TweetFollow Us on Twitter

March 94 - STANDALONE CODE ON POWERPC

STANDALONE CODE ON POWERPC

TIM NICHOLS

[IMAGE Nichols_final_REV1.GIF]

A new format for standalone code in the PowerPC world brings increased functionality and easier implementation. You'll no doubt want to port existing code resources and write plug-ins for the new platform. Here you'll learn how to do both while also retaining or building in the ability to run the standalone code on the old 680x0 platform.


Standalone code is an important part of the Macintosh environment and will continue to be in the age of the PowerPC processor. Such code takes many different forms and serves many different purposes. It can serve as a definition function -- such as an MDEF or a WDEF -- for Macintosh system software, act as a dynamic extension to an application, or find other, more esoteric uses. In the PowerPC world, it can also be used to port time-critical portions of an application written in 680x0 code.

This article shows you how to develop and package standalone code modules to run in both the PowerPC and 680x0 worlds. We start by discussing the differences between standalone code in the two runtime environments. Then we go through the steps of compiling, linking, and packaging different types of standalone code, and calling it from within your application. We look at the following:

  • how an application can support a plug-in that contains code in both the 680x0 and PowerPC formats, illustrated by preparing a plug-in sort algorithm for a simple application called SuperSort
  • how to use a similar mechanism to port time-critical portions of an existing application to the PowerPC platform
  • how to make an existing WDEF into a "fat" resource -- one that will work in either a 680x0 or a PowerPC environment, depending on the machine executing the code

SuperSort, the plug-in, and the WDEF, along with their source code, are all on this issue's CD. All the code can run on either the 680x0 or the PowerPC platform, although you do need MPW to compile it.

This article assumes that you know how to write a standalone code resource for the 680x0 platform and that you have a general grasp of PowerPC technology and runtime architecture.

THE STORY ON STANDALONE CODE

The format of standalone code has changed in the PowerPC world. Standalone code in the 680x0 world is packaged in resources such as WDEFs and INITs, with limited functionality and significant restrictions on their implementation. PowerPC standalone code, on the other hand, can be packaged as a resource or stored in the data fork of a file and enjoys a more flexible and powerful mechanism for managing global data and importing and exporting functions based on shared libraries.

STANDALONE CODE IN THE 680X0 WORLD
In the 680x0 world, developers can write two types of code: applications and standalone code. Applications have special privileges that aren't available to standalone code. Perhaps the most notable is the ability to easily access global and static data via the A5 world. The A5 register is maintained by the Process Manager for each application, to facilitate access to the QuickDraw global data as well as application global and static data. All references to global and static data by the application are made via the A5 register.

By contrast, standalone code resources have no A5 world and therefore don't have access to global or static data. This can limit the functionality of the code. There are mechanisms to get around this limitation, but they differ from one environment to the next. THINK C has a mechanism for using A4 as a pointer to global data for standalone code, while MPW uses special functions and macros to create a pseudo A5 world for the code resource. Both of these place a burden on developers by forcing them to set up and restore the appropriate registers before they can access their globals.

STANDALONE CODE IN THE POWERPC WORLD
In the PowerPC world, there's only one type of code, known as acode fragment . A code fragment is a collection of code and its corresponding data. Fragments can be packaged in a number of different kinds of containers. A PowerPC application consists of one or more code fragments packaged in the data fork of the application. Part of the Macintosh system software consists of code fragments packaged in the Macintosh ROM. Standalone code is really just another code fragment packaged in a resource or in the data fork of a file.

Whether standalone code is packaged in a resource or in the data fork depends on how it's being used. If you're writing a PowerPC version of an existing code resource such as a WDEF or an XCMD, the standalone code should be packaged in a resource, for purposes of compatibility. (The existing code only knows to look for code in resources of a specific type; for example, the Window Manager only looks for window definition functions in resources of type 'WDEF'.) If, on the other hand, you're developing a new standalone code module as a plug-in or to accelerate some part of your application, the standalone code should be stored in the data fork of your application or plug-in file to fully exploit the PowerPC runtime environment. Code can be loaded rapidly and efficiently from the data fork of a file without using a large memory footprint, thanks to the mechanism of file- mapped virtual memory.

