TweetFollow Us on Twitter

December 92 - BE OUR GUEST




[IMAGE 037-040_Van_Brink_rev1.GIF]

If you're familiar with C++ classes but new to thinking about components, you may find it instructive to know how the two compare. Although each has its own niche in Macintosh software development, components and C++ classes have many features in common.

In general, both components and C++ classes encourage a building-block approach to solving complex problems. But whereas a component is separate from any application that uses it, a class exists only within the application that uses it. Components are intended to add systemwide functionality, while classes are intended to promote a modular approach to developing a program.

We can also compare components and C++ classes in terms of how they're declared and called, their use of data hiding and inheritance, and their implementation. But first, let's briefly review what a class is and what a component is.

A class, in the programming language C++, is a description of a data structure and the operations (methods) that can be performed on it. An instance of a class is known as an object. Classes are provided in C++ to promote an "object-oriented programming style." By grouping a data type and its methods together, classes enable programmers to take a modular approach to developing a program.

A component, as described in the preceding article ("Techniques for Writing and Debugging Components"), is a single routine that accepts as arguments a selector and a parameter block. The selector specifies which of several (or many) operations to perform, and the parameter block contains the arguments necessary for that operation. Components are "registered" with the Component Manager and can be made available to either the program that registered the component or to any program that's executed, making it possible to add systemwide functionality. For instance, if Joe's Graphics Corporation develops a new image compression technique, it can be sold to users as a component. Users install the component simply by dragging an icon into a folder, and that form of image compression is then automatically available to all programs that make use of graphics.

A C++ class is declared in much the same way as a struct, with the addition of routines that operate only on the structure described. Once the class is declared, instances can be declared in exactly the same way as other variables. That is, to create an instance of a class, you either declare a variable of that class or dynamically allocate (and later deallocate) a variable of that class.

A component must be registered with the Component Manager. At that time, its type, subtype, manufacturer, and name are specified. The type, subtype, and manufacturer are long integers; the name is a string. Component instances can only be created dynamically, using specific Component Manager routines. To create an instance of a component that has been registered, a program must first find the component. If the seeking program is the same one that registered the component, it already has the component. If not, it can make Component Manager calls to search for all available components with a given type, subtype, and manufacturer; any part of the description can be a wild card.

Once a component has been found, it must be opened, and this operation produces a reference to the component instance. Operations can be performed on the component instance using this reference.

Table 1 compares how classes and components are declared and how instances of each are created. (Note that for components, the code is idealized.)

Calling a routine that operates on a C++ object is slightly different from making a standard routine call: the call more closely resembles a reference to an internal field of a struct. The routine that gets called is identical to any other routine, except that it's declared within the class definition rather than at the same brace level as the main routine.

Calling a component routine is identical to calling any other routine. The first argument is always the component instance, and other arguments may optionally follow. The return type of every component routine is a long integer, and part of the numerical range is reserved for error messages from either the component or the component dispatch mechanism.

The Component Manager lets a program issue calls to a component that it has never "met" before. This form of dynamic linking is crude, because no type checking is performed.

Table 1 compares how classes and components are called.

A C++ class can have "private" fields and methods, which are accessible by class methods but not by the caller. The programmer can see these private parts simply by perusing the class declaration. If a change to the implementation of a class requires that the private parts be changed, relinking with the implementation of the class won't be sufficient: all clients must be recompiled, since the positions of public fields might have changed. (One tricky way around this is to include a private field of type char * that's really a pointer to the class's internal state data. The class constructor allocates memory for whatever internal state it likes and coerces a pointer to it to live in that char * field. This technique is useful for object-only software library distribution and also protects proprietary algorithms from curious programmers.)

A component is responsible for allocating memory for its internal state (the component's "globals") when it's opened and releasing that memory when it's closed. There are both component globals and component instance globals. These correspond to static and automatic variables in a C++ class and have similar utility. A component might keep track of how many instances of itself have been opened and restrict that number by failing on the open call.

It's often useful to build software on top of existing functionality or, alternatively, to take existing functionality and alter it to perform a more specialized function. Both of these things can be accomplished for C++ classes with inheritance. In the former case, the new class will have methods that don't exist in the base class; in the latter, the new class will have methods with the same name as methods in the base class but that take precedence over the base methods.

