TweetFollow Us on Twitter

Using Objects Safely In Object Pascal

Using Objects Safely In Object Pascal

CURT BIANCHI

In Object Pascal, objects are just like handles in that they refer to relocatable blocks of memory. To use objects safely, the programmer needs to recognize that the Macintosh Memory Manager can move the block of memory referred to by an object or handle, although only at well-defined times. This article gives guidelines for the safe use of objects in ObjectPascal.

The simplicity and elegance of Object Pascal's syntax is a two-edged sword. On the one hand, it makes Object Pascal feel like a natural extension to Pascal; on the other, it can lull a programmer into a false sense of security. For although the syntax of Object Pascal treats objects as though they were statically allocated, the fact is that in Object Pascal, objects arealways allocated as relocatable blocks (handles, in the vernacular) in the application heap. Thus, when you write Object Pascal programs for the Macintosh, you must be eternally aware that objects are handles, and program accordingly. This article tells you how to do that with MPW Pascal and TML Pascal, two compilers that can be used with MacApp in the MPW environment. In addition, it gives some tips for using handles outside the context of objects.

HOW OBJECT PASCAL IMPLEMENTS OBJECTS: A CAUTIONARY TALE

To get an idea of how Object Pascal implements objects, let's compare the code fragments in Figure 1. Each column of code accomplishes the same thing: the definition and use of a data structure representing a graphical shape. The only difference is that the left column is implemented with objects, while the right column is implemented with handles. The code in these two columns is very similar, and a comparison of the two reveals what goes on behind the scenes.
 1 TYPE
 2 TShape = OBJECT (TObject)
 3     fBounds: Rect;
 4     fColor: RGBColor;
 5     END;
 6
 7
 8
 9 VAR
10     aShape: TShape;
11     sameShape, copiedShape: TShape;
12
13 BEGIN
14 NEW(aShape);
15 FailNIL(aShape);
16
17 aShape.fBounds := gZeroRect;
18 aShape.fColor := gRGBBlack;
19
20 sameShape := aShape;
21
22 copiedShape := TShape(aShape.Clone);
23
24 FailNIL(copiedShape);
25
26 END;

 1 TYPE
 2 TShapeHdl = ^TShapePtr;
 3 TShapePtr = ^TShape;
 4 TShape = RECORD
 5     fBounds: Rect;
 6     fColor: RGBColor;
 7 END;
 8
 9 VAR
10     aShape: TShapeHdl;
11     sameShape, copiedShape: TShapeHdl;
12
13 BEGIN
14 aShape := TShapeHdl(NewHandle(SIZEOF(TShape)));
15 FailNIL(aShape);
16
17 aShape^^.fBounds := gZeroRect;
18 aShape^^.fColor := gRGBBlack;
19
20 sameShape := aShape;
21
22 copiedShape := aShape;
23 FailOSErr(HandToHand(Handle(copiedShape)));
24 FailNIL(copiedShape);
25
26 END;

Figure 1.
A Comparison of Code Implemented with Objects vs. Handles

The first thing to observe is that any variable of an object type is actually areference to an object. That is, the variable is a handle that refers to a block of memory containing the object's data. Thus, in the left column the value of the variableaShape is a handle. It contains the address of a master pointer that in turn points to the object's data. The size of the variableaShape is four bytes--the size of an address and not the size of the object itself. This is very much the same as the right column, in which the variableaShape is explicitly declared to be a handle. In fact, the only difference between the two is that the object version ofTShape has an implicit field containing the object's class ID, located just before the first declared field. The class ID is an integer value that allows the object's type to be identified at run time.

Line 14 of each column shows how a TShape data structure is created. Since handles must be dynamically allocated in the heap, it follows that objects must be dynamically allocated as well. This is the purpose of the call to NEW in the left column. Note that NEW works completely differently for objects and for other kinds of memory allocation. For objects, NEW generates a call to the internal library procedure %_OBNEW, which, aside from some debugging details, simply calls NewHandle, just like the handle-based code on the right does.

The call to FailNIL in line 15 detects the case where allocation of the object or handle fails. FailNIL is part of MacApp's failure-handling library and will be discussed in greater detail later.

Lines 17 and 18 reference fields of aShape. In the object code, the syntax leads you to believe that no handle dereferencing takes place, but of course we know better. What the Pascal compiler does is to implicitly dereference the handle for you. In other words, it does the very same thing as the code in the right column does explicitly.

