extended" format to "wide" number. */
   Wide_FromExtended(&work_integer, &extended_80_number);
   /* OK to ignore work_integer.hi as it's always 0. */
   return (work_integer.lo);
For this routine I decided to let the SANE library do the work of generating the square root. The routine converts the 64-bit input number to an 80-bit floating-point number and then calls the SANE library function sqrt to calculate the square root. Finally, WideSquareRoot converts the resulting 80-bit floating-point number back to a 64-bit integer and returns the low-order half of the result.

When a 64-bit integer is converted to an 80-bit floating-point number, no loss in precision occurs. An 80-bit floating-point number is made up of three parts -- the sign (1 bit), the exponent (15 bits), and the fractional part (64 bits). As you can see, a 64-bit integer exactly fits in the fractional part.

Two differences between the CodeWarrior and Symantec development systems that show up in the Wide library's WideSquareRoot function are the 80-bit floating-point types and the parameters of the SANE library's square root function. Under CodeWarrior, the Wide library internal type Extended_80 is defined as the type extended80, and Sqrt returns the result to the same location as the input number. Under Symantec C, Extended_80 is defined as the type extended, and sqrt returns the result as a function return value.


The Wide library uses internal assembly-language routines to execute 64-bit multiply and divide instructions on machines that support those instructions. In case you're interested, here are the details.

Symantec and CodeWarrior handle the asm keyword differently, so I used some preprocessor commands (#defines) to handle the differences between the two development systems. Near the beginning of the Wide.c source file there are four #defines that differ depending on which development system you're using, as shown in Table 4.


Wide_MulS64 (Listing 3) is an internal assembly-language routine that WideMultiply calls to execute the 64-bit multiply instruction on the 68020-68040 CPUs. It starts with ASM_FUNC_HEAD, as mentioned in Table 4. The three definitions at the start of the function (MULTIPLICAND, MULTIPLIER, and OUT_PTR) are the byte offsets to the parameters. Although in Symantec C it's possible to refer to function parameters by name via A6, this isn't possible in CodeWarrior. I had to give up accessing the parameters by name and use #defines instead.

Listing 3. 64-bit multiply instruction

ASM_FUNC_HEAD static void Wide_MulS64 (
   long multiplicand,   /* in: first value to multiply */
   long multiplier,     /* in: second value to multiply */
   wide *out_ptr)       /* out: 64 bits to be assigned */
#define MULTIPLICAND     8
#define MULTIPLIER      12
#define OUT_PTR         16

      MOVE.L   MULTIPLICAND(A6),D0     //
      DC.W      0x4C2E,0x0C01,0x000C   // MULS.L multiplier(A6),D1-D0
      MOVE.L   OUT_PTR(A6),A0          //
      MOVE.L    D0,WIDE_LO(A0)         //
      MOVE.L   D1,WIDE_HI(A0)          //
To execute the 64-bit multiply instruction I had to define it with a DC.W directive that generates the desired object code. This was necessary because the Symantec C inline assembler supports only the 32-bit multiply instruction and won't recognize the 64-bit assembly opcode.


If the 64-bit divide instruction isn't available, the library calls the internal assembly-language routine Wide_DivideU (Listing 4) to perform the division using an algorithm. The algorithm is basically a binary version of the paper and pencil method of doing long division that all of us learned in school. It's a loop that executes once for each bit in the size of the divisor, which is 32 in our case. The Wide_DivideU subroutine actually handles only unsigned division, but the library function that calls it will take care of converting the input parameters to positive values and, if required, converting the result to a negative value.

Listing 4. 64-bit unsigned division algorithm

ASM_FUNC_HEAD static void Wide_DivideU (
   wide *dividend_ptr,      /* in/out: 64 bits to be divided */
   long divisor,            /* in: value to divide by */
   long *remainder_ptr)     /* out: the remainder of the division */
#define DIVIDEND_PTR      8
#define DIVISOR         12
#define REMAINDER_PTR   16

      MOVEM.L  D2-D7,-(SP)           // save work registers
      CLR.L    D0                    //
      CLR.L    D1                // D0-D1 is the quotient accumulator
      MOVE.L   DIVIDEND_PTR(A6),A0   //
      MOVE.L   WIDE_HI(A0),D2        //
      MOVE.L   WIDE_LO(A0),D3        // D2-D3 = remainder accumulator
      CLR.L    D4                    //
      MOVE.L   D2,D5                 // D5 = copy of dividend.hi
      MOVE.L   DIVISOR(A6),D6        // D6 = copy of divisor