Fragments can export symbols (code or data) by name to other fragments and can import symbols by name from other fragments. Each fragment contains an array of pointers known as thetable of contents  (TOC), which allows the fragment to share symbols with other fragments and is used to reference the fragment's own global and static data. Each entry in the TOC is a reference to either an imported symbol from another fragment or a static data item in the fragment itself. For example, suppose the code fragment Foo exports a procedure DoThis, contains a single global variable gMyGlobal, and imports a function DoThat from the shared library Bar. The TOC will contain an entry for each one of these symbols (DoThis, DoThat, gMyGlobal), and each entry will point to the address of the corresponding symbol, as shown in Figure 1.

[IMAGE Nichols_final_REV2.GIF]

Figure 1 A Fragment's Table of Contents

The R2 register in the PowerPC processor is dedicated to storing the currently active TOC and thus is sometimes called the RTOC. The RTOC is saved, modified, and restored each time a new fragment is invoked. Because the TOC allows references to global and static data, it's analogous to the A5 world in the 680x0 environment. However, it's important to emphasize that in the 680x0 environment only applications have an A5 world and easy access to global and static data, while in the PowerPC environment, all fragments have a TOC and easy access to global and static data. So the great thing about standalone code being handled as a code fragment is that you can have globals in your WDEFs, INITs, and plug-ins without having to jump through any hoops at all!

Because a fragment can contain symbols from other fragments, these symbols must be resolved or bound at run time. This preparation is performed by the Code Fragment Manager. In most cases, such as when a PowerPC application is loaded, this is done transparently. Standalone code can be automatically prepared by the Mixed Mode Manager, but the preferred method is to have your application call the Code Fragment Manager directly. Fortunately, the Code Fragment Manager makes this an easy task, as we'll see later. Once a fragment has been prepared, the Code Fragment Manager returns a connection ID to identify the fragment. This connection ID is used when unloading the fragment, similar to a refNum that's returned when opening a file and later used to close the file.

The Code Fragment Manager has the ability to resolve symbols by name, so you can export any routine or data by name and then import that symbol in another fragment. This allows you to store multiple routines in your fragment, export them, and then call each routine when necessary by asking the Code Fragment Manager for its address. This is much nicer than having a dispatch-based, single- entry-point code resource as we do in the 680x0 environment.

CALLING STANDALONE CODE
At any given time a PowerPC processor-based Macintosh may be executing in the native PowerPC runtime architecture or in an emulated 680x0 runtime architecture. The switching between the two runtime environments is transparent and handled by the Mixed Mode Manager. And thanks to the Mixed Mode Manager, code from one instruction set can call code from another instruction set, which is just what happens when a 680x0 application calls a standalone code module written in PowerPC code or a native PowerPC application calls a standalone code module written in 680x0 code.

So whenever we're running on a PowerPC processor-based Macintosh and our application calls standalone code, we're presented with an interesting problem. Given a pointer to standalone code, how do we know what kind of code it points to? In the 680x0 world, a procedure pointer is simply the address of a procedure. But in the PowerPC environment, a procedure pointer is actually the address of a transition vector, which in turn contains pointers to the actual routine and the TOC for the fragment. Figure 2 shows the difference.

To solve this problem, the Mixed Mode Manager creates a generic procedure pointer known as a UniversalProcPtr (UPP). A UPP can point to one of two things: a 680x0 procedure (in which case the UPP is really just a 680x0 ProcPtr in disguise) or a routine descriptor (data type RoutineDescriptor). A routine descriptor is a data structure that describes the instruction set,parameters, and calling convention of the routine. The Mixed Mode Manager looks at the routine descriptor to determine whether a mode switch is necessary and, if so, how to perform the switch.

To run in a PowerPC environment, we use a UPP anywhere we would formerly have passed a ProcPtr, such as in specifying a dialog filter procedure. In the case of 680x0 standalone code (which typically is stored in a resource), we indirectly pass a ProcPtr, and thus a UPP, to the calling routine via the handle to the resource. For a PowerPC code resource (or for a "fat" resource), we have to replace this ProcPtr with a UPP, which points to a routine descriptor describing the routine in our code resource. Figure 3 compares the forms taken by the three different kinds of code resources (680x0, PowerPC, and fat).

