TweetFollow Us on Twitter

June 94 - Exploiting Graphics Speed on the Power Macintosh

June 94 - Exploiting Graphics Speed on the Power Macintosh


[IMAGE 043-054_Othmer_REV1.GIF]

The new QuickDraw on the PowerPC platform substantially improves graphics performance. A study comparing the performance of QuickDraw and custom blitters on the Power Macintosh and 680x0-based machines provides information you can use to ensure that the user benefits from those improvements. Further analysis, detailing where CopyBits spends its time, leads to an implementation strategy for applications that demand the fastest possible graphics.

Understanding the motivation for and consequences of the changes to QuickDraw on the Power Macintosh can help you write faster applications. This article presents studies that show QuickDraw as one of the most speed-critical parts of the Macintosh Operating System together with studies that break down how applications spend CPU time. Knowing how much time applications actually spend in various system routines will help you develop a strategy for writing applications that perform well on both the Power Macintosh and 680x0-based machines.

In porting QuickDraw to the PowerPCTM platform, Apple took advantage of the opportunity to make some changes. We'll detail these changes and their consequences for writing code. With that foundation, we'll move on to an in-depth discussion comparing the QuickDraw CopyBits routine with custom blitters. The goal is to write applications using routines that result in the fastest possible graphics performance on both platforms -- PowerPC and 680x0 -- as well as on machines equipped with graphics accelerators such as the new Apple Macintosh Display Card 24 AC. Sample code on this issue's CD demonstrates a method of timing blitter routines so that your application can use the fastest routine at run time.


Most of the Macintosh Operating System is written in 680x0 assembly language. In order to reach time-to-market goals for the Power Macintosh, Apple had to focus porting efforts on the most speed- critical parts of the system, so a study was conducted to profile system usage of several common applications. System usage depended largely on the operations performed in particular applications, but many applications showed similar patterns.

Figure 1 is based on a subset of the study. It turns out that most applications spend from 50% to 95% of their time in system code, with many spending more than 80%. Figure 2 shows the percentage of total CPU time spent in the most frequently called system routines for typical applications and for a pointer-based application (one that avoids using handles).

[IMAGE 043-054_Othmer_REV2.GIF]

Figure 1. CPU time breakdown: application versus system

[IMAGE 043-054_Othmer_REV3.GIF]

Figure 2. System routine usage

The data made it clear that QuickDraw was one of the most critical components of Apple's porting efforts. This article discusses QuickDraw version 1.3.5, which was developed to run on the PowerPC platform. The new QuickDraw is based on QuickDraw version 1.3.0, the most recent version of QuickDraw running on the Macintosh Quadra, but with some changes (see the section "What's Different With Version 1.3.5?"). The new version, written in C, was compiled for the Power Macintosh as QuickDraw version 1.3.5 and shipped with the new machines. The new QuickDraw C code can also be compiled for 680x0-based machines and will be available in future software releases.

The graphics speed comparisons made in this article compare the following:

  • QuickDraw version 1.3.0 or other 680x0 code running on a 680x0-based Macintosh (usually a Macintosh Quadra)
  • QuickDraw version 1.3.0 or other 680x0 code running through the emulator on a Power Macintosh
  • QuickDraw version 1.3.5 or other PowerPC code running on a Power Macintosh


Figure 3 compares times of various QuickDraw routines for version 1.3.0 running on a Macintosh Quadra and version 1.3.5 running on a Power Macintosh -- there's no question that the new QuickDraw routines run faster. However, published surveys comparing the speed of 680x0-based machines to the Power Macintosh haven't always shown the dramatic results indicated by Figure 3. This is partly because some operations offer greater increased speed than others, so depending on which operations an application uses heavily, overall speed varies. A second important factor is that the applications surveyed are often emulated applications.

[IMAGE 043-054_Othmer_REV4.GIF]

Figure 3. Comparing QuickDraw version 1.3.0 to version 1.3.5

Emulated applications are those written for 680x0-based machines that run through the emulator on the Power Macintosh (see "Making the Leap to PowerPC,"develop Issue 16). These applications don't benefit fully from the PowerPC platform, because an application that spends 80% of its time in system code on 680x0-based machines, when emulated on a Power Macintosh, spends substantially more time in the application. In general, completely emulated application code runs at about half the speed of a Macintosh Quadra 700. Those same applications, when recompiled as PowerPC code, usually run four or five times faster than on a Macintosh Quadra; code that makes extensive use of floating point may be 20 times or more faster. However, emulated graphics-intensive code, assuming it uses QuickDraw, is substantially faster on a Power Macintosh than on a 680x0-based Macintosh because of the increased speed of QuickDraw 1.3.5.

