TweetFollow Us on Twitter

September 94 - Making the Most of QuickDraw GX Bitmaps

Making the Most of QuickDraw GX Bitmaps

DAVID SUROVELL

[IMAGE 048-064_Surovell_final_h1.GIF]

Besides letting you do a lot of cool things with geometric shapes and typography, QuickDraw GX has useful tools for manipulating bitmaps. For example, bitmap shapes (the QuickDraw GX counterpart to pixMaps) can be skewed, rotated, and scaled, and transforms allow these operations to be performed repeatedly without data loss. Bitmap shapes can share image data, can be used to clip other shapes, and can reside on disk instead of in memory. This article tells how you can use QuickDraw GX to improve the way you handle bitmapped graphics.

New users of QuickDraw GX will probably start by going throughInside Macintosh: QuickDraw GX Objects or the article "Getting Started With QuickDraw GX" indevelop Issue 15. If you're mainly a QuickDraw programmer, however, you may have a lot of questions about how QuickDraw GX applies specifically to bitmaps -- probably the most commonly used graphic objects. As it turns out, it can do most anything QuickDraw can do, and quite a few useful and exotic new things besides.

If you have at least a nodding familiarity with QuickDraw GX, this article will give useful tips on how to apply your knowledge to bitmap shapes. If you're a QuickDraw GX neophyte, this article will confuse you from time to time, but you may learn enough to decide to make the leap to QuickDraw GX.

CREATING BITMAP SHAPES

It takes about the same information to create a bitmap shape in QuickDraw GX as it does to make a pixMap in QuickDraw. The biggest difference is that while QuickDraw insists that you calculate the size of the image buffer and allocate it explicitly, QuickDraw GX can optionally allocate it for you when the shape is created. This is illustrated in the code in Listing 1, which creates an indexed bitmap shape.

For indexed pixelSize values (1, 2, 4, or 8), you set the gxBitmap's space field to gxIndexedSpace and its set field to a color set (the QuickDraw GX equivalent of a QuickDraw color table) with an appropriate number of entries. Direct pixelSize values (16 or 32) require that the set field be nil. Forexample, to make the routine in Listing 1 create a 16-bit bitmap shape, you would set the gxBitmap's space field to gxRGB16Space and its set field to nil.



Listing 1. Creating an indexed bitmap shape

gxShape CreateIndexedBitmapShape(long horiz, long vert,
        long targetDepth)
{
    gxBitmap        bitShapeInfo;
    gxColorSet  targetSet;
    gxShape     resultShape;

    if ((horiz <= 0) || (vert <= 0))
        return nil;
    if (targetDepth > 8)
        return nil;

    // Create a familiar "color" gxColorSet.
    // (The default gxColorSet is a gray ramp.) 
    targetSet = GetStandardColorSet(targetDepth);
    if (targetSet == nil)
        return nil;

    // Let QDGX calculate the image buffer block size and
    // allocate it.
    bitShapeInfo.image = nil;
    bitShapeInfo.rowBytes = 0;
    bitShapeInfo.width = horiz;
    bitShapeInfo.height = vert;
    bitShapeInfo.pixelSize = targetDepth;
    bitShapeInfo.space = gxIndexedSpace;
    bitShapeInfo.set = targetSet;

    // Use the default color profile. 
    bitShapeInfo.profile = nil;
    resultShape = GXNewBitmap(&bitShapeInfo, nil);

    return resultShape;
}

Note that the gxBitmap's rowBytes is a long, not a short as in QuickDraw. This means no more convoluted rowByte hacks, no more magic bits needed for flags, and no more unreasonable limits on image width.

Note also that the gxBitmap contains a profile field, a reference to a gxColorProfile (essentially an object with ColorSync data wrapped inside). If this field is nil, QuickDraw GX uses its default profile. Color matching occurs only when the target view port has the gxEnableMatchPort attribute set -- by default, it's off.

MANIPULATING BITMAP SHAPES

Once a bitmap shape is created, you can access and change its characteristics with GXGetBitmap and GXSetBitmap.

GXGetBitmap(targetShape, &bitmapInfo, &origin);
// Alter the necessary gxBitmap fields here.
. . .
GXSetBitmap(targetShape, &bitmapInfo, &origin);
GXSetBitmap is similar to QuickDraw's UpdateGWorld; it lets you change bitmap depth, color specification, and size. To change specific attributes, you may need to modify a combination of fields.

To change a bitmap's width or height, set the width or height field. If QuickDraw GX originally allocated the image buffer, you can set rowBytes to 0 and the image field to nil, and QuickDraw GX will reallocate the buffer. If you allocated the buffer yourself, you'll have to maintain it yourself.

An image isn't scaled when you change size this way. If you increase the width or height, the new areas contain undefined values; if you decrease them, the image is truncated. Bitmap scaling is discussed later in this article.*

To change a bitmap's pixel depth, set the pixelSize field to the desired depth. If the bitmap needs a new color set (which it will, unless the new depth is greater than 8 bits), create it and assign it to the set field. An example that changes the depth to 4-bit is shown in Listing 2.

To change a bitmap's color characteristics, just change the set, space, and profile fields. No changes to pixel data will occur -- all pixel values will be interpreted in the new color set. To transform pixel values, you'd need to set up a new bitmap shape and draw the existing bitmap into it. (The offscreen library routine CopyToBitmaps is ideal for this.)