Now that you have the necessary background information on standalone code, we can move on to demonstrate how to handle three different types of standalone code: a universal plug-in module, a module to port time-critical code, and a fat resource.

[IMAGE Nichols_final_REV3.GIF]

Figure 2 680x0 and PowerPC Procedure Pointers Compared

Figure 3 Forms of Code Resources Compared

A UNIVERSAL PLUG-IN MODULE

Plug-ins are a popular way for third-party developers to extend the functionality of an application. To demonstrate how to create and support a universal plug-in module -- one that will run in either the PowerPC or the 680x0 world -- we'll use the example of a plug-in module for an application called SuperSort, which you'll find on this issue's CD.

SuperSort is a simple application that visually sorts data represented as bars of varying height according to a specified algorithm. SuperSort has two built-in algorithms -- bubble sort and quick sort -- and can add new algorithms through a plug-in mechanism. We'll compile and package a shell-sort algorithm into a plug-in that will work with either the 680x0 or the PowerPC version of SuperSort. The application will pick the correct version of the plug-in automatically at run time.

EXAMPLE CODE
Below is the code for our plug-in sort routine that implements the shell-sort algorithm. ShellSort's data parameter is a pointer to the data to be sorted, the size is the number of elements to be sorted, and the swap parameter is a callback procedure to SuperSort to animate the sort.

#include "SortPlugIn.h"

#if powerc
#include <MixedMode.h>
ProcInfoType swapPI = kCStackBased 
                        | STACK_ROUTINE_PARAMETER(1, kFourByteCode) 
                        | STACK_ROUTINE_PARAMETER(2, kFourByteCode);
#endif

void ShellSort(DataPoint *data, short size, SwapProc swap);

void ShellSort(DataPoint *data, short size, SwapProc swap)
{
    short i, j, incr;
    
    incr = size / 2;
    while (incr > 0) {
        for (i=incr; i<size; i++) {
            j = i - incr;
            while (j >= 0) {
                if (data[j].n > data[j + incr].n) {
                #if powerc
                    // We must use CallUniversalProc since we will
                    // be passed a UPP for the SwapProc.
                    CallUniversalProc(swap, swapPI, &data[j],
                        &data[j + incr]);
                #else
                    // If we're 680x0, we can just call the proc
                    // directly. MixedMode will handle switching if
                    // swap is a UPP.
                    (*swap)(&data[j], &data[j + incr]);
                #endif
                    j -= incr;
                } else
                    j = -1;
            }
        }
        incr /= 2;
    }
}
COMPILING, LINKING, AND PACKAGING
We execute the following commands to compile and link this procedure in order to create the 680x0 version stored in a 'SORT' resource:
C ShellSort.c -o ShellSort.o
link -t 'rsrc' -c 'RSED' -m ShellSort -rt SORT=128 ShellSort.oð
    -o ShellSort.rsrc

We compile and link the procedure again to create the PowerPC version to be stored in the data fork. The output of the PowerPC linker is known as an XCOFF (extended common object file format) file. This is a bloated file that we then strip to turn into a leaner file known as a PEF file (your guess as to what PEF stands for is as good as any). Here are the commands:

PPCC -w conformance -appleext on -sym full ShellSort.c 
    -o ShellSort.c.o
PPCLink -main ShellSort -export ShellSort ð
    ShellSort.c.o  ð
    "{PPCLibraries}"StdCRuntime.o  ð
    "{PPCLibraries}"PPCCRuntime.o  ð
    -o ShellSort.xcoff
makepef ShellSort.xcoff -e ShellSort ð
    -o ShellSort.pef

Now that we have the two pieces, we join them together:

duplicate -y -d ShellSort.pef ShellSort
duplicate -y -r ShellSort.rsrc ShellSort
SetFile ShellSort -t 'SORT' -c 'TimN'

The resulting file, ShellSort, is our plug-in that can be executed on either the 680x0 or the PowerPC platform. The code fragment that's stored in the data fork will be loaded, prepared, executed, and unloaded by the PowerPC version of the SuperSort application, while the code contained in the 'SORT' resource will be loaded, executed, and unloaded by the 680x0 version.

CALLING THE PLUG-IN
When calling a universal plug-in, your native PowerPC application should first check to see whether there's a code fragment in the data fork of the plug-in, using the Code Fragment Manager routine GetDiskFragment. If so, the pointer returned by GetDiskFragment can be used to call the module. If not, the application should then look for the appropriate plug-in resource in the resource fork of the plug-in.