Line 20 assigns one object reference to another, causing both aShape and sameShape to refer to thesame object. Line 22 (plus 23 in the right column) produces another shape whose contents are exactly the same as aShape. In the object case, the Clone method is used to produce a copy of the object referenced by aShape; copiedShape is assigned a reference to the newly created object. Clone is implemented by calling the Toolbox routine HandToHand, as is used in the right column. (FailOSErr is a MacApp routine that checks the result of HandToHand.) Since copying an object (or a handle) requires a memory allocation for the new object, FailNIL is used to ensure that the copy succeeded. The moral of this story is that you have to be very careful about how you use objects. For example, you must remember that every time you refer to a field of an object, you're really dereferencing a handle. If you're not careful, you're likely to wind up with a corrupt heap.

A PRIMER ON HANDLES AND THEIR PITFALLS

Handles have some interesting properties. If you've done any serious programming on the Macintosh (and I don't mean HyperTalk), then you know what I mean. If not, then (1) you've been spared the sorrows of a corrupt heap, and (2) you ought to get How to Write Macintosh Software , 2nd ed., by Scott Knaster (Hayden Books, 1988). Chapters 2 and 3 tell you all you need to know about handles. In the meantime, I'll give you a thumbnail description. In the heap, relocatable blocks of memory are referenced by double indirection, as shown in Figure 2. The first pointer (called the handle) points to a nonrelocatable pointer (called the master pointer), which in turn points to a block of memory. The Memory Manager can move the block of memory, and when this happens the address in the master pointer is changed to the block's new address.

[IMAGE _129-139_Using_Objects_h1.GIF]

Figure 2. A Handle to a Relocatable Block

This doesn't create a problem as long as you access the block via the handle. However, at times it's necessary or desirable for the sake of efficiency to dereference the handle--that is, make a copy of the block's master pointer, and then use that pointer to access the block by single indirection. And even this isn't a problem--as long as the block of memory doesn't move.

Well, we have bad news: it's bound to move at some point, when the Memory Manager needs to compact the heap. When this happens, the master pointer itself is correctly updated, but your copy of it is left dangling. Now for the good news: relocatable blocks of memory only move at certain well-defined times. Thus, the key to dereferencing handles is knowing when the blocks of memory they point to may move.

Oh, and one more bit of bad news: the Memory Manager has no garbage collection. This means you're responsible for disposing of handles when you've finished with them, and making sure you don't leave any dangling pointers.

PRACTICING SAFE OBJECT USAGE

Because the Memory Manager moves blocks of memory only at certain well-defined times, it's possible to come up with reliable guidelines for safe object usage. Keep these guidelines firmly in mind anytime you program in Object Pascal:1. Don't pass fields of objects as parameters to any routine unless you know it's safe.

In Pascal, when a routine is called, each parameter is passed by value or by address. Passing a parameter by value pushes a copy of the parameter's value onto the stack. Passing a parameter by address pushes the parameter's address onto the stack. (This should immediately trigger a handle alert in your head.) Passing thevalue of an object field is no problem. But passing theaddress of an object field on the stack is a potentially unsafe situation. That's because the address points to a memory location within an object--in other words, the object is dereferenced. If the object should happen to get relocated, the address won't point into the object anymore.

Because there's no way to predict what the address points to after memory relocation, and hence no way to predict the effect of using the address, all manner of strange things can occur. Making this type of bug extra difficult to track down is the fact that passing parameters unsafely works most of the time--it only fails when the heap is so full that the Memory Manager must relocate memory to satisfy a request. You do not want these kinds of bugs in your program.

Fortunately, Object Pascal programmers have a big advantage over their conventional colleagues: the compiler actually tells you when a field of an object is used in a potentially unsafe way. This occurs for VAR parameters, which by definition are passed by address, and for non- VAR parameters whose size is greater than four bytes. The latter case is because the compiler actually passes such parameters by address, expecting the called routine to use the address to make a local copy of the data.

If you stop to think about it, this error message is a really nice feature. Especially when compared to what the compiler does when any other handle is unsafely dereferenced, which is nothing. Nada. Zip. Even the most experienced and handle-cognizant of programmers occasionally writes code that unsafely dereferences a handle.