      MOVEQ.L  #31,D7                // FOR number of bits in divisor
      LSL.L    #1,D0             // shift quotient.hi accum left once
      LSL.L    #1,D1             // shift quotient.lo accum left once
      LSL.L    #1,D4                 //
      LSL.L    #1,D3                 //
      ROXL.L   #1,D2             // shift remainder accum left once
      SUB.L    D6,D2                 // remainder -= divisor
      BCS      @div50                // If CS, remainder is negative
      BSET     #0,D1                 // quotient.lo |= 1
      BRA.S    @div77                //
      ADD.L    D6,D2                 // remainder += divisor
      BTST     D7,D5                 //
      BEQ      @div90            // If EQ, bit not set in dividend.hi
      BSET     #0,D4                  //
      CMP.L    D6,D4                  //
      BCS      @div99                 // If CS, divisor < D4
      SUB.L    D6,D4                  // D4 -= divisor
      BSET     #0,D0                  // quotient.hi |= 1
      DBF      D7,@divloop            // loop until D7 == -1
      MOVE.L   DIVIDEND_PTR(A6),A0    // output the remainder
      MOVE.L   D0,WIDE_HI(A0)         //
      MOVE.L   D1,WIDE_LO(A0)         //
      MOVE.L   REMAINDER_PTR(A6),A0   // output the remainder
      MOVE.L   D2,(A0)                //
      MOVEM.L  (SP)+,D2-D7            // restore work registers
The top of the assembly-language loop starts at the @divloop label. For each loop, the algorithm shifts the quotient and the remainder left one bit position before trying to subtract the divisor from the remainder. If the subtraction can be done, the least-significant bit in quotient.lo is set; otherwise, the subtraction is undone by the add instruction near the @div50 label. Then, if the divisor is greater than the loop bits that are accumulating in register D4, the least-significant bit in quotient.hi is set.

Notice that the first assembly-language statement in Wide_DivideU is a MOVEM.L instruction that saves on the stack all the registers that the division loop uses; the last instruction is a MOVEM.L instruction that restores these registers. Fortunately, this subroutine can place all its working variables in registers and avoid the stack for its loop, thus improving performance.


There you have it. Now 64-bit integer math can be handled with the same API on both the 680x0 and PowerPC platforms. Having the same function-level interface on these two very different processors makes life a lot easier for application programmers. Don't you wish all libraries had the same interface regardless of the CPU or system software version?

DALE SEMCHISHEN ( lives in Vancouver, British Columbia, with his wife Josephine. He works for Glenayre Technologies as a paging software developer (they make the control systems that send messages to your belt beeper). Recently, he had to accept the fact that the world is changing when his retired father started talking about his Internet provider.*

Thanks to our technical reviewers Dave Evans, Quinn "The Eskimo!", and Dave Radcliffe. Special thanks to Dave Johnson for software testing.*


Community Search:
MacTech Search:

Software Updates via MacUpdate

Sago Mini Superhero (Education)
Sago Mini Superhero 1.0 Device: iOS Universal Category: Education Price: $2.99, Version: 1.0 (iTunes) Description: KAPOW! Jack the rabbit bursts into the sky as the Sago Mini Superhero! Fly with Jack as he lifts impossible weights,... | Read more »
Star Wars: Galaxy of Heroes guide - How...
Star Wars: Galaxy of Heroes is all about collecting heroes, powering them up, and using them together to defeat your foes. It's pretty straightforward stuff for the most part, but increasing your characters' stats can be a bit confusing because it... | Read more »
The best cooking apps (just in time for...
It’s that time of year again, where you’ll be gathering around the dinner table with your family and a huge feast in front of you. [Read more] | Read more »
Square Rave guide - How to grab those te...
Square Rave is an awesome little music-oriented puzzle game that smacks of games like Lumines, but with its own unique sense of gameplay. To help wrap your head around the game, keep the following tips and tricks in mind. [Read more] | Read more »
Snowboard Party 2 (Games)
Snowboard Party 2 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Crowned the best snowboarding game available on the market, Snowboard Party is back to fulfill all your adrenaline needs in... | Read more »
One Button Travel (Games)
One Button Travel 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: “To cut a long story short, If you like interactive fiction, just go buy this one.” - “Oozes the polish that... | Read more »
Light Apprentice Volume 1 (Games)
Light Apprentice Volume 1 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Light Apprentice Volume 1 includes Chapters 1 to 4, all gathered in a new exclusive game. When life in the world of... | Read more »
The best games like Animal Crossing on m...
Animal Crossing amiibo Festival is out right now for the Wii U, reminding us of just how much fun that world can be. Or at least to go back and check in on our villages once in a while. [Read more] | Read more »
Between 2 Taps - Tap for Tap interview M...
Hello, and welcome back to Between 2 Taps, Tap for Tap’s Indie Dev interview series. [Read more] | Read more »
Facility 47 (Games)
Facility 47 1.0.1 Device: iOS Universal Category: Games Price: $3.99, Version: 1.0.1 (iTunes) Description: You wake up alone and freezing in an icy cell. You try the cell door but it’s locked, it seems that you are stuck with no... | Read more »