GetDiskFragment locates and loads a fragment found in the data fork of a file.

OSErr GetDiskFragment(FSSpecPtr fileSpec, long offset, long length,
        Str63 fragName, Mask findFlags, ConnectionID *connID,
        Ptr *mainAddr, Str255 errName);

The parameters are as follows:

fileSpecThe file to check for a fragment
offsetOffset into the data fork where the fragment resides
lengthThe length of the fragment, in bytes
fragNameThe name of the fragment, used for debugging only
findFlagsThe operation to be performed on the fragment
connIDThe fragment connection ID
mainAddrThe main entry point of the fragment
errNameThe error string returned if the call fails

Here's an example of how you might call a universal plug-in:

Handle          myProcHandle;
MyProcType      myProcPtr;
OSErr               err;
ConnectionID    connID;

err = GetDiskFragment(theFile, 0, 0, theFile.name, kLoadNewCopy,
                &connID, &myProcPtr, errName);
if (err == noErr) {
    /* We have a fragment, ladies and gentlemen! */
    (*myProcPtr)(p1, p2, p3);
    CloseConnection(connID);
} else
{
    /* We have a resource. */
    myProcHandle = Get1Resource(kMyCodeType, kMyCodeID);
    if (myProcHandle != nil) {
        HLock(myProcHandle);
        myProcPtr = (MyProcType)*myProcHandle;
        #if powerc 
            CallUniversalProc(myProcPtr, kMyProcInfo, p1, p2, p3);
        #else 
            (*myProcPtr)(p1, p2, p3);
        #endif
        HUnlock(myProcHandle);
        ReleaseResource(myProcHandle);
    }
}

The address that's returned is whatever symbol was defined as the main entry point during the linking of the PowerPC code. Because this is a true pointer to the routine and not a routine descriptor, it can be dereferenced and called directly as with any other ProcPtr you may be used to.

If your fragment has multiple entry points, you can use the Code Fragment Manager function FindSymbol after loading the fragment via GetDiskFragment in order to locate a particular symbol by name. The FindSymbol routine returns the address of the symbol you request.

A MODULE TO PORT TIME-CRITICAL CODE

To port only time-critical portions of your application, you would use a technique similar to the one just described. Factor out the code whose execution you want to accelerate, create a fragment, and package the fragment in the data fork of your application. In your application's initialization code, call the Code Fragment Manager to get the entry point to this fragment from your application's data fork and store this pointer. When you no longer need the pointer, call the Code Fragment Manager to close the connection to the code fragment.

Your code fragment will need a routine descriptor as its main entry point since it will be called from 680x0 code. To make a routine descriptor your main entry point, declare a global routine descriptor in your code that describes the fragment's main entry point. When you link the resulting object file, tell the linker to use this global routine descriptor rather than the actual code entry point as the main entry point.

Here's an example of using a global routine descriptor as an entry point to a fragment:

RoutineDescriptor MyEntryPointRD = 
    BUILD_ROUTINE_DESCRIPTOR(kMyEntryPointProcInfo, MyEntryPoint)

When we go to link this code, we tell the linker that the main entry point is our routine descriptor.

link -main MyEntryPointRD -export MyEntryPointRD {MyObject}
    {MyLibs} ð -o {MyXCOFF}

A FAT RESOURCE

Although existing resources can run on a PowerPC processor-based Macintosh thanks to the 680x0 emulator, they run much more slowly than they would if they were written in native PowerPC code. If you make an existing resource "fat," it will work in either the 680x0 or the PowerPC environment and you won't need to ship two different versions of your resource. For example, if you have a fat WDEF, the code will run as usual on the 680x0 platform but will execute as native PowerPC code on the PowerPC platform, with the Macintosh system software choosing the correct code at run time.

CREATING A FAT RESOURCE
There's a template defined in MixedMode.r that allows easy creation of fat resources. We'll create a fat resource version of a WDEF to show how it's done. We won't present all of the code here but simply the steps involved in making the WDEF into a fat resource. The code for the WDEF is on this issue's CD along with an application called TestWDEF that shows the WDEF working.