Clearly, to take full advantage of QuickDraw version 1.3.5, you need to write your applications for the Power Macintosh in PowerPC code. Beyond that general strategy, developing awesome applications for the PowerPC platform means figuring out how to harness all that CPU power -- how to take advantage of the speed. For example, the high speed of QuickDraw version 1.3.5 allows you to do high-quality animations. Figure 3 shows that you can now do twice as many (or more) CopyBits operations per second, which means that animations such as zooming, scrolling, and window dragging (leave this one to Apple) can be done in real time without being chunky or annoying. Text drawing is also much faster, so interactive word wrapping while positioning objects in text is easy to do and looks better than it would on a 680x0-based Macintosh. Overall, it's an open field for developers.

Tips for increasing the speed of PowerPC code are given in this issue's Balance of Power column. *

Although this article focuses on QuickDraw, of course there are other, nongraphical, ways of harnessing the power of the PowerPC processor. Floating point-intensive applications benefit tremendously from the speed of the new processor.

The Graphing Calculator desk accessory that ships with the Power Macintosh is an excellent example of harnessing CPU power for both the user interface and computation-bound part of an application. As a floating point-intensive application, Graphing Calculator benefits from the speed of the PowerPC processor. The user interface has a number of nice touches, such as live scrolling, live zooming, and interactive formula and graph manipulation. *


In the porting of QuickDraw to the PowerPC platform, many algorithms were rethought and reimplemented. The result is slightly different (and we hope better!) behavior. This section outlines some changes to keep in mind when you're writing code.

QuickDraw version 1.3.0 didn't do a very good job of setting and clearing QDError. In version 1.3.5, every call sets QDError (which can cause problems for applications that assume QDError will be preserved across most simple calls, like SetRect). In some cases, version 1.3.0 jumps to SysError if there isn't enough memory; version 1.3.5 returns an error in QDError instead. This is usually an improvement, but it can lead to strange behavior for applications that depend on SysError being invoked. For example, some applications might put up a dialog asking the user to increase the application partition size if QuickDraw invokes SysError. Since QuickDraw version 1.3.5 doesn't invoke SysError (returning a QDError instead), the application code that puts up the dialog isn't triggered, so the user doesn't know to increase the memory and the application might fail by not drawing anything. In choosing to always set QDError, Apple chose the lesser of two evils.

QuickDraw version 1.3.0 uses the color table of the pixMap for the current GDevice, not the color table of the destination pixMap, to map colors to the destination pixMap. QuickDraw version 1.3.5 sets up a surrogate GDevice to make sure that the the destination pixMap's and the GDevice's color tables always match. This may cause problems for applications that relied on undefined behavior when the color tables didn't match or for applications that were getting the right results by luck under QuickDraw version 1.3.0. Again, Apple chose the lesser of two evils, and added the surrogate device (known as the skank device). When QuickDraw is forced to set up the skank device, the application pays a slight performance penalty. Also, if you do operations such as index-to-color when your color tables don't match, and then later use that color in a drawing, you won't necessarily draw with the index you expect. The easiest cure: use GWorlds!

For more information on QDError, GDevices, pixMaps, and color tables, see Inside Macintosh: Imaging With QuickDraw  or Inside Macintosh  Volume V. *

There's no way to pass the transfer space (the bit depth at which transfer occurs) when doing transfer modes in QuickDraw. (QuickDraw GX remedies thisshortcoming.) So if you're using an arithmetic mode from 8-bit to 16-bit, there are noguarantees whether the transfer will occur at 5 bits per component (16-bit), 8 bits per component (32-bit), or 16 bits per component (as in the 8-bit color table). It turns out that most arithmetic modes in QuickDraw version 1.3.0 perform the transfer operation at a resolution of 16 bits per color, while version 1.3.5 does most operations at a resolution of 8 bits per color. This sometimes causes slight cosmetic differences.