Components and the Component Manager support both kinds of inheritance as well, as discussed in the preceding article. All components of a given type must support the same set of calls, although this is enforced only by convention. Components of a particular type and subtype may optionally support other calls as well, and components of a particular type, subtype, and manufacturer may support still more calls. In the case where a component wants to use the services of another component and perhaps override some of its functions with modifications, Component Manager utilities let a component designate another component as its "parent." A simple protocol ensures that the correct variant of a routine gets called. When a component must call itself, it must issue the call to its child component, if any. When a component wants to rely on the existing implementation of the parent component, it must pass the call to its parent.

My discussion of implementation is based on the 68000 platform, since that's the only one I've scrutinized with regard to compiled C++ and Component Manager calls.

The routines that can be used with a C++ class are declared, and optionally implemented, within the class declaration. They behave like normal C routines, as described earlier.

A call to a C++ class that has no parents or descendants is compiled as a direct subroutine call, exactly as is a standard routine call. A call to a C++ class that has parents or descendants is slightly more complicated. A table lookup is used at run time to determine exactly which implementation of a routine gets called for the particular object being operated on. Such a call takes perhaps a dozen assembly instructions.

A component consists of only a single routine. It's passed a selector and a parameter block. The selector is used to decide which operation to actually perform, and the parameter block contains all the arguments passed by the caller.

The component's parameter block is untyped -- the component routine has no way to determine what kinds of arguments were originally passed, and herein lies the danger. Some languages, such as LISP, have untyped arguments; in LISP, however, a routine can determine how many arguments have been passed and what the argument types are. A component interface is more like assembly language -- or C without prototypes! -- in that it can determine nothing about what has been passed to it.

You can't compile a C++ program containing a call to a nonexistent routine; the compiler will balk. (Well, OK, this isn't strictly true: there are dynamically linking systems for C++, and other languages, that let you call a C++ routine that hasn't been linked with the rest of the compiled source code; the routine can be linked to later, at run time. But no facility of this type is currently standard in the Macintosh Operating System or supported under the standard Macintosh development tools.) In the case of components, the compiler can't check for such illegal calls, since the particular components that may be opened are decided at run time. Therefore, the caller must be prepared to handle a "Routine Not Implemented" error if a call is made with an unknown selector.

All calls to components pass through the Component Manager's dispatch mechanism. The dispatcher must locate the component's entry point and globals from the component reference, which is not simply a pointer but a packed record containing an index into a table and some bits used to determine whether the component reference is still valid. If a client makes a call to a component it no longer has open, the Component Manager has a statistical likelihood of catching this call and returning an appropriate error.

The Component Manager has facilities to redispatch the parameter block to one of many routines, and those routines are written to take the arguments as originally passed. The Component Manager was originally written for use on the 68000 series of processor; on computers with that processor, the parameter block doesn't have to be recopied onto the stack for further dispatching. On other processors the parameters might have to be recopied, however.

The Component Manager has been highly optimized and fast dispatching can reduce its overhead still more, but in general its lookup-and-dispatch process still takes several dozen instructions. If the component being called is using the Component Manager's inheritance mechanism, further overhead is incurred by passing control to the parent or child component. Overall, the Component Manager is quite efficient, but still not as efficient as direct routine calls. Table 1 compares how classes and components are implemented.

Components, as supported by the Component Manager, exhibit many of the features of C++ classes. Both encourage a modular approach to solving problems. Both feature inheritance and data hiding. Where they differ is in how they're declared and implemented, how they do (or fail to do) type checking, and how expensive they are to call. Each occupies its own distinct niche in Macintosh programming: classes as a way to ease development of a single program, components as a way to add systemwide functionality and give control and choice to the user.

Table 1A Comparison of Calls: Classes (Actual Code) Versus Components (Idealized Code)

Declaring a Class

class MyClass {
/* Variables and methods for 
    the class */

Declaring a Component

myComponent = RegisterComponent(MyEntryRoutine,
        myType, mySubType, myManufacturer, "A Component");

Creating a Class Instance

MyClass x;

Creating a Component Instance

myComponent= FindComponent(myType, mySubType, myManufacturer);
myInstance = OpenComponent(myComponent);

Calling a Class

x.MyMethod(arg1, arg2);

Calling a Component

result = MyMethod(myInstance, arg1, arg2);

Implementing a Class

class MyClass {
    void MyMethod(int arg1, int arg2) {
    /* Some code for MyMethod */

Implementing a Component

long MyEntryRoutine(ComponentParams *params, char *globals) {
    switch(params->selector) {
        case kOpen:
        case kClose:
            return noErr;
        . . . /* other required calls here */
        case MyMethod:
        /* Do my method. */
        /* arg1 and arg2 are in params. */ return noErr;
            return routineNotImplementedErr;