Recall from our earlier discussion that we call a code resource through a ProcPtr, which in this case is a dereferenced resource handle. That means that we need to create a routine descriptor for our PowerPC version of the WDEF so that the Mixed Mode Manager can invoke a mode switch, if necessary, when the system software calls the WDEF. This is consistent with the requirement that all ProcPtrs be replaced with UPPs in native PowerPC code.

Here's an example of a fat resource Rez definition:

#include "MixedMode.r"

type 'WDEF' as 'sdes';

resource 'WDEF' (128) {
    0x00003BB0,                                  // 680x0 ProcInfo
    0x00003BB0,                                  // PowerPC ProcInfo
    $$Resource("WDEF.rsrc", 'oCod', 128), 
                                       // Name, type, ID of resource
    // containing 680x0 code
    $$Resource("WDEF.rsrc", 'pCod', 128)
                                       // Name, type, ID of resource
    // containing PowerPC code
};

The resource type 'sdes' is defined in MixedMode.r. The 'sdes' resource template inserts into the start of your resource some 680x0 code that checks whether you're running on a PowerPC platform. If so, it copies your PowerPC code to the start of the resource data in memory and calls the PowerPC code via a UniversalProcPtr embedded in the resource at the start of the PowerPC code. Once the PowerPC code has been copied, each subsequent call to the resource goes straight to the PowerPC code, bypassing the initial checks. If you're running on a 680x0 platform, the same process occurs, but instead the 680x0 code is copied over the resource data in memory. All of this is done transparently by the 'sdes' resource template.

CALLING THE FAT RESOURCE
If your fat resource was created using the template in MixedMode.r, you don't have to change your calling code to execute the PowerPC code fragment. Calling PowerPC standalone code is exactly the same as calling 680x0 code. Due to the magic of the fat resource, the calling code doesn't have to know the PowerPC processor even exists. It simply grabs the resource and calls it.

Here's what the code looks like:

Handle      myProcHandle;
MyProcType  myProcPtr;

myProcHandle = Get1Resource(kMyType, kMyID);
if (myProcHandle == nil) {
    // Handle the error.
    . . .
} else
{
    HLock(myProcHandle);
    myProcPtr = (MyProcType)*myProcHandle;
    (*myProcPtr)(/* Params go here. */);
    HUnlock(myProcHandle);
    ReleaseResource(myProcHandle);
}

When this code is compiled into 680x0 code, the parameters are placed on the stack and the actual routine is called via a 680x0 JSR(A0) instruction. When the JSR instruction is executed, the pointer in A0 points to a routine descriptor, not to 680x0 code. This causes the emulator to invoke the Mixed Mode Manager, which then performs the necessary context switch, automatically prepares the fragment for execution, and calls the PowerPC code. Upon exit from the PowerPC code, the Mixed Mode Manager performs a switch back to the emulated 680x0 environment and execution continues as if the call were to 680x0 code. The calling code never knows the difference.

NOW WHAT?

Now that you've learned the basics of standalone code on the PowerPC platform, you can start thinking about what you can do with your application or existing code resource to exploit the speed of the PowerPC processor. A good exercise is to consult your favorite algorithm book and create your own SuperSort plug-in using a different algorithm, or to recompile your favorite WDEF or other code resource into a fat resource that you can run on any Macintosh, whether PowerPC processor-based or 680x0-based. Remember to package your new code fragments in the data fork, and your recompilations of existing resources as resources. Then watch your creations take off!

REFERENCES

  • "Making the Leap to PowerPC" by Dave Radcliffe, develop  Issue 16.
  • "Another Take on Globals in Standalone Code" by Keith Rollin, develop  Issue 12.
  • Macintosh Technical Note "Stand-Alone Code, ad nauseam " (Platforms & Tools 35).
  • Data Structures and Algorithms  by Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman (Addison- Wesley, 1983).
  • Fundamentals of Computer Algorithms  by Ellis Horowitz and Sartaj Sahni (Computer Science Press, 1978).
  • Inside Macintosh: PowerPC System Software  (Addison-Wesley, 1994).