Listing 2. Changing the depth of a bitmap shape

void ChangeDepthToFour(gxShape bitmapShape)
{
    gxBitmap    imageInfo;

    if ((bitmapShape != nil) && 
            (GXGetShapeType(bitmapShape) == gxBitmapType))
    {
        GXGetBitmap(bitmapShape, &imageInfo, nil);
        if (imageInfo.pixelSize != 4)
        {
            imageInfo.pixelSize = 4;
            imageInfo.space = gxIndexedSpace;
            imageInfo.set = GetStandardColorSet(4);
            GXSetBitmap(bitmapShape, &imageInfo, nil);
        }
    }
}

USING DISK-BASED PIXEL IMAGES
QuickDraw GX provides support for disk-based bitmap shapes. They're structurally the same as regular bitmaps, except that their image data is contained in a file, so they're always drawn from disk. Ten calls to GXDrawShape(diskBitmap) means QuickDraw GX reads the entire file from disk ten times. (QuickDraw GX can't assume that you didn't write into the file between accesses.) The idea is that the file system's disk caches will do the work; if the file wasn't changed, subsequent reads should be cached.

Make sure the file size is at least as large as the bitmap, or you'll get an "unexpected end of file" error. *

Disk-based bitmaps have limitations. For one thing, certain routines can't be performed on them -- GXSetShapePixel, for example. (SeeInside Macintosh: QuickDraw GX Graphics for the complete list.) You can't use disk-based bitmap shapes as drawing destinations. If you draw into the data you trigger an error. So how do you create a disk-based bitmap? As shown in Listing 3, you first set the gxBitmap's image field to gxBitmapFileAliasImageValue. After creating the bitmap shape, create a tag of type gxBitmapFileAliasTagType containing an alias record that references the file containing the target raster data and attach it to the shape.

ACCESSING IMAGE DATA
You can manipulate the image data of bitmap shapes directly. If the image data is maintained by your application, all you have to do is call GXChangedShape afterward. If the image data was allocated by QuickDraw GX, it's more complicated:

  1. Force the shape to be heap-resident with GXSetShapeAttributes.
  2. Lock the shape with GXLockShape and check for an error.
  3. Call GXGetShapeStructure to obtain a reference to the image data.
  4. Read from or write to the image data as desired.
  5. If the image data was changed, call GXChangedShape.
  6. Unlock the shape with GXUnlockShape.
  7. Call GXSetShapeAttributes to allow the shape to be cached again.


Listing 3. Creating a disk-based bitmap

gxShape CreateDiskBitmap(FSSpec *fsData, gxBitmap *targetBM)
{
    gxBitmap        localBM;
    gxShape         targetShape;
    gxTag           targetTag;

    if ((fsData == nil) || (targetBM == nil))
        return nil;
    targetShape = nil;
    targetTag = CreateBitmapAliasTag(fsData, 0L);
    if (targetTag != nil)
    {
        localBM = *targetBM;
        localBM.image = gxBitmapFileAliasImageValue;
        targetShape = GXNewBitmap(&localBM, nil);
        if (targetShape != nil)
            GXSetShapeTags(targetShape, gxBitmapFileAliasTagType,
                           1L, -1L, 1L, &targetTag);
        GXDisposeTag(targetTag);
    }
    return targetShape;
}

gxTag CreateBitmapAliasTag(FSSpec *bitmapFS,
         unsigned long fileOffset)
{
    struct gxBitmapDataSourceAlias  *aliasRecordPtr;
    gxTag           targetTag;
    FSSpec          targetFS;
    AliasHandle     aliasHdl;
    OSErr           iErr;
    long            aliasSize, aliasRecordSize;
    Boolean         wasChanged;

    targetTag = nil;
    aliasHdl = nil;
    aliasRecordPtr = nil;

    // Create an alias and resolve it.
    iErr = NewAlias(nil, bitmapFS, &aliasHdl);
    if (iErr == noErr)
        iErr = ResolveAlias(nil, aliasHdl, &targetFS, &wasChanged);

    // Build up a compact representation for inclusion into a gxTag.
    if (iErr == noErr)
    {
        aliasSize = GetHandleSize((Handle)aliasHdl);
        aliasRecordSize = aliasSize + 2 * sizeof(long);
        aliasRecordPtr = (struct gxBitmapDataSourceAlias*)
                                NewPtr(aliasRecordSize);
        iErr = MemError();
    }
    // Create the gxTag.
    if (iErr == noErr)
    {
        // Create a gxBitmapDataSourceAlias with specified fileOffset
        // and appropriate aliasRecordSize and aliasRecord.
        aliasRecordPtr->fileOffset = fileOffset;
        aliasRecordPtr->aliasRecordSize = aliasSize;
        BlockMove(*aliasHdl, &aliasRecordPtr->aliasRecord[0],
            aliasSize);
        targetTag = GXNewTag(gxBitmapFileAliasTagType,
                       aliasRecordSize, aliasRecordPtr);
    }
    // Clean up.
    if (aliasHdl != nil)
        DisposeHandle((Handle)aliasHdl);
    if (aliasRecordPtr != nil)
        DisposePtr((Ptr)aliasRecordPtr);

    return targetTag;
}

GXLockShape loads an image into memory, so it might not succeed if there isn't enough memory. And don't forget to check a bitmap shape's space field before processing the shape -- don't assume that bitmap images are always in RGB space.

See Listing 4 for an example of changing a bitmap shape's data directly.

MEMORY ISSUES
Raster surfers and Photoshop junkies know that raster images can be memory hogs; it's easy to run out of application heap when you allocate them. So what happens when QuickDraw GX runs out of memory? It doesn't. Well, almost never. Here are the steps it will go through, in order, to deliver the memory you need:

  1. Flush out-of-date caches.
  2. Flush up-to-date caches.
  3. If allowed, grow the current gxHeap.
  4. Unload shapes and other objects to disk.
  5. Give up, and return an error.

