TweetFollow Us on Twitter

December 92 - BE OUR GUEST

BE OUR GUEST

COMPONENTS AND C++ CLASSES COMPARED

DAVID VAN BRINK

[IMAGE 037-040_Van_Brink_rev1.GIF]

If you're familiar with C++ classes but new to thinking about components, you may find it instructive to know how the two compare. Although each has its own niche in Macintosh software development, components and C++ classes have many features in common.

In general, both components and C++ classes encourage a building-block approach to solving complex problems. But whereas a component is separate from any application that uses it, a class exists only within the application that uses it. Components are intended to add systemwide functionality, while classes are intended to promote a modular approach to developing a program.

We can also compare components and C++ classes in terms of how they're declared and called, their use of data hiding and inheritance, and their implementation. But first, let's briefly review what a class is and what a component is.

SOME BASIC DEFINITIONS
A class, in the programming language C++, is a description of a data structure and the operations (methods) that can be performed on it. An instance of a class is known as an object. Classes are provided in C++ to promote an "object-oriented programming style." By grouping a data type and its methods together, classes enable programmers to take a modular approach to developing a program.

A component, as described in the preceding article ("Techniques for Writing and Debugging Components"), is a single routine that accepts as arguments a selector and a parameter block. The selector specifies which of several (or many) operations to perform, and the parameter block contains the arguments necessary for that operation. Components are "registered" with the Component Manager and can be made available to either the program that registered the component or to any program that's executed, making it possible to add systemwide functionality. For instance, if Joe's Graphics Corporation develops a new image compression technique, it can be sold to users as a component. Users install the component simply by dragging an icon into a folder, and that form of image compression is then automatically available to all programs that make use of graphics.

DECLARING CLASSES AND COMPONENTS
A C++ class is declared in much the same way as a struct, with the addition of routines that operate only on the structure described. Once the class is declared, instances can be declared in exactly the same way as other variables. That is, to create an instance of a class, you either declare a variable of that class or dynamically allocate (and later deallocate) a variable of that class.

A component must be registered with the Component Manager. At that time, its type, subtype, manufacturer, and name are specified. The type, subtype, and manufacturer are long integers; the name is a string. Component instances can only be created dynamically, using specific Component Manager routines. To create an instance of a component that has been registered, a program must first find the component. If the seeking program is the same one that registered the component, it already has the component. If not, it can make Component Manager calls to search for all available components with a given type, subtype, and manufacturer; any part of the description can be a wild card.

Once a component has been found, it must be opened, and this operation produces a reference to the component instance. Operations can be performed on the component instance using this reference.

Table 1 compares how classes and components are declared and how instances of each are created. (Note that for components, the code is idealized.)

CALLING ALL ROUTINES
Calling a routine that operates on a C++ object is slightly different from making a standard routine call: the call more closely resembles a reference to an internal field of a struct. The routine that gets called is identical to any other routine, except that it's declared within the class definition rather than at the same brace level as the main routine.

Calling a component routine is identical to calling any other routine. The first argument is always the component instance, and other arguments may optionally follow. The return type of every component routine is a long integer, and part of the numerical range is reserved for error messages from either the component or the component dispatch mechanism.

The Component Manager lets a program issue calls to a component that it has never "met" before. This form of dynamic linking is crude, because no type checking is performed.

Table 1 compares how classes and components are called.

DATA HIDING
A C++ class can have "private" fields and methods, which are accessible by class methods but not by the caller. The programmer can see these private parts simply by perusing the class declaration. If a change to the implementation of a class requires that the private parts be changed, relinking with the implementation of the class won't be sufficient: all clients must be recompiled, since the positions of public fields might have changed. (One tricky way around this is to include a private field of type char * that's really a pointer to the class's internal state data. The class constructor allocates memory for whatever internal state it likes and coerces a pointer to it to live in that char * field. This technique is useful for object-only software library distribution and also protects proprietary algorithms from curious programmers.)

A component is responsible for allocating memory for its internal state (the component's "globals") when it's opened and releasing that memory when it's closed. There are both component globals and component instance globals. These correspond to static and automatic variables in a C++ class and have similar utility. A component might keep track of how many instances of itself have been opened and restrict that number by failing on the open call.

INHERITANCE
It's often useful to build software on top of existing functionality or, alternatively, to take existing functionality and alter it to perform a more specialized function. Both of these things can be accomplished for C++ classes with inheritance. In the former case, the new class will have methods that don't exist in the base class; in the latter, the new class will have methods with the same name as methods in the base class but that take precedence over the base methods.