The dithering algorithm in QuickDraw version 1.3.5 is slightly different. This makes it a nightmare to programmatically determine whether version 1.3.5 is generating the same results as version 1.3.0, but visually the results are nearly identical.

The way CopyBits stretches and shrinks images for nonintegral ratios has been improved in QuickDraw version 1.3.5 (integral ratios still produce the same results). The advantage of this new algorithm is that it's symmetrical: if you stretch an image and then shrink it back to the original size, the same pixels that were replicated in the stretch are combined in the shrink.

The disadvantage of the new algorithm is that some applications stretch or shrink without knowing it (the classic off-by-one error, resulting in a destination rectangle that's smaller or larger than the source rectangle by one pixel). Such applications may now drop (or replicate) a different scan line. This can cause slight cosmetic blemishes in some applications.

Because QuickDraw version 1.3.5 runs PowerPC code, all emulated 680x0 registers are preserved across calls. Thus, applications that expect the contents of volatile registers (A0, A1, D0, D1, D2) to contain specific values on exit from a QuickDraw call will break. (Conversely, don't rely on 680x0 registers being preserved, either!) There's one exception: for compatibility with some existing applications, CopyBits always sets D0 to 0.

Patching any QuickDraw version 1.3.5 routine with 680x0 code degrades performance because of mode-switch overhead time. A mode switch occurs when a 680x0 caller is calling PowerPC code, or vice versa. 680x0 patches on ShieldCursor are particularly expensive because ShieldCursor is called by nearly every QuickDraw drawing routine.

For more information on the Mixed Mode Manager and mode switching, see "Making the Leap to PowerPC" in develop  Issue 16.*

QuickDraw version 1.3.0 makes calls through many low-level (undocumented) vectors. Version 1.3.5 doesn't use these trap vectors, which disables most accelerator cards. Of course, the frame buffer on these cards continues to work.


A favorite developer sport is complaining about how slow CopyBits is and writing custom blit loops to replace it. A favorite sport among QuickDraw engineers is working all night trying to speed up some part of CopyBits. This competition is healthy so long as speed-critical applications call the faster code.

"Blitter" informally refers to any routine that moves memory, usually visual information to the screen or an off-screen buffer; the operation is called a "blit." These terms derive from the PDP-10 block transfer instruction, BLT. *

Through the years, Apple engineers have yearned for a way to get a substantial lead in the race with the speed-hungry special-case developer. The answer lies in the Power Macintosh: raw 680x0 code runs substantially slower through the emulator, while QuickDraw version 1.3.5 CopyBits takes advantage of the lightning-fast RISC processor.

Figure 4 compares various ways of moving the memory used by an 8-bit, 32-by-32 pixMap and an 8- bit, 400-by-400 pixMap to the screen. BlockMove gives a baseline: the typical amount of time needed to move that much raw memory. The 680x0 blitter is a custom blitter written for 680x0-based machines and emulated on the Power Macintosh. The PowerPC blitter is a custom blitter written for the Power Macintosh (it can't be run on a 680x0 machine).

[IMAGE 043-054_Othmer_REV5.GIF]

Figure 4. CopyBits versus custom blitters

As you can see, the custom PowerPC blitters beat QuickDraw's CopyBits for the small image hands down for both 680x0-based machines and the Power Macintosh. (With the small image the constant overhead of CopyBits has a big impact on the overall time.) However, the 680x0 blitter is much slower than CopyBits on a Power Macintosh. This is due to the overhead of emulation.

The interesting case is the custom PowerPC blitter versus CopyBits for the large image on the Power Macintosh. Here CopyBits wins. This is due to optimizations that CopyBits has for large images that the PowerPC blitter doesn't have. In this case, CopyBits is also faster than BlockMove, because of optimizations in CopyBits for the PowerPC processor's frame buffer (which has a 64-bit data path). BlockMove is optimized for copying to main memory, so it's slower when copying to the frame buffer. (This is why the PowerPC blitter is faster than BlockMove for the small image.) If you compare BlockMove and CopyBits using an off-screen pixMap as the destination, you discover that BlockMove is faster.