Most QuickDraw developers resort to some sort of GrowZoneProc to handle a tight application heap. QuickDraw GX provides a tiered response to abnormal occurrences. Items 1 through 4 above return notices (in the debugging version of QuickDraw GX); item 5 returns an error. All you have to do is implement a routine to handle the notices and errors.

Listing 4. Directly changing an indexed bitmap shape

void InvertBitmapShape(gxShape sourceBits)
{
    gxBitmap            sourceInfo, *sourceInfoRef;
    gxShapeAttribute    curAttributes;
    unsigned char       *sourcePtr, *rowPtr;
    long                sourceRowSize, structLen, i, j;
    Boolean             isQDGXImage;

    // Make sure that this is an indexed bitmap shape. 
    if (sourceBits == nil)
        return;
    if (GXGetShapeType(sourceBits) != gxBitmapType)
        return;
    GXGetBitmap(sourceBits, &sourceInfo, nil);
    if (sourceInfo.pixelSize > 8)
        return;
    if (sourceInfo.image == gxBitmapFileAliasImageValue)
        return;
    // If the image data was allocated by QuickDraw GX... 
    isQDGXImage = (sourceInfo.image == nil);
    if (isQDGXImage)
    {
        // Load and lock the image data. 
        curAttributes = GXGetShapeAttributes(sourceBits);
        if (!(curAttributes & gxDirectShape))
            GXSetShapeAttributes(sourceBits,
                curAttributes | gxDirectShape);
        GXLockShape(sourceBits);
        if (GXGraphicsError(nil) != 0)
            return;

        // Get a reference to the image data. 
        sourceInfoRef =
            (gxBitmap*)GXGetShapeStructure(sourceBits, &structLen);
        if ((sourceInfoRef == nil) || (structLen < sizeof(gxBitmap)))
            return;

        sourceInfo = *sourceInfoRef;
    }

    // Invert index values, one row at a time. 
    sourcePtr = (unsigned char*)(sourceInfo.image);
    for (i = sourceInfo.height; i > 0; i--)
    {
        rowPtr = sourcePtr;
        sourceRowSize = sourceInfo.rowBytes;
        while (sourceRowSize-- > 0)
        {
            *rowPtr = ~*rowPtr;
            rowPtr++;
        }
        // Skip to the next row.
        sourcePtr = (unsigned char*)sourcePtr + sourceInfo.rowBytes;
    }

    GXChangedShape(sourceBits);
    if (isQDGXImage)
    {
        GXUnlockShape(sourceBits);
        GXSetShapeAttributes(sourceBits, curAttributes);
    }
}

GEOMETRIC OPERATIONS

One of the niftiest features of QuickDraw GX is the ability to perform geometric operations on bitmap shapes. Most of the operators that apply to geometric shapes also apply to bitmaps: rotate, scale, skew, perspective, and clip. In comparison, QuickDraw provides only three geometric operators: scale, clip, and mask.

ALTERING THE TRANSFORM VERSUS THE GEOMETRY
When you change a bitmap shape's geometry (that is, its actual pixel data), whether by rotating, skewing, applying perspective, or scaling, you normally lose image data -- it's often impossible to return the image to its pristine state.

You can eliminate this data loss by instead applying geometric operators to a shape'stransform. A shape can make use of a 3 x 3 matrix to mathematically change its appearance when rendered without changing the underlying data. This is especially important for bitmaps. Figure 2 shows both possibilities of multiple rotations of a bitmap.

[IMAGE 048-064_Surovell_final_h2.GIF]

Figure 2. Successive rotations of a bitmap

Rotation, translation (change in origin), skew, perspective, and scale operations can all be performed on transforms directly, by GXRotateTransform, GXSkewTransform, and so forth, or indirectly, using the gxMapTransformShape attribute.

When a shape's gxMapTransformShape attribute is set, geometric operations automatically apply to its transform rather than its geometry. Bitmap and picture shapes default to having this attribute set; other shapes begin with it off. This means that if you convert a polygon shape (for example) to a bitmap shape, the gxMapTransformShape attribute won't automatically be set.

[IMAGE 048-064_Surovell_final_h3.GIF]

Figure 3. Effect of GXRotateShape on bitmap geometry

When a QuickDraw GX routine modifies a bitmap shape's geometry, a clip shape is often attached to define the geometric extent of the modified bitmap. More often than not, the bitmap's image buffer is expanded, as shown in Figure 3. Rotating a bitmap's geometry can increase its memory requirements by over 40%.

ROTATION
There aren't many QuickDraw programmers who haven't wished for a simple way to rotate bitmaps. GXRotateShape takes parameters for the target shape, degrees clockwise to rotate, and center point of rotation, as shown in Listing 5.


Listing 5. Rotating a bitmap shape

void RotateBitmap(gxShape targetShape, Fixed theta)
{
    gxBitmap    targetBM;
    gxPoint     origin, shCenter;

    // Determine the bitmap shape's current center point.
    GXGetBitmap(targetShape, &targetBM, &origin);
    shCenter.x = ff(targetBM.width) / 2 + origin.x;
    shCenter.y = ff(targetBM.height) / 2 + origin.y;

    // Rotate it around its center point.
    GXRotateShape(targetShape, theta, shCenter.x, shCenter.y);
}

SKEWING AND PERSPECTIVE
Skewing and perspective are just as much fun as rotation, and even more useful as general-purpose graphic effects. The code in Listing 6 illustrates a simple type of perspective; Figure 4 shows the results of this perspective mapping.