TIM NICHOLS (Internet tim.nichols@3do.com) says the eight years he spent earning his bachelor's and master's degrees at UC Santa Barbara in between trips to the beach were the best years of his life. At Apple, he was a member of the PowerPC software team, where he developed some of the first PowerPC applications for demos and performance evaluation. He now works at 3DO in their ROM/OS group doing drivers and low-level system software. When not working, he plays softball and volleyball, fueling his activity with pizza and burritos. *

For more on standalone code in the 680x0 world, see the Macintosh Technical Note "Stand-Alone Code, ad nauseam " and the article "Another Take on Globals in Standalone Code" in develop  Issue 12 *

MixedMode.r is part of the Macintosh on RISC Software Developer's Kit, soon to be available from APDA. *

For an overview of PowerPC technology and runtime architecture, see the article "Making the Leap to PowerPC" in develop Issue 16 and the soon-to-be-available Inside Macintosh: PowerPC System Software. *

For details on the shell-sort algorithm, see any book on algorithms, such as Fundamentals of Computer Algorithms  by Horowitz and Sahni or Data Structures and Algorithms  by Aho, Hopcroft, and Ullman.*

THANKS TO OUR TECHNICAL REVIEWERS Erik Eidt, Jim Gochee, Ed Navarrete, Jim Reekes *

 
AAPL
$102.94
Apple Inc.
+0.44
MSFT
$45.02
Microsoft Corpora
-0.41
GOOG
$573.81
Google Inc.
+2.21

MacTech Search:
Community Search:

Software Updates via MacUpdate

Mac DVDRipper Pro 5.0 - Copy, backup, an...
Mac DVDRipper Pro is the DVD backup solution that lets you protect your DVDs from scratches, save your batteries by reading your movies from your hard disk, manage your collection with just a few... Read more
pwSafe 3.1 - Secure password management...
pwSafe provides simple and secure password management across devices and computers. pwSafe uses iCloud to keep your password databases backed-up and synced between Macs and iOS devices. It is... Read more
StatsBar 1.8 - Monitor system processes...
StatsBar gives you a comprehensive and detailed analysis of the following areas of your Mac: CPU usage Memory usage Disk usage Network and bandwidth usage Battery power and health (MacBooks only)... Read more
Path Finder 6.5.5 - Powerful, award-winn...
Path Finder is a file browser that combines the familiar Finder interface with the powerful utilities and innovative features. Just a small selection of the Path Finder 6 feature set: Dual pane... Read more
QuarkXPress 10.2.1 - Desktop publishing...
With QuarkXPress, you can communicate in all the ways you need to -- and always look professional -- in print and digital media, all in a single tool. Features include: Easy to Use -- QuarkXPress is... Read more
Skype 6.19.0.450 - Voice-over-internet p...
Skype allows you to talk to friends, family and co-workers across the Internet without the inconvenience of long distance telephone charges. Using peer-to-peer data transmission technology, Skype... Read more
VueScan 9.4.41 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
Cloud 3.0.0 - File sharing from your men...
Cloud is simple file sharing for the Mac. Drag a file from your Mac to the CloudApp icon in the menubar and we take care of the rest. A link to the file will automatically be copied to your clipboard... Read more
LibreOffice 4.3.1.2 - Free Open Source o...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
SlingPlayer Plugin 3.3.20.505 - Browser...
SlingPlayer is the screen interface software that works hand-in-hand with the hardware inside the Slingbox to make your TV viewing experience just like that at home. It features an array of... Read more