For maximum performance of emulated applications, the emulator treats BlockMove as a special case. *

The design of a frame buffer can have a great impact on overall blit speed. These times were measured on the on-board video for the Macintosh Quadra and a fast processor-direct slot video card for the Power Macintosh. If you install a NuBusTMframe buffer on both machines and do a similar comparison, you find that the difference in times is less. That's because NuBus is the bottleneck for the copy operation. The situation changes radically, however, if the NuBus card is accelerated. Then only calls to CopyBits get the acceleration; custom blit loops are still bottlenecked by NuBus transfer rates.

Most of the comparisons in this section compare raw memory-moving power. While QuickDraw is efficient at stretching bits, it's very inefficient at large indexed shrinks. The problem is that CopyBits looks at every pixel and preserves the highest index value. (This was done so that when icons are shrunk, they don't inadvertently go to solid white.) For a shrink by a factor of four, this means that CopyBits is looking at 16 times too much data.*


There are two aspects to any given QuickDraw operation: setup and actual drawing. Much of the time saved when an application uses a custom blit loop instead of CopyBits is a consequence of avoiding the overhead of QuickDraw's setup. While QuickDraw has extremely efficient blit routines, its downfall is that it has no idea how it's going to be called from one time to the next, so it has to do all the setup every time it's called. (See "Drawing in GWorlds for Speed and Versatility" indevelop Issue 10 for a discussion of QuickDraw's setup.)

An application knows exactly how many of what it's drawing to where, so it can do the setup for many operations once at the beginning, use custom blitters to do the drawing, and then restore everything to its previous condition at the end, thus eliminating much of the setup time. This is where you get the biggest gains when writing your own blitters. On large operations, the overhead is relatively small, so you don't gain much with custom routines. Small operations are often dominated by setup time, so a custom routine can improve performance significantly.

Figure 5 compares setup time to total time for two CopyBits operations. Both are a copy of a 32-by- 32, 8-bit, off-screen pixMap to the screen (no stretching or shrinking, long aligned). The difference is that in the first CopyBits call, the color tables match and in the second call they don't match (the first case is faster because there's no need to invoke a pixel translation loop). Figure 6 shows the same two tests as Figure 5, but this time the pixMaps being copied are 400-by-400. If you look carefully, you can see that the setup time remained almost the same, but the proportion between setup time and total time has changed drastically.

In general, the setup time on the Power Macintosh is minimal, since the setup is computation- intensive and doesn't depend on memory access. Remember that setup time is constant -- it remains the same no matter how much data is being copied. Therefore, the relative efficiency of CopyBits depends on the amount of data being copied.

[IMAGE 043-054_Othmer_REV6.GIF]

Figure 5. CopyBits setup time to total time for a small copy

[IMAGE 043-054_Othmer_REV7.GIF]

Figure 6. CopyBits setup time to total time for a large copy

The systems compared in Figures 5 and 6 are a Power Macintosh 8100/80 running QuickDraw version 1.3.5 and a Macintosh Quadra 700 running QuickDraw version 1.3.0. These comparisons show that QuickDraw blit times can vary greatly across different machines and different versions of QuickDraw.

QuickDraw GX uses caches extensively to keep intermediate results. This allows part of the overhead to be short-circuited when a similar operation is performed multiple times. *

Accelerator vendors use a number of different strategies for boosting QuickDraw's performance. The Macintosh 8*24GC card attempted to accelerate entire operations, while most third-party accelerators just concentrate on the blits. These cards often use custom chips to substantially increase the speed of writing to memory; you're still forced to pay for the setup time, but the blit time decreases substantially.

The upshot of this is that you're only guaranteed the best results if you profile the candidates and pick a winner at run time. This is the topic of the following section.


For applications in which speed is critical, you want to run as fast as possible on every machine. The easiest way to do this is to time the system code and any custom code and use the faster version, perhaps even on a call by call basis. By comparing the speed of a custom implementation with the Toolbox implementation and picking the faster one at application initialization time, applications can automatically take advantage of hardware accelerators when they exist, or highly specialized custom blit loops when required. Of course, you would use this strategy only when speed is extremely important. While developing your application, you should always try to use system calls when they're available before reinventing (a sometimes square) wheel.

Listing 1 shows two routines, TimeBlitProc and BestBlitter, that compare CopyBits with a custom blitter and return the address of the faster routine. (The code is also on this issue's CD.) Writing the custom blitter is left as an exercise for the reader.