DAVID VAN BRINK is a computer programmer. When he's not busy programming computers, he can usually be found writing computer programs. Mostly, he does this in the soothing fluorescent glow of his cubicle at Apple. He's presently writing components (with great fervor) to support musical synthesizers for QuickTime. *

We welcome guest columns from readers who have something interesting or useful to say. Send your column idea or draft to AppleLink DEVELOP or to Caroline Rose at Apple Computer, Inc., 20525 Mariani Avenue, M/S 75-2B, Cupertino, CA 95014.*

Thanks to Casey King and Gary Woodcock for reviewing this column. *


Community Search:
MacTech Search:

Software Updates via MacUpdate

Arq 5.5.1 - Online backup to Google Driv...
Arq is super-easy online backup for Mac and Windows computers. Back up to your own cloud account (Amazon Cloud Drive, Google Drive, Dropbox, OneDrive, Google Cloud Storage, any S3-compatible server... Read more
Slack 2.3.0 - Collaborative communicatio...
Slack is a collaborative communication app that simplifies real-time messaging, archiving, and search for modern working teams. Version 2.3.0: Note: Now requires OS X 10.8 or later New The app... Read more
Cocktail 10.1 - General maintenance and...
Cocktail is a general purpose utility for macOS that lets you clean, repair and optimize your Mac. It is a powerful digital toolset that helps hundreds of thousands of Mac users around the world get... Read more
Firefox 49.0.2 - Fast, safe Web browser.
Firefox offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals and casual... Read more
Art Text 3.1 - $49.99
Art Text is graphic design software to create stunning illustrations, such as badges, flyers, logos, social headers and icons, text mockups, website graphics and buttons, picture captions, word art,... Read more
AirRadar 3.1.9 - $9.95
With AirRadar, scanning for wireless networks is now easier and more personalized! It allows you to scan for open networks and tag them as favourites or filter them out. View detailed network... Read more
Alarm Clock Pro 10.2.5 - $19.95
Alarm Clock Pro isn't just an ordinary alarm clock. Use it to wake you up in the morning, send and compose e-mails, remind you of appointments, randomize the iTunes selection, control an internet... Read more
MacCleanse 5.1.6 - $29.95
MacCleanse is the product of thousands of hours of intense research and development. It meticulously scans all of the nooks and crannies of a computer for unnecessary junk that can take up huge... Read more
Apple macOS Sierra 10.12.1 - The latest...
With Apple macOS Sierra, Siri makes its debut on Mac, with new features designed just for the desktop. Your Mac works with iCloud and your Apple devices in smart new ways, and intelligent... Read more
Backblaze - Online backup serv...
Backblaze is an online backup service designed from the ground-up for the Mac. With unlimited storage available for $5 per month, as well as a free 15-day trial, peace of mind is within reach with... Read more

Latest Forum Discussions

See All

WitchSpring2 (Games)
WitchSpring2 1.27 Device: iOS Universal Category: Games Price: $3.99, Version: 1.27 (iTunes) Description: This is the story of Luna, the Moonlight Witch as she sets out into the world. This is a sequel to Witch Spring. Witch Spring 2... | Read more »
4 popular apps getting a Halloween makeo...
'Tis the season for all things spooky. So much, so, in fact, that even apps are getting into the spirt of things, dressing up in costume and spreading jack o' lanterns all about the place. These updates bring frightening new character skins, scary... | Read more »
Pokémon GO celebrates Halloween with can...
The folks behind Pokémon GO have some exciting things planned for their Halloween celebration, the first in-game event since it launched back in July. Starting October 26 and ending on November 1, trainers will be running into large numbers of... | Read more »
Best Fiends Forever Guide: How to collec...
The fiendship in Seriously's hit Best Fiends has been upgraded this time around in Best Fiends Forever. It’s a fast-paced clicker with lots of color and style--kind of reminiscent of a ‘90s animal mascot game like Crash Bandicoot. The game... | Read more »
5 apps for the budding mixologist
Creating your own cocktails is something of an art form, requiring a knack for unique tastes and devising interesting combinations. It's easy to get started right in your own kitchen, though, even if you're a complete beginner. Try using one of... | Read more »
5 mobile strategy games to try when you...
Strategy enthusiasts everywhere are celebrating the release of Civilization VI this week, and so far everyone seems pretty satisfied with the first full release in the series since 2010. The series has always been about ultra-addictive gameplay... | Read more »
Popclaire talk to us about why The Virus...
Humanity has succumbed to a virus that’s spread throughout the world. Now the dead have risen with a hunger for human flesh, and all that remain are a few survivors. One of those survivors has just called you for help. That’s the plot in POPCLAIRE’... | Read more »
Oceans & Empires preview build sets...
Hugely ambitious sea battler Oceans & Empires is available to play in preview form now on Google Play - but download it quickly, as it’s setting sail away in just a few days. [Read more] | Read more »
Rusty Lake: Roots (Games)
Rusty Lake: Roots 1.1.4 Device: iOS Universal Category: Games Price: $2.99, Version: 1.1.4 (iTunes) Description: James Vanderboom's life drastically changes when he plants a special seed in the garden of the house he has inherited.... | Read more »
Flippy Bottle Extreme! and 3 other physi...
Flippy Bottle Extreme! takes on the bottle flipping craze with a bunch of increasingly tricky physics platforming puzzles. It's difficult and highly frustrating, but also addictive. When you begin to master the game, the sense of achievement is... | Read more »