Let's look at an example. Consider the following definitions:

TYPE
    TShape = OBJECT (TObject)
    fBounds: Rect;
    fColor: RGBColor;
    END;

VAR aShape: TShape;

Attempting to compile the line

OffsetRect(aShape.fBounds, 10, 20);

results in the following error:

# OffsetRect(aShape.fBounds, 10, 20);
# ? 
### pascal - Error 815 Unsafe use of an object field 
as a var or > 4 byte parameter

In other words, this line of code has dereferenced the object's handle at a time when the object may move while it is dereferenced. In this case, the address of the field fBounds is computed and passed to OffsetRect. If aShape were to move before OffsetRect used it, then the computed address wouldn't point at fBounds anymore. Bombs away! Maybe the message ought to read "Error 815 You are about to commit yourself to spending an indeterminant number of days working with Macsbug. Please reconsider."

A simple way of avoiding the error is to avoid using the field as a parameter. Instead, use a temporary variable:

VAR
    r: Rect;

r := aShape.fBounds;
OffsetRect(r, 10, 20);
aShape.fBounds := r;

While this construct is guaranteed to be safe, it could be rather onerous if you had to do this every time you wanted to use an object field as a parameter. Actually, it turns out that many cases can easily be identified as safe because the routine being called doesn't trigger memory relocation. But how do you know when it's safe? Mostly, you need to know what causes objects to move.

Memory relocation can be triggered if (a) the called routine is in a different segment from the caller, since loading a segment may trigger memory relocation; (b) the called routine calls a ROM routine that triggers relocation; or (c) the called routine calls another routine that fits the criteria of (a) or (b). In the case of OffsetRect, it's in ROM so it won't require a segment load, and it is a ROM routine that doesn't move memory. (I know that because it isn't listed in Appendix A of theInside Macintosh XRef .)

When you do know it's safe (as with OffsetRect), you can turn off the compiler's parameter checking, effectively telling the compiler to keep quiet because you know what you're doing. Do this by using the $H compiler directive:

 {$Push}{$H-}
OffsetRect(aShape.fBounds, 10, 20);
 {$Pop}

The first line turns off parameter checking. $Push saves the state of the compiler directives; $H- tells the compiler not to check parameters for unsafe usage. In the second line the object field is used as a parameter. Because $H- was issued, no compiler error is generated. The third line uses $Pop to restore the state of the directives at the time the last $Push was issued.

The trick, of course, is in knowing when to use $H and when to use a copy of the object field instead. Based on the three causes of memory relocation, it's possible to identify the conditions in which you should avoid passing the field of an object as a parameter.

  1. Don't pass a field of an object as a VAR parameter, or a field greater than four bytes in size, in these circumstances:
    1. When the called routine is listed in Appendix A of the Inside Macintosh XRef .

      Appendix A lists routines defined in Inside Macintosh , volumes I-V, that may trigger memory relocation. These include all system-defined routines, such as those in ROM and in packages. Any routine defined in Inside Macintosh , volumes I-V, that does not appear in Appendix A will not trigger memory relocation. (A similar appendix appears in each Inside Macintosh book, but only applies to that book. So use the appendix in the XRef because it applies to all five volumes.)

    2. When the called routine is in a different, nonresident segment from the code generating the call.

      Calling a routine in another segment may require loading it into memory, potentially triggering memory relocation. If the called routine is in the same segment as the caller, then the segment must already be in memory and you're safe. If the called routine is in a different segment from the caller, you're still safe if the called routine's segment is a resident.

      Resident segments are defined by MacApp ® to be segments that are loaded into memory when the program starts up, and that stay in memory throughout the life of the program. Thus calling a routine in a resident segment never requires loading it into memory. If you know a routine is in a resident segment, you can call it without worrying about a segment load relocating memory. If you're not sure a routine is in a resident segment, play it safe.

    3. When the called routine is in the same segment as the caller, but the called routine indirectly causes segment loads by calling routines in other, nonresident segments. If you don't know whether a routine does this, then play it safe.
    4. When the called routine calls ROM routines that may trigger memory relocation. Again, if you're not sure, play it safe.

  2. Don't pass a field of an object or handle as the parameter to NEW.

    The parameter toNEW is aVAR parameter, and sinceNEW callsNewHandle, it most definitely may trigger memory relocation. Unfortunately, MPW Pascal compilers before version 3.1 didn't generate an error forNEW when you passed an object field as the parameter, and TML Pascal version 3.0 still doesn't. So be careful.

    Note that MacApp contains functions that allocate objects as well. The Clone method copies an object, returning a reference to the copy as its result. NewObjectByClassName and NewObjectByClassId create new objects. Because of the way the compiler generates code for functions, it is safe to assign a function result to the field of an object.