BestBlitter takes a pointer to a BlitProc, a PixMapHandle, and a source and destination rectangle and returns the address of the faster routine -- the custom BlitProc or CopyBits. It assumes that the destination rectangle is for the current graphics port and current GDevice. For the sake of simplicity, the mode is assumed to be srcCopy and there's no mask region.

Listing 1. Timing routines

#include <Timer.h>
#include <FixMath.h>
#include <Traps.h>
#if powerc
    extern QDGlobals qd;

// Decide how many microseconds represent a "meaningful" difference.
#define     kMeaningfulDiff     0
#define     ABS(x)                  ((x < 0)? (-x) : (x))

unsigned long TimeBlitProc(BlitProcPtr theBlitProc,
    BitMapPtr srcBits, BitMapPtr dstBits, Rect *srcRect,
    Rect *dstRect, short mode, RgnHandle mask)
    UnsignedWide    startMicroSec, endMicroSec;

    (*theBlitProc)(srcBits, dstBits, srcRect, dstRect, mode, mask);
    // WideSubtract isn't defined for 680x0-based machines; however,
    // a version is included on the CD.
    WideSubtract((wide *) &endMicroSec,
        (wide *) &startMicroSec);
    return endMicroSec.lo;
BlitProcPtr BestBlitter(BlitProcPtr customBlitProc, 
    PixMapHandle srcPixHandle, Rect *srcRect, Rect *dstRect)
    unsigned long   customBitsTime, copyBitsTime;
    long                leDifference;
    PixMapHandle    portPixMap;
    BlitProcPtr     copyBitsPtr;
    Str255          numStr;
    // To factor out the trap overhead, get the trap address for
    // CopyBits. PowerPC can get the address of the shared library
    // routine directly. By getting the address of the library
    // routine like this, we don't need to worry about calling
    // CopyBits through CallUniversalProc.
#if powerc
    copyBitsPtr = (BlitProcPtr) &CopyBits;
    copyBitsPtr = (BlitProcPtr) GetToolTrapAddress(_CopyBits);
    portPixMap = ((CGrafPtr) qd.thePort)->portPixMap;

    // Normally, it's not necessary to lock a pixMap or its pixels
    // before calling CopyBits. But in this case, we're calling
    // TimeBlitProc, which could hit the Segment Loader and cause
    // memory to move. So we lock the pixMap handles before
    // dereferencing them here.
    HLock((Handle) portPixMap);
    copyBitsTime = TimeBlitProc(copyBitsPtr, 
        (BitMapPtr) *srcPixHandle, (BitMapPtr) *portPixMap, srcRect,
        dstRect, srcCopy, nil);
    customBitsTime = TimeBlitProc(customBlitProc, 
        (BitMapPtr) *srcPixHandle, (BitMapPtr) *portPixMap, srcRect,
         dstRect, srcCopy, nil);
    HUnlock((Handle) portPixMap);
    leDifference = (long)(customBitsTime - copyBitsTime);
    if (ABS(leDifference) > kMeaningfulDiff && leDifference < 0)
        return customBlitProc;
        return copyBitsPtr;

BestBlitter gets the address of CopyBits (factoring out trap dispatch overhead if running on a 680x0- based Macintosh, as you might want to do in your speed-critical loops) and calls TimeBlitProc to get the time taken by each of the calls. If the difference is enough to be meaningful (more than a few microseconds) and favors the new BlitProc, BestBlitter returns a pointer to the BlitProc; otherwise, it returns a pointer to CopyBits.

The actual timing is done by TimeBlitProc, which assumes that the current graphics port and GDevice are set up and ready for copying. TimeBlitProc takes a pointer to the BlitProc to be timed and a list of arguments expected by CopyBits.

We've made the assumption that the caller has flushed or loaded the caches appropriately for the test. In comparing the routines, it would be unfair to one routine if it had to spend time loading the data into the cache and the other routine didn't! FlushInstructionCache and FlushDataCache are no longer available for applications written in PowerPC code, so it's up to the caller to decide whether to test these BlitProcs cached or uncached. (See "Here's the Cache" for a discussion of caching on the Power Macintosh.) In any case, TimeBlitProc assumes that the caches are already in the proper state.