Price Scanner via

EyeQue Introduces iOS And Android Based Advan...
Affordable vision technologies developers EyeQue have announced what they claim to be the world’s most advanced intelligent vision solution, pitched as enabling anyone, anywhere to easily and... Read more
Smartwatch Market Tanks, Declining 51.6% in 2...
The worldwide smartwatch market experienced a round of growing pains in the third quarter of 2016 (3Q16), resulting in a year-over-year decline in shipment volumes. According to data from the... Read more
CAZE announces Ultra Thin Glass Screen Protec...
Hong Kong based CAZE has announced its first ultra thin glass screen protector, the Glazz Pro for iPhone 7/7 Plus. Glazz Pro is made from chemically reinforced glass with an anti-fingerprint... Read more
11-inch MacBook Airs on sale for up to $120 o...
Newegg has 11″ MacBook Airs on sale for up to $120 off MSRP. Shipping is free: - 11″ 1.6GHz/128GB MacBook Air: $799.99 $100 off MSRP - 11″ 1.6GHz/256GB MacBook Air: $979 $120 off MSRP Read more
Up to $300 off Macs, $20 off iPads with Apple...
Purchase a new Mac or iPad using Apple’s Education Store and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free, and... Read more
Apple’s Thursday “Hello Again” Event A Largel...
KGI Securities analyst Ming-Chi Kuo, who has a strong record of Apple hardware prediction accuracy, forecasts in a new note to investors released late last week that a long-overdue redo of the... Read more
12-inch Retina MacBooks on sale for $100 off...
Amazon has 2016 12″ Apple Retina MacBooks on sale for $100 off MSRP. Shipping is free: - 12″ 1.1GHz Silver Retina MacBook: $1199.99 $100 off MSRP - 12″ 1.1GHz Gold Retina MacBook: $1199.99 $100 off... Read more
Save up to $600 with Apple refurbished Mac Pr...
Apple has Certified Refurbished Mac Pros available for up to $600 off the cost of new models. An Apple one-year warranty is included with each Mac Pro, and shipping is free. The following... Read more
PixelStyle Inexpensive Photo Editor For Mac W...
PixelStyle is an all-in-one Mac Photo Editor with a huge range of high-end filters including lighting, blurs, distortions, tilt-shift, shadows, glows and so forth. PixelStyle Photo Editor for Mac... Read more
13-inch MacBook Airs on sale for $100-$140 of...
B&H has 13″ MacBook Airs on sale for $100-$140 off MSRP for a limited time. Shipping is free, and B&H charges NY sales tax only: - 13″ 1.6GHz/128GB MacBook Air (sku MMGF2LL/A): $899 $100 off... Read more

Jobs Board

*Apple* Retail - Multiple Positions- Towson,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
Software Engineering Intern: Integration / QA...
Job Summary Apple is currently seeking enthusiastic interns who can work full-time for a minimum of 12-weeks between Fall 2015 and Summer 2016. Our software Read more
Software Engineering Intern: Frameworks at *...
Job Summary Apple is currently seeking enthusiastic interns who can work full-time for a minimum of 12-weeks between Fall 2015 and Summer 2016. Our software Read more
*Apple* Retail - Multiple Positions- Nashua,...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
*Apple* Retail - Multiple Positions- Napervi...
Job Description:SalesSpecialist - Retail Customer Service and SalesTransform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.