Components and the Component Manager support both kinds of inheritance as well, as discussed in the preceding article. All components of a given type must support the same set of calls, although this is enforced only by convention. Components of a particular type and subtype may optionally support other calls as well, and components of a particular type, subtype, and manufacturer may support still more calls. In the case where a component wants to use the services of another component and perhaps override some of its functions with modifications, Component Manager utilities let a component designate another component as its "parent." A simple protocol ensures that the correct variant of a routine gets called. When a component must call itself, it must issue the call to its child component, if any. When a component wants to rely on the existing implementation of the parent component, it must pass the call to its parent.

IMPLEMENTING CLASSES AND COMPONENTS
My discussion of implementation is based on the 68000 platform, since that's the only one I've scrutinized with regard to compiled C++ and Component Manager calls.

The routines that can be used with a C++ class are declared, and optionally implemented, within the class declaration. They behave like normal C routines, as described earlier.

A call to a C++ class that has no parents or descendants is compiled as a direct subroutine call, exactly as is a standard routine call. A call to a C++ class that has parents or descendants is slightly more complicated. A table lookup is used at run time to determine exactly which implementation of a routine gets called for the particular object being operated on. Such a call takes perhaps a dozen assembly instructions.

A component consists of only a single routine. It's passed a selector and a parameter block. The selector is used to decide which operation to actually perform, and the parameter block contains all the arguments passed by the caller.

The component's parameter block is untyped -- the component routine has no way to determine what kinds of arguments were originally passed, and herein lies the danger. Some languages, such as LISP, have untyped arguments; in LISP, however, a routine can determine how many arguments have been passed and what the argument types are. A component interface is more like assembly language -- or C without prototypes! -- in that it can determine nothing about what has been passed to it.

You can't compile a C++ program containing a call to a nonexistent routine; the compiler will balk. (Well, OK, this isn't strictly true: there are dynamically linking systems for C++, and other languages, that let you call a C++ routine that hasn't been linked with the rest of the compiled source code; the routine can be linked to later, at run time. But no facility of this type is currently standard in the Macintosh Operating System or supported under the standard Macintosh development tools.) In the case of components, the compiler can't check for such illegal calls, since the particular components that may be opened are decided at run time. Therefore, the caller must be prepared to handle a "Routine Not Implemented" error if a call is made with an unknown selector.

All calls to components pass through the Component Manager's dispatch mechanism. The dispatcher must locate the component's entry point and globals from the component reference, which is not simply a pointer but a packed record containing an index into a table and some bits used to determine whether the component reference is still valid. If a client makes a call to a component it no longer has open, the Component Manager has a statistical likelihood of catching this call and returning an appropriate error.

The Component Manager has facilities to redispatch the parameter block to one of many routines, and those routines are written to take the arguments as originally passed. The Component Manager was originally written for use on the 68000 series of processor; on computers with that processor, the parameter block doesn't have to be recopied onto the stack for further dispatching. On other processors the parameters might have to be recopied, however.

The Component Manager has been highly optimized and fast dispatching can reduce its overhead still more, but in general its lookup-and-dispatch process still takes several dozen instructions. If the component being called is using the Component Manager's inheritance mechanism, further overhead is incurred by passing control to the parent or child component. Overall, the Component Manager is quite efficient, but still not as efficient as direct routine calls. Table 1 compares how classes and components are implemented.

IN SUM
Components, as supported by the Component Manager, exhibit many of the features of C++ classes. Both encourage a modular approach to solving problems. Both feature inheritance and data hiding. Where they differ is in how they're declared and implemented, how they do (or fail to do) type checking, and how expensive they are to call. Each occupies its own distinct niche in Macintosh programming: classes as a way to ease development of a single program, components as a way to add systemwide functionality and give control and choice to the user.