Since caching is such a hardware-specific operation and can have both very obvious and subtle effects on the execution of your code, it's hard to predict how different cache architectures will affect yourperformance. In general, if you try to optimize for smaller caches, you'll achieve better overall performance across a range of platforms. To be completely fair, TimeBlitProc should also disable interrupts. If file sharing comes in to work on a background copy in the middle of the timing, that blit loop will appear to be really slow compared to the uninterrupted time.

TimeBlitProc calls a new trap, Microseconds, that takes a pointer to an UnsignedWide (two longs) and fills it with the number of microseconds that have elapsed since the system was booted. It calls Microseconds before and after the call to the BlitProc that was passed in, calls WideSubtract to get the delta, and returns the low-order 32 bits of the subtraction. This assumes that the elapsed time will fit into an unsigned long, or that the BlitProc will take less than 71 minutes to complete!


The traps FlushInstructionCache and FlushDataCache were originally created to give direct control over the instruction and data caches on 68040-based Macintosh Quadra models. These two traps are very closely tied to the 68040 processor, both conceptually and in their implementation. The PowerPC 601 chip has a unified cache -- a single 32K cache for both data and instructions. Rather than trying to contort the definition of the two existing traps to make sense on the PowerPC processor, Apple engineers asked why you need to flush caches in the first place. The new cache-management strategies are intended to be better abstracted, less dependent on a specific processor, and definitely forward compatible.

Following are the four main reasons you might want to flush the caches and how they've been (or need to be) addressed on the Power Macintosh.

Generate code dynamically.
Normally, to execute some data as instructions, you need to flush the caches. On the Power Macintosh, you call the new system routine MakeDataExecutable, passing the base address and the length of the data to be executed. (This routine doesn't exist -- even in an undocumented form -- on the 680x0-based machines, so to flush instructions in the data cache, you need to call FlushInstructionCache and FlushDataCache.)

Ensure that the data shared by other hardware is actually written.
For example, memory that's shared by a coprocessor has to be accessible when the other processor needs to read it. To address this problem, the PowerPC-family architecture includes a type of "bus snooping." Whenever someone wants to read an address that's represented in the cache, the cache is flushed automatically before the data is returned. This way, you don't need to anticipate all the different ways the cache can get out of sync.

Ensure that data gets written to memory in the correct order.
For example, if you're writing to the screen, make sure the title bar gets written before the contents. A caching mechanism could screw up this ordering, so to ensure the proper ordering, the data cache must be flushed between writes. Screen memory is marked as write-through , which sends the data to the cache and on through to the screen memory. Writes for write-through memory are as slow as for uncached memory. The benefit is that reads from write-through memory can still take advantage of the cache. This feature is present on the 68040 Macintosh and remains unchanged on the Power Macintosh.

Ensure that timing data you get when you compare two similar routines hasn't been distorted by the caching mechanism.
Unfortunately, you're out of luck here. There's no officially sanctioned method for doing this. But there are some techniques you can use to get around the caching.

If you anticipate that your procedure will usually have its data cached when it's called, compare the routines for the cached condition. Simply call the routines twice and time only the second call.

To compare the routines for the noncached case, you can "flush" the cache by reading every byte in a 32K buffer. Not only is this ugly, but it's not even guaranteed to work with future machines (such as the PowerPC 603, which goes back to using separate data and instruction caches). And even on the 601 chip, this would flush only the on-chip cache; it wouldn't necessarily flush the much larger, but slightly slower, external cache.


The Power Macintosh provides a new range of computing power for the next generation of the Macintosh line. The challenge for Apple is converting from a largely 680x0 assembly code base to PowerPC-code system services and substantially improving the user experience in the process. The challenge for application developers is inventing new uses for all the power provided by RISC, and designing creative user interface elements that take advantage of the horsepower.

Use the studies presented here as a guide to writing graphics-intensive applications that shine on both platforms. By using techniques such as runtime determination of the most efficient routines, you can guarantee that your application will get the most out of the system today and in the future.