Price Scanner via

Black Friday deals on the Apple Watch and App...
Apple resellers are offering discounts and bundles with the purchase of an Apple Watch this Black Friday weekend. Below is a roundup of the deals being offered by authorized Watch resellers: Apple... Read more
Early Black Friday sale at B&H Photo, up...
B&H Photo has all new Macs on sale for up to $500 off MSRP as part of their early Black Friday sale including free shipping plus NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1699 $300 off... Read more
NewerTech/OWC/MacSales Black Friday Deals 201... • Free Shipping available on nearly EVERYTHING on orders $35.00 & up within USA + • International Delivery Specials from $2.99+ Special Purolator... Read more
Walmart Black Friday deals: $100 off select i...
Walmart has released their Black Friday deals for 2015, now available online. Choose free shipping or free local store pickup (if available): - 16GB iPad Air 2: $399, $100 off MSRP - 16GB iPad Air: $... Read more
Photo Cleaner 1.0 Reclaims iPhone Storage Spa...
Seoul, Korea based mix1009 has announced the release and immediate availability of Photo Cleaner 1.0, their handy iPhone app that deletes the video portion of Live Photos, in order to reclaim space... Read more
Black Friday and Holiday sales on our price t...
Scan our Mac Price Trackers for the latest Black Friday and Holiday season information on sales, bundles, and availability on systems from Apple’s authorized internet/catalog resellers. We update the... Read more
Best Buy Black Friday deals: Up to $200 off M...
Best Buy has posted their Black Friday sale prices for 2015. Save on MacBook Pros, MacBooks, MacBook Airs, iMacs, iPads, and Apple Watches. Choose free shipping or free local store pickup (if... Read more
Save $30-$40 on new Apple TVs after rebate
Adorama has new Apple TVs on sale for up to $40 off MSRP after mail-in rebate, good through December 15th. Shipping is free, and Adorama charges NY & NJ sales tax only: - 32GB Apple TV: $119.99... Read more
13-Inch Haswell MacBook Air At Two Years – Th...
The 13-inch mid-2013 “Haswell” MacBook Air I ordered in Apple’s November 2013 Black Friday sale was my first new Mac in four and a half years — the longest interval I’ve gone between system upgrades... Read more
Target Black Friday Early Access deals: $100...
Target is offering early access to their Black Friday deals on Apple products on their online store for today, the 25th, only. Choose free shipping or free local store pickup (if available): - Apple... Read more

Jobs Board

*Apple* Enterprise / Government Professional...
# Apple Enterprise / Gove ment Professional Services Engineer Job Number: 42292976 Reston, Virginia, United States Posted: Aug. 18, 2015 Weekly Hours: 40.00 **Job Read more
iOS Wallet & *Apple* Pay Engineer - App...
# iOS Wallet & Apple Pay Engineer Job Number: 40586801 Santa Clara Valley, Califo ia, United States Posted: Nov. 16, 2015 Weekly Hours: 40.00 **Job Summary** The iOS Read more
Software Engineer, *Apple* Watch - Clock Fa...
# Software Engineer, Apple Watch - Clock Face Team Job Number: 44368761 Santa Clara Valley, Califo ia, United States Posted: Nov. 14, 2015 Weekly Hours: 40.00 **Job Read more
Administrative Assistant, *Apple* Online St...
# Administrative Assistant, Apple Online Store Job Number: 43992352 Santa Clara Valley, Califo ia, United States Posted: Nov. 9, 2015 Weekly Hours: 40.00 **Job Summary** Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.