Table 1A Comparison of Calls: Classes (Actual Code) Versus Components (Idealized Code)

Declaring a Class

class MyClass {
/* Variables and methods for 
    the class */
}

Declaring a Component

myComponent = RegisterComponent(MyEntryRoutine,
        myType, mySubType, myManufacturer, "A Component");

Creating a Class Instance

MyClass x;

Creating a Component Instance

myComponent= FindComponent(myType, mySubType, myManufacturer);
myInstance = OpenComponent(myComponent);

Calling a Class

x.MyMethod(arg1, arg2);

Calling a Component

result = MyMethod(myInstance, arg1, arg2);

Implementing a Class

class MyClass {
    void MyMethod(int arg1, int arg2) {
    /* Some code for MyMethod */
    }
}

Implementing a Component

long MyEntryRoutine(ComponentParams *params, char *globals) {
    switch(params->selector) {
        case kOpen:
        case kClose:
            return noErr;
        . . . /* other required calls here */
        case MyMethod:
        /* Do my method. */
        /* arg1 and arg2 are in params. */ return noErr;
        default:
            return routineNotImplementedErr;
    }
}

DAVID VAN BRINK is a computer programmer. When he's not busy programming computers, he can usually be found writing computer programs. Mostly, he does this in the soothing fluorescent glow of his cubicle at Apple. He's presently writing components (with great fervor) to support musical synthesizers for QuickTime. *

We welcome guest columns from readers who have something interesting or useful to say. Send your column idea or draft to AppleLink DEVELOP or to Caroline Rose at Apple Computer, Inc., 20525 Mariani Avenue, M/S 75-2B, Cupertino, CA 95014.*


Thanks to Casey King and Gary Woodcock for reviewing this column. *

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Apple macOS Sierra 10.12.3 - The latest...
With Apple macOS Sierra, Siri makes its debut on Mac, with new features designed just for the desktop. Your Mac works with iCloud and your Apple devices in smart new ways, and intelligent... Read more
Lyn 1.8.5 - Lightweight image browser an...
Lyn is a fast, lightweight image browser and viewer designed for photographers, graphic artists, and Web designers. Featuring an extremely versatile and aesthetically pleasing interface, it delivers... Read more
iClock Pro 3.4.7 - Customize your menuba...
iClock Pro is a menu bar replacement clock for Apple's default clock. iClock Pro is an update, total rewrite and improvement to the popular iClock. Have the day, date and time in different fonts and... Read more
Opera 42.0.2393.137 - High-performance W...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
Apple Security Update 2016-003 Supplemen...
Apple Security Update is recommended for all users and improves the security of OS X. For detailed information about the security content of this update, please visit: http://support.apple.com/kb/... Read more
Apple iOS 10.2.1 - The latest version of...
iOS 10 is the biggest release of iOS ever. A massive update to Messages brings the power of the App Store to your conversations and makes messaging more personal than ever. Find your route with... Read more
BetterTouchTool 1.992 - Customize Multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom... Read more
Viber 6.5.5 - Send messages and make cal...
Viber lets you send free messages and make free calls to other Viber users, on any device and network, in any country! Viber syncs your contacts, messages and call history with your mobile device, so... Read more
Lyn 1.8.5 - Lightweight image browser an...
Lyn is a fast, lightweight image browser and viewer designed for photographers, graphic artists, and Web designers. Featuring an extremely versatile and aesthetically pleasing interface, it delivers... Read more
Apple iOS 10.2.1 - The latest version of...
iOS 10 is the biggest release of iOS ever. A massive update to Messages brings the power of the App Store to your conversations and makes messaging more personal than ever. Find your route with... Read more

Clash Royale gets some serious balance u...
| Read more »
Ironhide Game Studio prepares for a busy...
Kingdom Rush breathed fresh life into the tired tower defense genre way back in 2012. The game was a robust challenge that somehow managed to lift you up, rather than leaving you feeling crushed and hopeless. The rich array of unit types and... | Read more »
Collect pets and sling arrows in Arcane...
Mobile gaming is a crowded market, but regular updates are a good way to keep us attention-short players keen. The brand new content in Arcane Online is a prime example. Published by Japanese developer Gala, Arcane Online is a fantasy MMO that... | Read more »
Super Mario Run dashes onto Android in M...
Super Mario Run was one of the biggest mobile launches in 2016 before it was met with a lukewarm response by many. While the game itself plays a treat, it's pretty hard to swallow the steep price for the full game. With that said, Android users... | Read more »
WarFriends Beginner's Guide: How to...
Chillingo's new game, WarFriends, is finally available world wide, and so far it's a refreshing change from common mobile game trends. The game's a mix of tower defense, third person shooter, and collectible card game. There's a lot to unpack here... | Read more »
Super Gridland (Entertainment)
Super Gridland 1.0 Device: iOS Universal Category: Entertainment Price: $1.99, Version: 1.0 (iTunes) Description: Match. Build. Survive. "exquisitely tuned" - Rock Paper Shotgun No in-app purches, and no ads! | Read more »
Red's Kingdom (Games)
Red's Kingdom 1.0 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0 (iTunes) Description: Mad King Mac has kidnapped your father and stolen your golden nut! Solve puzzles and battle goons as you explore and battle your... | Read more »
Turbo League Guide: How to tame the cont...
| Read more »
Fire Emblem: Heroes coming to Google Pla...
Nintendo gave us our first look at Fire Emblem: Heroes, the upcoming mobile Fire Emblem game the company hinted at last year. Revealed at the Fire Emblem Direct event held today, the game will condense the series' tactical RPG combat into bite-... | Read more »
ReSlice (Music)
ReSlice 1.0 Device: iOS Universal Category: Music Price: $9.99, Version: 1.0 (iTunes) Description: Audio Slice Machine Slice your audio samples with ReSlice and create flexible musical atoms which can be triggered by MIDI notes or... | Read more »