KONSTANTIN OTHMER, SHANNON HOLLAND, AND BRIAN COX , who are always ready to explore new avenues in software development for the QuickDraw team, have finally hit the nail on the head. Their secret is high-tech equipment and proper delegation of work. Alternating between periods of sleep and contemplation, they use telepathic communication to transmit source code to each new team member, who can then look forward to many days of compile cycles on a trusty Macintosh Plus (providing our authors with even more time for sleep and contemplation). The team is on the lookout for new labor-saving devices. Donations are welcome -- comfortable couches to make room for future expansion would be particularly appreciated.*

Thanks to our technical reviewers Lew Cirne, Jean-Charles Mourey, Guillermo Ortiz, and Andy Stadler; to Kate Cremer for generating the graphs; and to Tom Adams, Becky Hammaker, Marianne Hsiung, Mac MacDougall, and David Searles for conducting the application evaluations.*


Community Search:
MacTech Search:

Software Updates via MacUpdate

Dash 3.4.0 - Instant search and offline...
Dash is an API documentation browser and code snippet manager. Dash helps you store snippets of code, as well as instantly search and browse documentation for almost any API you might use (for a full... Read more
RapidWeaver 7.1.7 - Create template-base...
RapidWeaver is a next-generation Web design application to help you easily create professional-looking Web sites in minutes. No knowledge of complex code is required, RapidWeaver will take care of... Read more
Printopia 2.1.22 - Share Mac printers wi...
Run Printopia on your Mac to share its printers to any capable iPhone, iPad or iPod Touch. Printopia will also add virtual printers, allowing you to save print-outs to your Mac and send to apps.... Read more
SteerMouse 5.0 - Powerful third-party mo...
SteerMouse is an advanced driver for USB and Bluetooth mice. It also supports Apple Mighty Mouse very well. SteerMouse can assign various functions to buttons that Apple's software does not allow,... Read more
Arq 5.5.1 - Online backup to Google Driv...
Arq is super-easy online backup for Mac and Windows computers. Back up to your own cloud account (Amazon Cloud Drive, Google Drive, Dropbox, OneDrive, Google Cloud Storage, any S3-compatible server... Read more
Slack 2.3.0 - Collaborative communicatio...
Slack is a collaborative communication app that simplifies real-time messaging, archiving, and search for modern working teams. Version 2.3.0: Note: Now requires OS X 10.8 or later New The app... Read more
Cocktail 10.1 - General maintenance and...
Cocktail is a general purpose utility for macOS that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
Firefox 49.0.2 - Fast, safe Web browser.
Firefox offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals and casual... Read more
Art Text 3.1 - $49.99
Art Text is graphic design software to create stunning illustrations, such as badges, flyers, logos, social headers and icons, text mockups, website graphics and buttons, picture captions, word art,... Read more
AirRadar 3.1.9 - $9.95
With AirRadar, scanning for wireless networks is now easier and more personalized! It allows you to scan for open networks and tag them as favourites or filter them out. View detailed network... Read more

Latest Forum Discussions

See All

Oh...Sir! The Insult Simulator (Games)
Oh...Sir! The Insult Simulator 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: | Read more »
WitchSpring2 (Games)
WitchSpring2 1.27 Device: iOS Universal Category: Games Price: $3.99, Version: 1.27 (iTunes) Description: This is the story of Luna, the Moonlight Witch as she sets out into the world. This is a sequel to Witch Spring. Witch Spring 2... | Read more »
4 popular apps getting a Halloween makeo...
'Tis the season for all things spooky. So much, so, in fact, that even apps are getting into the spirt of things, dressing up in costume and spreading jack o' lanterns all about the place. These updates bring frightening new character skins, scary... | Read more »
Pokémon GO celebrates Halloween with can...
The folks behind Pokémon GO have some exciting things planned for their Halloween celebration, the first in-game event since it launched back in July. Starting October 26 and ending on November 1, trainers will be running into large numbers of... | Read more »
Best Fiends Forever Guide: How to collec...
The fiendship in Seriously's hit Best Fiends has been upgraded this time around in Best Fiends Forever. It’s a fast-paced clicker with lots of color and style--kind of reminiscent of a ‘90s animal mascot game like Crash Bandicoot. The game... | Read more »
5 apps for the budding mixologist
Creating your own cocktails is something of an art form, requiring a knack for unique tastes and devising interesting combinations. It's easy to get started right in your own kitchen, though, even if you're a complete beginner. Try using one of... | Read more »
5 mobile strategy games to try when you...
Strategy enthusiasts everywhere are celebrating the release of Civilization VI this week, and so far everyone seems pretty satisfied with the first full release in the series since 2010. The series has always been about ultra-addictive gameplay... | Read more »
Popclaire talk to us about why The Virus...
Humanity has succumbed to a virus that’s spread throughout the world. Now the dead have risen with a hunger for human flesh, and all that remain are a few survivors. One of those survivors has just called you for help. That’s the plot in POPCLAIRE’... | Read more »
Oceans & Empires preview build sets...
Hugely ambitious sea battler Oceans & Empires is available to play in preview form now on Google Play - but download it quickly, as it’s setting sail away in just a few days. [Read more] | Read more »
Rusty Lake: Roots (Games)
Rusty Lake: Roots 1.1.4 Device: iOS Universal Category: Games Price: $2.99, Version: 1.1.4 (iTunes) Description: James Vanderboom's life drastically changes when he plants a special seed in the garden of the house he has inherited.... | Read more »