  3. Call FailNIL after every attempt to create an object, copy an object, or create a handle or pointer.

    FailNIL, defined in MacApp's UFailure unit, has a single parameter--a reference to an object, handle, or pointer. If that reference is NIL then FailNIL signals failure, essentially causing the application to back out of what it was doing and resume processing events. Calling FailNIL is how you verify that a memory allocation request actually succeeded. It works because the Memory Manager returns NIL if there isn't enough memory to satisfy a memory allocation. Since heaps have a finite amount of space, the potential exists that any allocation request can fail. So check each and every request just to make sure. Failure to heed this advice leads to bus errors and address errors when your program tries to dereference NIL handles.

    Be aware that this description of FailNIL just scratches the surface of MacApp's failure-handling facilities. The MacApp technical manuals go into greater detail than space permits in this article.

  4. Remember to free objects when you've finished with them, but only when you've finished with them!

    The Macintosh doesn't have automatic garbage collection, so you're responsible for freeing (disposing of) any objects you create. Failing to free objects when you've finished with them leads to a heap that slowly fills up with garbage, eventually suffocating the application.

    Keep in mind that when you free an object, any references to it are no longer valid and should be set to NIL. Nasty things happen if you use references to objects that no longer exist. If you're lucky, the MacApp debugger will stop your program the first time you refer to a nonexistent object. But sometimes even the MacApp debugger gets fooled. This happens if the memory occupied by the freed object hasn't yet been written over, or even worse, if another object or handle was allocated using the same master pointer as the object that was freed. (Try debugging that sometime!)

  5. If necessary, ensure that an object doesn't move by locking it.

    Sometimes it really makes life easier to ensure that an object won't be moved no matter what happens. Objects, like handles, can be locked. In fact, MacApp provides a method for this purpose. It's calledLock and it's defined inTObject so it can be used on any object. Lock takes aBoolean value as its only parameter, which when true "locks" the object's location in memory, and when false makes the object relocatable again. Lock returns aBoolean result that indicates whether the object was locked whenLock was called. This is handy because you can lock an object, do what you need to do, thenrestore the object's lock state to what it was before :

    VAR
        wasLocked: BOOLEAN;
    
    BEGIN
        wasLocked := anObject.Lock(TRUE);
        {do what you need to do}
        wasLocked := anObject.Lock(wasLocked);
    END;

    If you're not using MacApp, you can lock an object by casting it to be a handle and using HLock and HUnlock, the Memory Manager routines for locking and unlocking handles:

    HLock(Handle(anObject));
    { Do what you need to do. }
    HUnlock(Handle(anObject));

    Keep in mind that it's unwise to lock objects (or handles) for long periods of time. Nonrelocatable objects cause heap fragmentation, which reduces the effectiveness of the heap. (For further details, see Richard Clark's article "The Secret Life of the Memory Manager" in this issue.)

PRACTICING SAFE HANDLE USAGE

Even in an object-based program, it's occasionally necessary to use handles instead of objects. While handle usage is subject to the same guidelines just described for objects, there are some additional wrinkles:
  1. Don't count on the compiler to tell you when a handle's field is used unsafely.

    Unlike for fields of objects, the compiler doesn't produce an error when passing a field of a handle by address. All of the same problems with using fields of objects apply to fields of handles, but since the compiler offers no help in detecting unsafe uses, it's completely up to you to ensure that you use fields of handles safely. Chalk one up for objects.

  2. Beware of WITH statements that dereference handles. For example:

    TYPE
        TShapeHdl = ^TShapePtr;
        TShapePtr = ^TShape;
        TShape = RECORD
            fBounds: Rect;
            fColor: RGBColor;
        END;
    
    VAR
        aShape: TShapeHdl;
    
    BEGIN
        aShape := NewHandle(SIZEOF(TShape));
        FailNIL(aShape);
    
        WITH aShape^^ DO
            BEGIN
            fBounds := gZeroRect;
            fColor := gRGBBlack;
            END;
    END;

    Not only does the WITH statement simplify the Pascal text, it also lets the compiler perform code optimizations. Specifically, it stores the address fromaShape^^ in a register so that it can be reused throughout the scope of the WITH without being recomputed. As you might imagine, any operation that triggers memory relocation within the scope of the WITH will invalidate the address contained in the register. Bad news.

    By the way, using WITH statements on objects is okay! The compiler recognizes that the WITH is dereferencing an object and makes sure safe code is generated. Objects 2, handles 0.

  3. Don't assign a function result to a field of a handle unless you know the calling function won't trigger memory relocation.