SCALING
You can expand or shrink bitmap shapes, like other shape types, with GXScaleShape. QuickDraw pixMaps are scaled by setting the destination rectangle passed to CopyBits, whereas GXScaleShape uses a scaling factor. To convert your QuickDraw bitmap scaling code into the equivalent QuickDraw GX code, you have to calculate this scaling factor. Listing 7 shows how.

You can flip a bitmap horizontally or vertically by using negative scaling values. *



Listing 6. Applying perspective to a bitmap shape

void TrapezoidalWarp(void)
{
    gxShape bitsShape, warpShape;
    long        trapezoidData[] =
    {
        1L, 4L,
        ff(130), ff(100), ff(170), ff(100),
        ff(200), ff(200), ff(100), ff(200)
    };

    bitsShape = CreateBasicBitmapShape();
    warpShape = GXNewShapeVector(gxPolygonType, trapezoidData);
    if (warpShape != nil)
    {
        ShapeSetPolyMap(bitsShape, warpShape);
        GXDisposeShape(warpShape);
    }
    GXDrawShape(bitsShape);
}

void ShapeSetPolyMap(gxShape targetShape, gxShape mappingShape)
{
    gxRectangle     boundsRect;
    gxPolygon       *mapPoly, *targetPoly;
    gxMapping       theMapping;
    gxShape         targetBounds;
    long            ignored;

    if (targetShape == nil)
        return;
    if ((mappingShape == nil)
            || (GXGetShapeType(mappingShape) != gxPolygonType))
        return;

    // Determine the dimensions of the target shape. 
    GXGetShapeBounds(targetShape, 0L, &boundsRect);
    targetBounds = GXNewRectangle(&boundsRect);
    if (targetBounds == nil)
        return;

    // Scale the mapping shape to the dimensions of the target shape.
    GXSetShapeBounds(mappingShape, &boundsRect);
    GXSetShapeType(targetBounds, gxPolygonType);

    // Load & lock both shapes so that their structures can be
    // accessed.
    GXSetShapeAttributes(mappingShape,
        GXGetShapeAttributes(mappingShape) | gxDirectShape);
    GXLockShape(mappingShape);
    GXSetShapeAttributes(targetBounds,
        GXGetShapeAttributes(targetBounds) | gxDirectShape);
    GXLockShape(targetBounds);
    // NOTE: Structure is actually of type gxPolygon. 
    mapPoly = 
        (gxPolygon*)GXGetShapeStructure(mappingShape, &ignored);
    targetPoly =
        (gxPolygon*)GXGetShapeStructure(targetBounds, &ignored);

    if ((mapPoly != nil) && (targetPoly != nil))
    {
        // Skip past the gxPolygons contour count to the first
        // contour.
        mapPoly = (gxPolygon*)((Ptr)mapPoly + sizeof(long));
        targetPoly = (gxPolygon*)((Ptr)targetPoly + sizeof(long));

        // Calculate the desired shape mapping. 
        // PolyToPolyMap() is in "mapping library.c." 
        PolyToPolyMap(targetPoly, mapPoly, &theMapping);
    }

    // Release both shapes from bondage. 
    GXUnlockShape(mappingShape);
    GXSetShapeAttributes(mappingShape,
        GXGetShapeAttributes(mappingShape) & ~gxDirectShape);
    GXUnlockShape(targetBounds);
    GXSetShapeAttributes(targetBounds,
        GXGetShapeAttributes(targetBounds) & ~gxDirectShape);

    // Set the target shape's mapping as desired. 
    GXSetShapeMapping(targetShape, &theMapping);

    GXDisposeShape(targetBounds);
}

[IMAGE 048-064_Surovell_final_h5.GIF]

Figure 4. Applying perspective to a bitmap shape Listing 7. Calculating a scaling factor

void BitmapShapeScaleQDStyle(gxShape targetShape, Rect *qdSourceR,
            Rect *qdDestR)
{
    gxPoint     centerPt;
    fixed       scaleFactorH, scaleFactorV;

    scaleFactorH = FixRatio(qdSourceR.right - qdSourceR.left,
                            qdDestR.right - qdDestR.left);
    scaleFactorV = FixRatio(qdSourceR.bottom - qdSourceR.top,
                            qdDestR.bottom - qdDestR.top);
    centerPt.x = ff((qdDestR.right + qdDestR.left) / 2);
    centerPt.y = ff((qdDestR.bottom + qdDestR.top) / 2);
    GXScaleShape(targetShape, scaleFactorH, scaleFactorV, centerPt.x,
                 centerPt.y);
    GXMoveShapeTo(targetShape, ff(qdDestR.left), ff(qdDestR.top));
    GXDrawShape(targetShape);
}

CLIPPING AND MASKING
QuickDraw GX can do some neat tricks with clipping. These tricks work with bitmap shapes, too. For example, to create a gradient-filled polygon, you can make a rectangular bitmap shape with a gradient and then set the polygon shape as the bitmap's clip shape. (For another example, see Graphical Truffles in this issue.)

You can use 1-bit bitmap shapes as clip shapes, too. The effect is just like that of CopyMask; pixels in the source shape are drawn only where the clipping bitmap pixel value is nonzero. (On this issue's CD, you'll also find example code that does image processing similar to CopyDeepMask using the new transfer modes.)