Price Scanner via MacPrices.net

Deal alert! 13-inch 2.0GHz MacBook Pros for $...
B&H Photo has the new 2016 13″ 2.0GHz non-Touch Bar MacBook Pros in stock today and on sale for $225 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 13″ 2.0GHz MacBook Pro... Read more
Free LibreOffice Portable 5.2.4 Complete Offi...
PortableApps.com and The Document Foundation have announce the release of LibreOffice Portable 5.2.4. LibreOffice Portable is an Open Source full-featured office suite — including a word processor,... Read more
Apple Planning Three New Tablets For 2017 – D...
Digitimes’ Rebecca Kuo and Joseph Tsai say that unnamed insider sources report Apple having three new tablets in the pipeline for 2017 release: a 9.7-inch model with a friendly price range, a new mid... Read more
Roundup of 15-inch Touch Bar MacBook Pro sale...
B&H Photo has the new 2016 15″ Apple Touch Bar MacBook Pros in stock today and on sale for up to $150 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.7GHz Touch Bar... Read more
Apple refurbished iPad Pros available for up...
Apple has Certified Refurbished 9″ and 12″ Apple iPad Pros available for up to $160 off the cost of new iPads. An Apple one-year warranty is included with each model, and shipping is free: - 32GB 9″... Read more
16GB iPad Air 2, Apple refurbished, available...
Apple has Certified Refurbished 16GB iPad Air 2s available for $319 including free shipping. A standard Apple one-year is included. Their price is $60 off original MSRP for this model. Read more
Apple iMacs on sale for up to $120 off MSRP
B&H Photo has 21″ and 27″ Apple iMacs on sale for up to $120 off MSRP, each including free shipping plus NY sales tax only: - 27″ 3.3GHz iMac 5K: $2199 $100 off MSRP - 27″ 3.2GHz/1TB Fusion iMac... Read more
Apple refurbished Apple TVs available for up...
Apple has Certified Refurbished 32GB and 64GB Apple TVs available for up to $30 off the cost of new models. Apple’s standard one-year warranty is included with each model, and shipping is free: -... Read more
Save up to $350 with Apple Certified Refurbis...
Apple has Certified Refurbished 2015 21″ & 27″ iMacs available for up to $350 off MSRP. Apple’s one-year warranty is standard, and shipping is free. The following models are available: - 21″ 3.... Read more
2015 12-inch Retina MacBooks, Apple refurbish...
Apple has Certified Refurbished 2015 12″ Retina MacBooks available for up to $410 off original MSRP. Apple will include a standard one-year warranty with each MacBook, and shipping is free. The... Read more

Jobs Board

*Apple* & PC Desktop Support Technician...
Apple & PC Desktop Support Technician job in Manhattan, NY Introduction: We have immediate job openings for several Desktop Support Technicians with one of our most Read more
*Apple* & PC Desktop Support Technician...
Apple & PC Desktop Support Technician job in Stamford, CT We have immediate job openings for several Desktop Support Technicians with one of our most well-known Read more
*Apple* Retail - Multiple Positions - Apple,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Site Security Manager - Apple (Unite...
# Apple Site Security Manager Job Number: 54692472 Culver City, California, United States Posted: Jan. 19, 2017 Weekly Hours: 40.00 **Job Summary** The Apple Read more
*Apple* macOS Systems Integration Administra...
…most exceptional support available in the industry. SCI is seeking an Junior Apple macOS systems integration administrator that will be responsible for providing Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.