Latest Forum Discussions

See All

The Manhattan Project Review
The Manhattan Project Review By Andrew Fisher on September 2nd, 2014 Our Rating: :: ROCKET SCIENCEUniversal App - Designed for iPhone and iPad The Manhattan Project offers a great Euro-style gameplay experience, but it is totally... | Read more »
Rhonna Designs Magic (Photography)
Rhonna Designs Magic 1.0 Device: iOS Universal Category: Photography Price: $1.99, Version: 1.0 (iTunes) Description: Want to sprinkle *magic* on your photos? With RD Magic, you can add colors, filters, light leaks, bokeh, edges,... | Read more »
This Week at 148Apps: August 25-29, 2014
Shiny Happy App Reviews   | Read more »
Qube Kingdom – Tips, Tricks, Strategies,...
Qube Kingdom is a tower defense game from DeNA. You rally your troops – magicians, archers, knights, barbarians, and others – and fight against an evil menace looking to dominate your kingdom of tiny squares. Planning a war isn’t easy, so here are a... | Read more »
Qube Kingdom Review
Qube Kingdom Review By Nadia Oxford on August 29th, 2014 Our Rating: :: KIND OF A SQUARE KINGDOMUniversal App - Designed for iPhone and iPad Qube Kingdom has cute visuals, but it’s a pretty basic tower defense game at heart.   | Read more »
Fire in the Hole Review
Fire in the Hole Review By Rob Thomas on August 29th, 2014 Our Rating: :: WALK THE PLANKUniversal App - Designed for iPhone and iPad Seafoam’s Fire in the Hole looks like a bright, 8-bit throwback, but there’s not enough booty to... | Read more »
Alien Creeps TD is Now Available Worldwi...
Alien Creeps TD is Now Available Worldwide Posted by Ellis Spice on August 29th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Dodo Master Review
Dodo Master Review By Jordan Minor on August 29th, 2014 Our Rating: :: NEST EGGiPad Only App - Designed for the iPad Dodo Master is tough but fair, and that’s what makes it a joy to play.   | Read more »
Motorsport Manager Review
Motorsport Manager Review By Lee Hamlet on August 29th, 2014 Our Rating: :: MARVELOUS MANAGEMENTUniversal App - Designed for iPhone and iPad Despite its depth and sense of tactical freedom, Motorsport Manager is one of the most... | Read more »
Motorsport Manager – Beginner Tips, Tric...
The world of Motorsport management can be an unforgiving and merciless one, so to help with some of the stress that comes with running a successful race team, here are a few hints and tips to leave your opponents in the dust. | Read more »

Price Scanner via MacPrices.net

Apple refurbished iPads available for up to $...
Apple is offering Certified Refurbished iPad Airs for up to $140 off MSRP. Apple’s one-year warranty is included with each model, and shipping is free. Stock tends to come and go with some of these... Read more
Are We Now In The Post-Post-PC Era?
A longtime and thoroughgoing laptop aficionado, I was more than a little dismayed by Steve Jobs’s declaration back in 2010 when he sprang the iPad on an unsuspecting world. that we’d entered a “post-... Read more
PC Outlook Improves, But 2014 Shipments Still...
According to the International Data Corporation (IDC) Worldwide Quarterly PC Tracker, worldwide PC shipments are expected to fall by -3.7 percent in 2014. To hat’s actually an improvement from the... Read more
IDC Lowers Tablet Sales Projections for 2014...
Following a second consecutive quarter of softer than expected demand, International Data Corporation (IDC) has lowered its worldwide tablet plus 2-in-1 forecast for 2014 to 233.1 million units. The... Read more
Apple now offering refurbished 21-inch 1.4GHz...
The Apple Store is now offering Apple Certified Refurbished 21″ 1.4GHz iMacs for $929 including free shipping plus Apple’s standard one-year warranty. Their price is $170 off the cost of new models,... Read more
Save $50 on the 2.5GHz Mac mini, on sale for...
B&H Photo has the 2.5GHz Mac mini on sale for $549.99 including free shipping. That’s $50 off MSRP, and B&H will also include a free copy of Parallels Desktop software. NY sales tax only. Read more
Save up to $300 on an iMac with Apple refurbi...
The Apple Store has Apple Certified Refurbished iMacs available for up to $300 off the cost of new models. Apple’s one-year warranty is standard, and shipping is free. These are the best prices on... Read more
The Rise of Phablets
Carlisle & Gallagher Consulting Group, a businesses and technology consulting firm focused solely on the financial services industry, has released an infographic depicting the convergence of... Read more
Bad Driver Database App Allows Good Drivers t...
Bad Driver Database 1.4 by Facile Group is a new iOS and Android app that lets users instantly input and see how many times a careless, reckless or just plain stupid driver has been added to the... Read more
Eddy – Cloud Music Player for iPhone/iPad Fre...
Ukraine based CapableBits announces the release of Eddy, its tiny, but smart and powerful cloud music player for iPhone and iPad that allows users to stream or download music directly from cloud... Read more

Jobs Board

*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
Senior Event Manager, *Apple* Retail Market...
…This senior level position is responsible for leading and imagining the Apple Retail Team's global event strategy. Delivering an overarching brand story; in-store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.