Clipping occurs in geometry space, before transform mapping, so a bitmap's clip shape should be based on its bounds rectangle, not its rendered location. *

To convert geometric shapes into masking bitmap shapes, you can call the GXSetShapeType routine to convert the shape to a 1-bit mask bitmap.

With GXCheckBitmapColor, you can generate a masking bitmap from an existing bitmap shape. If you pass GXCheckBitmapColor a color set, it puts 0 in the result bitmap for source pixel values that are in the color set. If you pass it a color profile, it puts 0 in the result bitmap for source pixel values that are within the color profile's gamut. The result bitmap can be useful for color correction.

QUICKDRAW GX TRICKS FOR QUICKDRAW DOGS

QuickDraw GX has ways to do almost anything you can do with QuickDraw. All you need to know is how their environments and feature sets compare, and you'll understand how to convert from one to the other.

THE VIEW PORT LIST VERSUS THE GRAPHICS PORT
Most of the time you won't have to concern yourself with view ports at rendering time, because there's no sense of the "current port" as there is in QuickDraw. Here's the recommended method for drawing an existing shape into a new view port:

  1. Copy the shape's transform and install the desired destination view port into the copy.
  2. Call GXDrawShape.
  3. Restore the original transform.
  4. Dispose of the copied transform.

Examples of preserving view port lists can be found in the library routine CopyToBitmaps and in the DrawShapeOffscreen example later in this article (Listing 9).

BITMAPS AND TRANSFER MODES
QuickDraw GX has a lot of transfer modes. This is a good thing, really. Not alltransfer modes are functionally equivalent to those in QuickDraw, but the transferModelibrary is fairly complete. Many of the capabilities of QuickDraw search procedures can be implemented using transfer modes. (The first page ofInside Macintosh: QuickDraw GX Graphics has color pictures of the new transfer modes in action.)

The transfer mode is contained in a shape's ink. Since transfer modes are applied on a per- component basis, you can easily get some groovy effects. For example, you can add the hue of one image to the brightness of another. Usually, though, you'll want all components to use the same mode. The transferMode library routine SetCommonTransfer will do this for you.

There are some differences between QuickDraw GX transfer modes and those found in QuickDraw:

  • Dithering is a view port feature, not a transfer mode. Halftoning is also available on a per-gxViewPort basis. These two features are mutually exclusive; you can't dither and halftone at the same time.
  • Transparency is not a single mode. It's a whole family of modes based on alpha component values.
  • All QuickDraw GX transfer modes occur in color space, while some QuickDraw transfer modes are bitwise.

ONSCREEN BITMAPS
QuickDraw GX maintains a view device list that mirrors the QuickDraw GDevice list. (Utility routines are provided for getting one if you have the other.) The Window Manager is patched in a couple of places so that a window's view port transforms and image memory are maintained when it enters and leaves GDevice real estate.

Drawing a bitmap onscreen obeys the screen GDevice's index entry protections -- QuickDraw GX doesn't use indexes reserved by the Palette Manager for other applications. If you want to draw an image that uses animated palette entries, you'll need to clone references to the destination viewDevice color set and profile, and then insert those references into the bitmap shape before drawing. Example code that does this is on this issue's CD.

COPYBITS IN QUICKDRAW GX
Let's see what it takes to make GXDrawShape do what CopyBits does. CopyBits has several explicit parameters: the source, destination, clipping region, and transfer mode. In QuickDraw GX, the source is the bitmap shape. The destination is defined by the shape's view port list. The clipping region is any shape that you attach to the bitmap shape with GXSetShapeClip. As mentioned before, the transfer mode is contained in the shape's ink.

So, to do a CopyBits-style blit in QuickDraw GX:

  1. Set up the shape's view port list.
  2. Determine the transfer mode (usually just "copy," but it's your choice).
  3. Adjust the shape clip. Don't change the device clip or view port clip.
  4. Adjust the transform if you want to reposition, scale, skew, rotate, or apply perspective to the shape.
  5. Call GXDrawShape.
  6. Clean up as needed.

QuickDraw GX doesn't implement all of the color capabilities of CopyBits. There's no colorizing and no color interpolation for indexed values beyond the end of a bitmap's color set. *

DRAWING OFFSCREEN WITH QUICKDRAW GX
Successive QuickDraw implementations have presented newer and better ways to draw into a offscreen image buffer. The QuickDraw GX offscreen library contains routines to help maintain the data structures necessary to implement the equivalent of a GWorld.

The example in Listing 8 uses the CreateIndexedBitmapShape routine from Listing 1 and the library routine CreateOffscreen to create a fully functional offscreen bitmap.

You might think drawing into a QuickDraw GX offscreen bitmap would be difficult, but it's not. To draw a shape into the offscreen bitmap, set its view port list to the offscreen bitmap's view port and call GXDrawShape (see Listing 9).