    For example, using the shape definitions given above, this is a potentially unsafe use of a handle field:

    aShape^^.fBounds := FunctionThatReturnsARect;

    The problem is that the Pascal compiler dereferences the handle aShape before calling the function. Thus, a function that triggers memory relocation or is in another segment will invalidate the address obtained by dereferencing the handle.

    Once again, this type of usage is okay for objects. As for WITH statements, the compiler recognizes when a function result is assigned to an object field and ensures that safe code is generated.

IN CONCLUSION

In conclusion, you can avoid the pitfalls in writing Object Pascal programs, by understanding how objects work and by using the guidelines described in this article. Then instead of having to spend undue time debugging, you can relax and enjoy the advantages of object-based programming.

CURT BIANCHI, displaced Lakers fan, has never met a taco he didn't like. He's been at Apple more than three years, where he first worked on MacApp and now concentrates on future system software. This southern California native (he asks you not to hold that against him) earned a BSICS in 1981 from the University of California-Irvine, followed by stints at Link Systems and Monogram Software, and self-employment doing software odd jobs, including working on computer dating software. His hobbies include music, photographing trains, avoiding serious injury on the basketball court, and rooting for the Lakers from afar .*

 
AAPL
$111.78
Apple Inc.
-0.87
MSFT
$47.66
Microsoft Corpora
+0.14
GOOG
$516.35
Google Inc.
+5.25

MacTech Search:
Community Search:

Software Updates via MacUpdate

LibreOffice 4.3.5.2 - Free Open Source o...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
CleanApp 5.0.0 Beta 5 - Application dein...
CleanApp is an application deinstaller and archiver.... Your hard drive gets fuller day by day, but do you know why? CleanApp 5 provides you with insights how to reclaim disk space. There are... Read more
Monolingual 1.6.2 - Remove unwanted OS X...
Monolingual is a program for removing unnecesary language resources from OS X, in order to reclaim several hundred megabytes of disk space. It requires a 64-bit capable Intel-based Mac and at least... Read more
NetShade 6.1 - Browse privately using an...
NetShade is an Internet security tool that conceals your IP address on the web. NetShade routes your Web connection through either a public anonymous proxy server, or one of NetShade's own dedicated... Read more
calibre 2.13 - Complete e-library manage...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
Mellel 3.3.7 - Powerful word processor w...
Mellel is the leading word processor for OS X and has been widely considered the industry standard since its inception. Mellel focuses on writers and scholars for technical writing and multilingual... Read more
ScreenFlow 5.0.1 - Create screen recordi...
Save 10% with the exclusive MacUpdate coupon code: AFMacUpdate10 Buy now! ScreenFlow is powerful, easy-to-use screencasting software for the Mac. With ScreenFlow you can record the contents of your... Read more
Simon 4.0 - Monitor changes and crashes...
Simon monitors websites and alerts you of crashes and changes. Select pages to monitor, choose your alert options, and customize your settings. Simon does the rest. Keep a watchful eye on your... Read more
BBEdit 11.0.2 - Powerful text and HTML e...
BBEdit is the leading professional HTML and text editor for the Mac. Specifically crafted in response to the needs of Web authors and software developers, this award-winning product provides a... Read more
ExpanDrive 4.2.1 - Access cloud storage...
ExpanDrive builds cloud storage in every application, acts just like a USB drive plugged into your Mac. With ExpanDrive, you can securely access any remote file server directly from the Finder or... Read more

Latest Forum Discussions

See All

Make your own Tribez Figures (and More)...
Make your own Tribez Figures (and More) with Toyze Posted by Jessica Fisher on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
So Many Holiday iOS Sales Oh My Goodness...
The holiday season is in full-swing, which means a whole lot of iOS apps and games are going on sale. A bunch already have, in fact. Naturally this means we’re putting together a hand-picked list of the best discounts and sales we can find in order... | Read more »
It’s Bird vs. Bird in the New PvP Mode f...
It’s Bird vs. Bird in the New PvP Mode for Angry Birds Epic Posted by Jessica Fisher on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »
Telltale Games and Mojang Announce Minec...
Telltale Games and Mojang Announce Minecraft: Story Mode – A Telltale Games Series Posted by Jessica Fisher on December 19th, 2014 [ permalink ] | Read more »
WarChest and Splash Damage Annouce Their...
WarChest and Splash Damage Annouce Their New Game: Tempo Posted by Jessica Fisher on December 19th, 2014 [ permalink ] WarChest Ltd and Splash Damage Ltd are teaming up again to work | Read more »
BulkyPix Celebrates its 6th Anniversary...
BulkyPix Celebrates its 6th Anniversary with a Bunch of Free Games Posted by Jessica Fisher on December 19th, 2014 [ permalink ] BulkyPix has | Read more »
Indulge in Japanese cuisine in Cooking F...
Indulge in Japanese cuisine in Cooking Fever’s new sushi-themed update Posted by Simon Reed on December 19th, 2014 [ permalink ] Lithuanian developer Nordcurrent has yet again updated its restaurant simulat | Read more »
Badland Daydream Level Pack Arrives to C...
Badland Daydream Level Pack Arrives to Celebrate 20 Million Downloads Posted by Ellis Spice on December 19th, 2014 [ permalink ] | Read more »
Far Cry 4, Assassin’s Creed Unity, Desti...
Far Cry 4, Assassin’s Creed Unity, Destiny, and Beyond – AppSpy Takes a Look at AAA Companion Apps Posted by Rob Rich on December 19th, 2014 [ permalink ] These day | Read more »
A Bunch of Halfbrick Games Are Going Fre...
A Bunch of Halfbrick Games Are Going Free for the Holidays Posted by Ellis Spice on December 19th, 2014 [ permalink ] Universal App - Designed for iPhone and iPad | Read more »