Price Scanner via

Apple refurbished 2015 13-inch MacBook Airs a...
Apple has Certified Refurbished 2015 13″ MacBook Airs available starting at $759. An Apple one-year warranty is included with each MacBook, and shipping is free: - 2015 13″ 1.6GHz/4GB/128GB MacBook... Read more
64GB Apple TV on sale for $159, save $40
Best Buy has the 64GB Apple TV on sale for $40 off MSRP on their online store. Choose free shipping or free local store pickup (if available). Sale price for online orders only, in-store price may... Read more
EyeQue Introduces iOS And Android Based Advan...
Affordable vision technologies developers EyeQue have announced what they claim to be the world’s most advanced intelligent vision solution, pitched as enabling anyone, anywhere to easily and... Read more
Smartwatch Market Tanks, Declining 51.6% in 2...
The worldwide smartwatch market experienced a round of growing pains in the third quarter of 2016 (3Q16), resulting in a year-over-year decline in shipment volumes. According to data from the... Read more
CAZE announces Ultra Thin Glass Screen Protec...
Hong Kong based CAZE has announced its first ultra thin glass screen protector, the Glazz Pro for iPhone 7/7 Plus. Glazz Pro is made from chemically reinforced glass with an anti-fingerprint... Read more
11-inch MacBook Airs on sale for up to $120 o...
Newegg has 11″ MacBook Airs on sale for up to $120 off MSRP. Shipping is free: - 11″ 1.6GHz/128GB MacBook Air: $799.99 $100 off MSRP - 11″ 1.6GHz/256GB MacBook Air: $979 $120 off MSRP Read more
Up to $300 off Macs, $20 off iPads with Apple...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free, and... Read more
Apple’s Thursday “Hello Again” Event A Largel...
KGI Securities analyst Ming-Chi Kuo, who has a strong record of Apple hardware prediction accuracy, forecasts in a new note to investors released late last week that a long-overdue redo of the... Read more
12-inch Retina MacBooks on sale for $100 off...
Amazon has 2016 12″ Apple Retina MacBooks on sale for $100 off MSRP. Shipping is free: - 12″ 1.1GHz Silver Retina MacBook: $1199.99 $100 off MSRP - 12″ 1.1GHz Gold Retina MacBook: $1199.99 $100 off... Read more
Save up to $600 with Apple refurbished Mac Pr...
Apple has Certified Refurbished Mac Pros available for up to $600 off the cost of new models. An Apple one-year warranty is included with each Mac Pro, and shipping is free. The following... Read more

Jobs Board

*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Solutions Consultant - Apple (United...
# Apple Solutions Consultant Job Number: 52812872 Houston, Texas, United States Posted: Oct. 18, 2016 Weekly Hours: 40.00 **Job Summary** As an Apple Solutions Read more
Lead *Apple* Solutions Consultant - Apple (...
# Lead Apple Solutions Consultant Job Number: 52812906 Houston, Texas, United States Posted: Oct. 18, 2016 Weekly Hours: 40.00 **Job Summary** The Lead ASC is an Read more
*Apple* Retail - Multiple Positions- Towson,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Software Engineering Intern: Integration / QA...
Job Summary Apple is currently seeking enthusiastic interns who can work full-time for a minimum of 12-weeks between Fall 2015 and Summer 2016. Our software Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.