Listing 8. Creating an offscreen bitmap

OSErr MakeIndexedOffscreen(offscreen *targetOffWorld, long horiz,
                           long vert, long targetDepth)
{
    gxShape bitsShape;

    if (!CheckArguments(...))
        return paramErr;
    bitsShape = CreateIndexedBitmapShape(horiz, vert, targetDepth);
    if (bitsShape == nil)
        return paramErr;
    CreateOffscreen(targetOffWorld, bitsShape);
    return noErr;
}


Listing 9. Drawing into an offscreen bitmap

void DrawShapeOffscreen(offscreen *offGXWorld, gxShape targetShape)
{
    gxTransform newXform, savedXform;

    if ((offGXWorld == nil) || (targetShape == nil))
        return;
    if (offGXWorld->port == nil)
        return;

    savedXform = GXGetShapeTransform(targetShape);
    newXform = GXCopyToTransform(nil, savedXform);
    GXSetTransformViewPorts(newXform, 1L, &(offGXWorld->port));
    GXSetShapeTransform(targetShape, newXform);

    GXDrawShape(targetShape);

    GXSetShapeTransform(targetShape, savedXform);
    GXDisposeTransform(newXform);
}

BITMAP SHAPES VERSUS PIXMAPS
Sometimes, converting existing QuickDraw code to QuickDraw GX is impractical. If your application needs to use the same data in both offscreen pixMaps and bitmap shapes, it can, provided that the bitmap shape is packed the same as the pixMap -- that is, of identical width, height, pixel depth, and color space.

To use bitmap shape data in a QuickDraw pixMap, build the pixMap with the baseAddr the same as the gxBitmap.image. (Make sure that the bitmap shape is locked down.) To use pixMap data in QuickDraw GX, create a gxBitmap with the image field set to the base address of the source pixMap.

THE QUICKDRAW GX LIBRARIES

Several libraries are included with the QuickDraw GX Software Developer's Kit. They contain, among other things, routines for offscreen rendering and converting image data between QuickDraw and QuickDraw GX. The library code instructs by example and is a good starting point for your own library.

The library code is not completely tested. You should treat it as template code, not a final solution. *

The offscreen library. This library contains support for offscreen bitmaps, copyingbetween bitmap shapes, and simple gradient fills. The offscreen image implementationis basic but solid (it lacks some of the features found in QuickDraw GWorlds, such as automatic longword realignment of images). The utility routine CopyToBitmaps is also useful; it shows a good example of saving a view port list.

The math library. This library contains a number of useful routines for manipulatingmappings. The routine PolyToPolyMap is used in the trapezoidal warp example (Listing 6). The header file math routine.h contains essential macros for conversion between fixed-point, floating-point, and integral values.

The ramp library. Get your gradient fills here. Pleasing to the eye, easy on the code. A gradient-filled bitmap can be rotated and clipped, and voilà! Gradient-filled shapes.

The qd and oval libraries. The qd library has facilities for conversion of bitmap and color data between QuickDraw and QuickDraw GX formats. The oval library has real ovals, not those phony squished QuickDraw things.

The transferMode library. This library facilitates access to a shape's transfer mode information and contains routines for emulating most of the QuickDraw transfer modes. It also contains a bonus -- one of my favorite routines. If you've ever wanted to get the results of a QuickDraw transfer mode on color values without having to use CopyBits, TransmogrifyColor is for you. Check it out.

The storage library. This library implements spooling routines for use with GXFlattenShape and GXUnflattenShape, which you'll need for reading and writing shapes to and from files. These routines detect errors but don't report them, so they're only useful as templates.

The camera library. Perspective is cool, but hard to use unless your math skills are well developed. This library provides nifty 3-D techniques.

AND A FEW MORE THINGS . . .

Here I'll point out some caveats and additional interesting features of QuickDraw GX, just so you know what to look for (and look out for).

EXECUTION OVERHEAD
How fast are QuickDraw GX blits? How slow does an offscreen, 256 x 256, 45º-rotated, 32-bit, YXY, gradient-filled bitmap draw into a window on a 4-bit monitor? How much for all of these shiny pebbles? It depends. Let's look at the issues involved. QuickDraw GX and QuickDraw have much in common here:

  • They're fastest when there's no conversion of value or image location.
  • Common code paths are optimized inside the API: 8-bit to 8-bit, 1-bit to 1-bit, 24-bit to 8-bit, no clipping, rectangle clipped.
  • Blits involving complex transformations are usually orders of magnitude slower.

Some transformations require more processing. QuickDraw GX does only as much work as the transformation matrix mandates. From fastest to slowest, the order is: no transformation (or translation only); scaling; skewing or rotation; perspective.*

The basic performance guidelines are similar to automotive fuel efficiency ratings -- though we have no hard estimates, mileage is better on a smooth highway (no color mapping, skewing, or scaling) than on surface streets.

A transform mutation can require a 3 x 3 matrix operation for each pixel value when rendered. That's a lot of fixed-point multiplications. If execution speed is critical and the mutated version will be used a lot, copy the bitmap shape, mutate the geometry, and draw like crazy. Otherwise, mutate the transform and draw as needed.

SHARED IMAGE BUFFERS
A bitmap shape's raster image buffer can be shared by other bitmap shapes. Just make the source bitmap shape's image field the same as that of another bitmap shape. GXCopyToShape uses this sharing of image buffers. If you need a copy of a bitmap shape (or a picture that contains bitmap shapes) to have its own image buffer, use GXCopyDeepToShape.

USING BITMAPS AS PATTERNS
Bitmap shapes can be used as patterns. Unlike QuickDraw, QuickDraw GX has no limitation on area dimension or size of raster data in a pattern. To do simple tiling, you can just set the bitmap pattern on the shape.

You can align the pattern to all destination view ports simply by setting the gxPortAlignPattern attribute. This forces all shapes drawn with that pattern in a given view port to visually line up with each other. Another pattern attribute, gxPortMapPattern, keeps a pattern from being affected by a shape's transform; this is useful, for example, when you want a shape rotated and its pattern unrotated.

BITMAP SHAPE EQUIVALENCE
You can test QuickDraw GX shapes for equivalence by calling GXEqualShape. However, this routine doesn't account for mapping effects. For example, a bitmap gradient from black to white would be considered not equal to a white-to-black gradient bitmap whose transform is rotated 180º, even though the two shapes would produce identical results when drawn.