Price Scanner via MacPrices.net

The Apple Store offering free next-day shippi...
The Apple Store is now offering free next-day shipping on all in stock items if ordered before 12/23/14 at 10:00am PT. Local store pickup is also available within an hour of ordering for any in stock... Read more
It’s 1992 Again At Sony Pictures, Except For...
Techcrunch’s John Biggs interviewed a Sony Pictures Entertainment (SPE) employee, who quite understandably wished to remain anonymous, regarding post-hack conditions in SPE’s L.A office, explaining “... Read more
Holiday sales this weekend: MacBook Pros for...
 B&H Photo has new MacBook Pros on sale for up to $300 off MSRP as part of their Holiday pricing. Shipping is free, and B&H charges NY sales tax only: - 15″ 2.2GHz Retina MacBook Pro: $1699... Read more
Holiday sales this weekend: MacBook Airs for...
B&H Photo has 2014 MacBook Airs on sale for up to $120 off MSRP, for a limited time, for the Thanksgiving/Christmas Holiday shopping season. Shipping is free, and B&H charges NY sales tax... Read more
Holiday sales this weekend: iMacs for up to $...
B&H Photo has 21″ and 27″ iMacs on sale for up to $200 off MSRP including free shipping plus NY sales tax only. B&H will also include a free copy of Parallels Desktop software: - 21″ 1.4GHz... Read more
Holiday sales this weekend: Mac minis availab...
B&H Photo has new 2014 Mac minis on sale for up to $80 off MSRP. Shipping is free, and B&H charges NY sales tax only: - 1.4GHz Mac mini: $459 $40 off MSRP - 2.6GHz Mac mini: $629 $70 off MSRP... Read more
Holiday sales this weekend: Mac Pros for up t...
B&H Photo has Mac Pros on sale for up to $500 off MSRP. Shipping is free, and B&H charges sales tax in NY only: - 3.7GHz 4-core Mac Pro: $2599, $400 off MSRP - 3.5GHz 6-core Mac Pro: $3499, $... Read more
Save up to $400 on MacBooks with Apple Certif...
The Apple Store has Apple Certified Refurbished 2014 MacBook Pros and MacBook Airs available for up to $400 off the cost of new models. An Apple one-year warranty is included with each model, and... Read more
Save up to $300 on Macs, $30 on iPads with Ap...
Purchase a new Mac or iPad at The Apple Store for Education and take up to $300 off MSRP. All teachers, students, and staff of any educational institution qualify for the discount. Shipping is free,... Read more
iOS and Android OS Targeted by Man-in-the-Mid...
Cloud services security provider Akamai Technologies, Inc. has released, through the company’s Prolexic Security Engineering & Research Team (PLXsert), a new cybersecurity threat advisory. The... Read more

Jobs Board

*Apple* Store Leader Program (US) - Apple, I...
…Summary Learn and grow as you explore the art of leadership at the Apple Store. You'll master our retail business inside and out through training, hands-on experience, Read more
Project Manager, *Apple* Financial Services...
**Job Summary** Apple Financial Services (AFS) offers consumers, businesses and educational institutions ways to finance Apple purchases. We work with national and Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, you're also the Read more
*Apple* Retail - Multiple Positions (US) - A...
Job Description: Sales Specialist - Retail Customer Service and Sales Transform Apple Store visitors into loyal Apple customers. When customers enter the store, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.