SIMPLIFICATION
GXSimplifyShape reduces an indexed bitmap to its simplest representation, even reducing the pixel depth when possible. For example, if an 8-bit-deep bitmap shape contains only 15 colors, GXSimplifyShape will convert it to a 4-bit-deep bitmap. If a bitmap is all one color, it will be converted into a rectangle shape -- it won't be a bitmap shape any more.

SUBSET EDITING
QuickDraw GX provides tools for working with area subsets of bitmaps. A piece can be copied from a source bitmap via GXGetBitmapParts, edited, and then blasted back into the source image with GXSetBitmapParts.

Individual pixel values can be accessed with the GXGetShapePixel and GXSetShapePixel routines. Unlike in QuickDraw, these routines don't need to reference a gxViewDevice to determine the color.

SO GET GOING

As you can see, QuickDraw GX does some really cool things with bitmaps. The transforms alone make it worthwhile -- it's easy to get addicted to rotating and skewing your bitmaps without having to do a lot of work. The new transfer modes are great. All the rest is a bonus. In the future, when memory is cheap and every machine is fast, you'll see more and more Macintosh systems and applications become dependent on QuickDraw GX.

PIXEL VALUE REPRESENTATION

A raster image is, naturally enough, an array of pixel values. For indexed color, each pixel value is an index into an associated color set.

For direct color (16 or 32 bits per pixel), a pixel value is converted directly into a color value by expanding bit fields of the 16- or 32-bit value into three or four 16-bit unsigned integer values.

The expansion of direct pixel values depends on the color space of the raster image and the "packing" of the color components. QuickDraw supports only RGB and a handful of packing schemes, but QuickDraw GX supports a whole family of color spaces and packing formats, some of which are shown in Figure 1. The packing types are defined in the gxColorSpaces enum in the header file graphics types.h. You'll also find definitions for extended color space specifications, such as gxRGB16Space (gxRGBSpace + gxWord5ColorPacking) and gxARGB32Space (gxLong8ColorPacking + gxRGBASpace + gxAlphaFirstPacking). Only explicitly defined permutations are valid -- you can't just make up your own.

[IMAGE 048-064_Surovell_final_h4.GIF]

DAVID SUROVELLWhere there was once one, there now are three: after approximately 1500 years of bachelorhood, David recently married (Jane) and achieved fatherhood (Elliot Ivan). He once wrote a book on QuickDraw, but that was long ago. When he's not sleeping under his desk at Apple, David's passionate avocations include auditioning as a guitarist for bands that fail to play in public, committing brutal fouls in otherwise friendly soccer matches and basketball games, and playing paintball with other rush- hour commuters.*

Thanks to our technical reviewers Pete ("Luke") Alexander, Josh Horwich, and Chris Yerga. *

 
AAPL
$96.13
Apple Inc.
+0.53
MSFT
$42.86
Microsoft Corpora
-0.30
GOOG
$566.07
Google Inc.
-5.53

MacTech Search:
Community Search:

Software Updates via MacUpdate

Data Rescue 3.2.4 - Recover lost data on...
Data Rescue is a robust and reliable hard-drive recovery solution for your Mac. Recover lost or deleted files, mount corrupted drives, and more -- Data Rescue offers complete relief from crippling... Read more
Adobe Lightroom 5.6 - Import, develop, a...
Adobe Lightroom software helps you bring out the best in your photographs, whether you're perfecting one image, searching for ten, processing hundreds, or organizing thousands. Create incredible... Read more
OneNote 15.2 - Free digital notebook fro...
OneNote is your very own digital notebook. With OneNote, you can capture that flash of genius, that moment of inspiration, or that list of errands that’s too important to forget. Whether you’re at... Read more
iStat Menus 4.22 - Monitor your system r...
iStat Menus lets you monitor your system right from the menubar. Included are 8 menu extras that let you monitor every aspect of your system. Some features: CPU -- Monitor cpu usage. 7 display... Read more
Ember 1.8 - Versatile digital scrapbook....
Ember (formerly LittleSnapper) is your digital scrapbook of things that inspire you: websites, photos, apps or other things. Just drag in images that you want to keep, organize them into relevant... Read more
OmniPlan 2.3.6 - Robust project manageme...
With OmniPlan, you can create logical, manageable project plans with Gantt charts, schedules, summaries, milestones, and critical paths. Break down the tasks needed to make your project a success,... Read more
Command-C 1.1.1 - Clipboard sharing tool...
Command-C is a revolutionary app which makes easy to share your clipboard between iOS and OS X using your local WiFi network, even if the app is not currently opened. Copy anything (text, pictures,... Read more
Knock 1.1.7 - Unlock your Mac by knockin...
Knock is a faster, safer way to sign in. You keep your iPhone with you all the time. Now you can use it as a password. You never have to open the app -- just knock on your phone twice, even when it's... Read more
Mellel 3.3.6 - Powerful word processor w...
Mellel is the leading word processor for OS X and has been widely considered the industry standard since its inception. Mellel focuses on writers and scholars for technical writing and multilingual... Read more
LibreOffice 4.3.0.4 - Free Open Source o...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more

Latest Forum Discussions

See All

Bio Inc. is $0.99 for the Weekend, Recei...
Bio Inc. is $0.99 for the Weekend, Receives Small Update Posted by Ellis Spice on August 1st, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Happy 7th Birthday Readdle! Thank You fo...
Happy 7th Birthday Readdle! | Read more »
Sharknado: The Video Game Review
Sharknado: The Video Game Review By Lee Hamlet on August 1st, 2014 Our Rating: :: SHARKNA-DON'TUniversal App - Designed for iPhone and iPad Sharknado: The Video Game brings the craziness of the movies to iOS, though it quickly... | Read more »
Clima (Weather)
Clima 1.0 Device: iOS iPhone Category: Weather Price: $.99, Version: 1.0 (iTunes) Description: Clima show you all weather information, just beautifully simple. A series of color bars can tell you at a glance exactly current... | Read more »
Sticky Soccer Review
Sticky Soccer Review By Andrew Fisher on August 1st, 2014 Our Rating: :: STICK THIS GAMEUniversal App - Designed for iPhone and iPad Sticky Soccer puts too much emphasis on the ‘sticky’ and not enough on the ‘Soccer’ or ‘Fun’.   | Read more »
Graphics-less Apocalyptic Adventure A Da...
Graphics-less Apocalyptic Adventure A Dark Room Goes Free for a Limited Time Posted by Rob Rich on August 1st, 2014 [ permalink ] | Read more »
Fraud Tycoon Review
Fraud Tycoon Review By Rob Thomas on August 1st, 2014 Our Rating: :: UNHEALTHY CREDITUniversal App - Designed for iPhone and iPad Fraud Tycoon is a half-baked, messy, promotional tie-in that does their sponsor no favors whatsoever... | Read more »
Guardians of the Galaxy: The Universal W...
Guardians of the Galaxy: The Universal Weapon is on Sale for the Weekend Posted by Rob Rich on August 1st, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Mister Beam Review
Mister Beam Review By Jordan Minor on August 1st, 2014 Our Rating: :: ILLUMINATINGUniversal App - Designed for iPhone and iPad Mister Beam’s puzzles are great. But its platforming? Not so much.   | Read more »
Hook Some More Fun With MapHook’s New Up...
Hook Some More Fun With MapHook’s New Update Posted by Jessica Fisher on August 1st, 2014 [ permalink ] iPhone App - Designed for the iPhone, compatible with the iPad | Read more »

Price Scanner via MacPrices.net

13-inch MacBook Airs on sale for $100 off MSR...
B&H Photo has the new 2014 13″ MacBook Airs on sale $100 off MSRP. Shipping is free, and B&H charges NY sales tax only. They also include free copies of Parallels Desktop and LoJack for... Read more
16GB iPad Air on sale for $399, save $100
Best Buy is offering the 16GB WiFi iPad Air for $399.99 on their online store for a limited time. Their price is $100 off MSRP. Choose free shipping or free store pickup (if available). Price is for... Read more
All Over For Tablets Or Just A Maturing, Evol...
CNN’s David Goldman weighs in on tablet sector doom and gloom, asking rhetorically: “Is this the beginning of the end for the tablet?” Answering that, he contends that hysteria and panic are... Read more
Letterspace 1.0.1 – New Free iOS Text Editor...
Bangkok, Thailand based independent developer Sittipon Simasanti has released Letterspace, a new text editor for iPhone, iPad, and iPod touch devices. Letterspace is a note taking app with an... Read more
Save up to $130 on an iPad mini with Apple re...
The Apple Store has Certified Refurbished 2nd generation iPad minis with Retina Displays available for up to $130 off the cost of new models, starting at $339. Apple’s one-year warranty is included... Read more
iPad Cannibalization Threat “Overblown”
Seeking Alpha’s Kevin Greenhalgh observes that while many commentators think Apple’s forthcoming 5.5-inch panel iPhone 6 will cannibalize iPad sales, in his estimation, these concerns are being... Read more
Primate Labs Releases July 2014 MacBook Pro P...
Primate Labs’ John Poole has posted Geekbench 3 results for most of the new MacBook Pro models that Apple released on Tuesday. Poole observes that overall performance improvements for the new MacBook... Read more
Apple Re-Releases Bugfixed MacBook Air EFI Fi...
Apple has posted a bugfixed version EFI Firmware Update 2.9 a for MacBook Air (Mid 2011) models. The update addresses an issue where systems may take longer to wake from sleep than expected, and... Read more
Save $50 on the 2.5GHz Mac mini, plus free sh...
B&H Photo has the 2.5GHz Mac mini on sale for $549.99 including free shipping. That’s $50 off MSRP, and B&H will also include a free copy of Parallels Desktop software. NY sales tax only. Read more
Save up to $140 on an iPad Air with Apple ref...
Apple is offering Certified Refurbished iPad Airs for up to $140 off MSRP. Apple’s one-year warranty is included with each model, and shipping is free. Stock tends to come and go with some of these... Read more

Jobs Board

Position Opening at *Apple* - Apple (United...
**Job Summary** The Apple Store is a retail environment like no other - uniquely focused on delivering amazing customer experiences. As an Expert, you introduce people Read more
Position Opening at *Apple* - Apple (United...
**Job Summary** At the Apple Store, you connect business professionals and entrepreneurs with the tools they need in order to put Apple solutions to work in their Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Sr. Product Leader, *Apple* Store Apps - Ap...
**Job Summary** Imagine what you could do here. At Apple , great ideas have a way of becoming great products, services, and customer experiences very quickly. Bring Read more
Sr Software Lead Engineer, *Apple* Online S...
Sr Software Lead Engineer, Apple Online Store Publishing Systems Keywords: Company: Apple Job Code: E3PCAK8MgYYkw Location (City or ZIP): Santa Clara Status: Full Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.